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Abstract: Ruthenium complexes are at the forefront of developments in metal-based anticancer
drugs, but many questions remain open regarding their reactivity in biological media, including
the role of transferrin (Tf) in their transport and cellular uptake. A well-known anticancer drug,
KP1019 ((IndH)[RuIIICl4(Ind)2], where Ind = indazole) and a reference complex, [RuIII(nta)2]3−

(nta = nitrilotriacetato(3−)) interacted differently with human apoTf, monoFeTf, or Fe2Tf. These
reactions were studied by biolayer interferometry (BLI) measurements of Ru–Fe–Tf binding to
recombinant human transferrin receptor 1 (TfR1) in conjunction with UV-vis spectroscopy and
particle size analysis. Cellular Ru uptake in human hepatoma (HepG2) cells was measured under
the conditions of the BLI assays. The mode of Tf binding and cellular Ru uptake were critically
dependent on the nature of Ru complex, availability of Fe(III) binding sites of Tf, and the presence of
proteins that competed for metal binding, particularly serum albumin. Cellular uptake of KP1019 was
not Tf-mediated and occurred mostly by passive diffusion, which may also be suitable for treatments
of inoperable cancers by intratumoral injections. High cellular Ru uptake from a combination of
[RuIII(nta)2]3− and Fe2Tf in the absence of significant Ru–Tf binding was likely to be due to trapping
of Ru(III) species into the endosome during TfR1-mediated endocytosis of Fe2Tf.

Keywords: ruthenium; KP1019; anticancer; transferrin; albumin; transferrin receptor; biolayer
interferometry; HepG2 cells; protein aggregation; intratumoral injections

1. Introduction

The resounding clinical success of Pt-based anticancer drugs (cisplatin, carboplatin,
and oxaliplatin) led to considerable interest in the use of transition metal complexes for
cancer chemotherapy, but no comparable breakthroughs for other metal complexes have
occurred in the field so far [1,2]. Ruthenium compounds are currently at the forefront
of preclinical development in metal-based anticancer drugs [1–6]. Unique photophysical
properties of Ru can lead to its applications in light-activated anticancer drugs and in
photodynamic therapy [7]. Some Ru complexes showed immunogenic properties that are
particularly promising for cancer immunotherapy [8,9].

One of the main problems for medicinal applications of Ru complexes and metal-
based drugs in general is their complicated and unpredictable reactivity in biological
media both extra- and intra-cellularly [10–14]. For instance, NAMI-A ((ImH)[RuIIICl4(Im)
(S-dmso)], where Im = imidazole and S-dmso is S-bound dimethyl sulfoxide) showed great
promise as a selective antimetastatic drug in preclinical studies but failed in phase I/II
human clinical trials [15], probably due to non-specific binding to extracellular targets [16].
A related Ru(III) complex, KP1019 ((IndH)[RuIIICl4(Ind)2], where Ind = indazole) was
withdrawn from early clinical trials due to insufficient solubility in biological media [1].
However, its more soluble analogue with a Na+ counterion (known as NKP-1339, IT-139
or BOLD-100) remains in clinical trials (NCT01415297 and NCT04421820) [17] and shows
promising activities, including immunogenic effects and alteration of glycolysis in cancer
cells [1,18–20].
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One of the outstanding questions in the development of Ru anticancer drugs (RuACDs)
is the role of transferrin (Tf, the main Fe transport protein in mammalian blood) [21] in
cellular Ru uptake. Transferrin is an ~80 kDa glycoprotein that consists of two structurally
similar lobes (C- and N-lobes), each of which binds one Fe(III) ion in a pocket that consists
of two tyrosine, one aspartate, one histidine residues and a synergistic carbonato anion [21].
Initial studies suggested that selective binding of Ru(III) to the Fe(III) binding sites of Tf
may be responsible for efficient cellular uptake and anticancer activity of Ru(III) complexes,
particularly for KP1019 [22,23]. More recently, Ru(III) binding to the Fe(III) binding sites of
Tf was shown to disrupt the binding of Tf to its main cellular receptor (transferrin receptor
1, TfR1) [24]. Any cellular uptake of Ru–Tf adducts is more likely due to non-specific Ru
binding to the side chains of fully Fe(III)-saturated Tf (holoTf, Fe2Tf) [25,26].

Our group has pioneered the use of biolayer interferometry (BLI) [24,27] in combi-
nation with previously developed urea gel electrophoresis [28,29] and other analytical
techniques for elucidation of the roles of non-Fe metal binding to Tf in their cellular uptake
and biological activity. Previously, this approach was used for the studies of Tf interactions
with NAMI-A [24], as well as with Cr(III) [30] and V(V/IV) [31] complexes. This work
presents a detailed study of Tf interactions with a well-known anticancer Ru(III) complex,
KP1019, which has been the subject of contradictory claims in the literature about its poten-
tial role in anticancer activities in vivo [23,32]. Herein, we studied the role of proteins that
compete for Ru binding in vitro and in vivo, in particular serum albumin, in modulating
Ru–Tf binding and cellular Ru uptake under physiologically relevant conditions.

2. Materials and Methods
2.1. Reagents and Solutions

The following sources of proteins and reagents were used: (i) recombinant human
transferrin receptor (TfR1/CD71), extracellular domain (Cyst89-Phe760), (His)6-tagged at
the N-terminus, from Sino Biological, Beijing, China (Cat No.11020-H07H); (ii) human apo
transferrin (apoTf) from Sigma-Aldrich, Burlington, MA, USA (>98% Tf ≤ 0.005% Fe; Cat
No T1147); (iii) bovine serum albumin (BSA) with high fatty acid content (AlbuMax, Gibco
Cat No 11020021) for cell assays; (iv) human serum albumin (HSA, >99%, Sigma-Aldrich
A3782)); (v) human serum (sterile filtered) Sigma Cat. No. H4522; and (vi) 1000 ppm
standard RuCl3 solution in 5% HCl and 1000 ppm standard FeCl3 in 0.1 M HCl solution
(>99%, Sigma-Aldrich). Representative anticancer Ru complexes, NAMI-A, KP1019, and
RAPTA-C ([RuII(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphoadamantane),
were synthesized according to the literature methods [33–35] and characterized by nuclear
magnetic resonance spectroscopy (1H NMR), electrospray ionization mass spectrometry
(ESI-MS), and elemental analysis, as reported previously by our group [36,37]. Stock
solutions of Ru complexes (10–20 mM) in N,N-dimethyl formamide (DMF) [36] were
prepared on the day of experiments. The use of dimethyl sulfoxide (DMSO) for stock
solutions was avoided because of its known ligand-exchange reactions with Ru(III/II)
complexes [38]. All other reagents were of the highest available purity grade and purchased
from Sigma-Aldrich or Merck. Sterile solutions and plasticware used in cell culture were
purchased from Life Technologies Australia. Milli-Q water was used in all aqueous sample
preparations.

The buffers used for metal–Tf binding studies [24,27–31] were as follows: (i) the
binding buffer (20 mM HEPES, 25 mM NaHCO3, 140 mM NaCl, pH 7.4; HEPES = 4-
(2-hydroxy ethyl)piperazine-1-ethanesulfonic acid); and (ii) the endosomal buffer (100 mM
MES, 300 mM KCl, 4.0 mM Na2H2edta, pH 5.6; MES = 2-(N-morpholino)ethanesulfonic acid,
edta = N,N,N′,N′-ethane-1,2-diaminetetraacetate(4−)). To minimize the effect of trace Fe(III)
on metal–Tf binding, the buffers were pre-treated with Chelex 100 chelating resin (BioRad,
Contra Costa County, CA, USA) for 36 h, whilst adjusting the pH values with solutions of
ultra-pure HCl (0.10 M, Merck, Kenilworth, NJ, USA), or NaOH (0.10 M, Aldrich, St. Louis,
MO, USA) then filtered through sterile 0.2 µM membrane filters (Sartorius) before use. The
pH values of the buffers were measured with an Activon 210 pH meter equipped with a
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combined glass/Ag/AgCl electrode (model No H11332) and calibrated using standard pH
buffer solutions.

2.2. Metal–Tf Sample Preparation

Conditions used for Fe(III)–Tf and Ru(III)–Tf sample preparations are listed in Table 1.
Aqueous solutions of the precursor [FeIII(nta)2]3− and [RuIII(nta)2]3− complexes (~10 mM
metal, pH~6 for Fe(III) or pH~2 for Ru(III), nta = nitrilotriacetato(3−)) were prepared
according to the literature methods [39,40]. Precise Fe(III) or Ru(III) concentrations in these
solutions were determined by graphite furnace atomic absorption spectrometry (GFAAS),
using an Agilent Technologies series 200 spectrometer equipped with Zeeman background
correction. Unless stated otherwise, metal–Tf solutions for electronic absorption (UV-vis)
spectroscopy and BLI studies (A1–A9 in Table 1) were prepared in the binding buffer
(Section 2.1) and incubated for 24 h at 295 K before the experiments. The UV-vis spectra
of Tf solutions (~0.1 mM protein) were collected using a Thermo Fisher Scientific Nan-
oDrop spectrometer (200–750 nm spectral range, ~3 nm wavelength resolution, 2.0 µL
sample size). The following literature values were used to determine Tf concentrations:
λmax = 280 nm, εmax = 8.5× 104 M−1 cm−1 for apoTf; λmax = 280 nm, εmax = 1.04× 105 M−1

cm−1 for Fe2Tf and Ru2Tf; λmax = 470 nm, εmax = 4.9 × 103 M−1 cm−1 for Fe2Tf; and
λmax = 380 nm, εmax = 7.0 × 103 M−1 cm−1 for Ru2Tf [39–41].

Table 1. Conditions of sample preparation.

Designation a Description b

A1 apoTf (100 µM) + 2.0 eq. [RuIII(nta)2]3−→Ru2Tf
A2 apoTf (100 µM) + 2.0 eq. [FeIII(nta)2]3−→Fe2Tf
A3 apoTf (100 µM) + 1.0 eq. [FeIII(nta)2]3−→monoFeTf

A4 apoTf (100 µM) + 1.0 eq. [FeIII(nta)2]3−, then 1.0 eq.
[RuIII(nta)2]3−→RuFeTf

A5 apoTf (100 µM) + 1.0 eq. [FeIII(nta)2]3−, then 1.0 eq. KP1019
A6 apoTf (100 µM) + 2.0 eq. KP1019
A7 apoTf (100 µM) + 4.0 eq. KP1019
A8 Fe2Tf (84 µM) + 1.0 eq. KP1019
A9 Fe2Tf (84 µM) + 5.0 eq. KP1019
B1 KP1019 (60 µM), freshly added to the base medium
B2 KP1019 (60 µM)
B3 KP1019 (60 µM) + HSA (30 µM)
B4 KP1019 (60 µM) + apoTf (30 µM)
B5 KP1019 (60 µM) + Fe0.6Tf (30 µM)
B6 KP1019 (60 µM) + Fe2Tf (30 µM)
B7 [RuIII(nta)2]3− (60 µM)
B8 [RuIII(nta)2]3− (60 µM) + Fe2Tf (30 µM)
B9 Ru2Tf (30 µM)

a Samples A1–A9 were used for UV-vis, BLI, and DLS measurements (Table 2 and Figure 1) and samples B1–B9
were used for cell uptake and protein binding studies (Table 3 and Figure 2). b Samples A1–A9 were prepared in
the binding buffer (20 mM HEPES, 25 mM NaHCO3, 140 mM NaCl, pH 7.4) and incubated for 24 h at 295 K before
the experiments. Samples B1–B9 were prepared in cell culture medium (DMEM supplemented with 1.0 mg mL−1

of AlbuMax), using freeze-dried protein samples and 20 mM KP1019 solution in DMF. These samples were
sterilely filtered and incubated for 24 h at 310 K and 5% CO2 (except for sample B1 that was used immediately
after the addition of KP1019).

Freeze-dried samples of Fe2Tf (fully Fe-saturated) or Fe0.6Tf (30% saturated, which
corresponded to the mean Fe–Tf saturation in human blood) [42] for cell culture assays
(B1–B9 in Table 2) were prepared by the reactions of apoTf with Fe(III)–NTA. These met-
alloproteins were characterized by UV-Vis spectroscopy and Fe content measurements
by GFAAS, as described previously [30]. Similarly, a sample of Ru2Tf was prepared by
mixing a solution of human apoTf (10 mg in 0.50 mL of the binding buffer) with that
of [RuIII(nta)2]3− (0.15 mL of 2.02 mM solution in water, a 5-fold molar excess Ru). The
mixture was incubated for 2 h at 310 K, followed by removal of low-molecular-mass
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Ru species (<3 kDa) using Nanosep centrifugal membrane filters (Pall Life Sciences Cat.
No. OD003C34, New York, NY, USA) and the resultant solution was freeze-dried [30].

Figure 1. Representative UV-vis spectra (a–c) and the corresponding BLI curves (d–f) of Fe(III)–Ru(III)–
Tf samples. Designations of the samples correspond to those used in Table 2. Tf concentrations were
0.10 mM for UV-vis spectra and 1.0 µM for BLI experiments. The buffer used in UV-vis spectra and in
the steps A, B and D of BLI experiments was 20 mM HEPES, 25 mM NaHCO3, 140 mM NaCl, pH 7.4.
The buffer used in step C of BLI experiments was 100 mM MES, 300 mM NaCl, 4.0 mM Na2H2edta,
pH 5.6 [24,30]. A summary of λmax, εmax (UV-vis) and KD (BLI) values is given in Table 2. All the
data were collected at 295 K.

2.3. Biolayer Interferometry Measurements

The effects of Ru complexes on the Tf cycle were determined by BLI using previously
developed protocols [24,27,30,31]. The instrument used was a single-channel BLItz analyser
(ForteBio, Menlo Park, CA, USA) with a tube holder (250 µL solution volume) and Ni(II)–
nta coated optical probes held at 295 ± 1 K. Measurements used the Advanced Kinetics
mode. The probes were loaded with TfR1 (250 mg mL−1) in phosphate buffered saline
solution (PBS) and were re-used up to forty times after a single loading, which did not cause
significant changes in the kinetics of Tf binding [24]. Solutions of metal–Tf adducts (typical
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final Tf concentrations 150 nM or 1.0 µM) were prepared in the binding buffer (Section 2.1).
The pH 7.4 binding buffer was used for Tf binding and dissociation from the probe, and
the pH 5.6 buffer (Section 2.1) was used to mimic the endosomal step of the Tf cycle [27].
Metal–Tf solutions (A1–A9 in Table 1) were diluted 100–400-fold, cell culture media were
diluted 30-fold, and human serum samples were diluted 200-fold with the binding buffer
immediately before the BLI measurements. All BLI data were background corrected by
using data from buffer only runs with the same TfR1-loaded optical probe. Consistent BLI
results were obtained in at least two independent measurements, using different probes
and different batches of Tf solutions. Calculations of the Tf–TfR1 binding constants were
performed using the 1:1 binding model (BLItz software, Version 1.1, Forte-Bio 2013) [24,30],
which can be used as a reasonable approximation of the physiological 2:2 Tf–TfR1 binding
mechanism at low Tf concentrations [27,43–45].

2.4. Protein Aggregation Measurements, Gel Electrophoresis, and Crystal Structure Analysis

Changes in size of proteins following the reactions of apoTf and Fe2Tf with Ru com-
plexes were determined by a dynamic light scattering (DLS) technique, using a Malvern
ZetaSizer NanoS instrument (173◦ scattering angle, 298 K) with ZEN0040 disposable cu-
vettes (Malvern Panalytical, Malvern, UK). Protein samples (0.10 mM) were diluted 10-fold
with binding buffer before the measurements. The measured parameters were the averages
of 12–15 scans (scan time, 3 s). Urea gel electrophoresis of apoTf and Fe2Tf samples [28]
in the presence of varying concentrations of KP1019 was performed as described previ-
ously [29]. Analysis of Tf crystal structures that are available in the public domain from the
Protein Data Bank (PDB) was performed with PyMOL software (version 2.1.1, Schrodinger
LLC 2021, New York, NY, USA).

2.5. Cell Culture and Treatment

Human hepatoma (HepG2) cells were originally received from the American Type
Culture Collection (ATCC, Cat. No. HB-8065) and cultured as described previously [30].
This cell line was used for Tf-dependent metal uptake studies [30] because of the high
expression levels of human TfR1 [43]. For treatments, the cells were grown to confluence in
24-well plates, using Advanced DMEM (Dulbecco’s modified Eagle’s minimal essential
medium, Invitrogen Cat. No. 12491-015), supplemented with L-glutamine (2.0 mM),
antibiotic-antimycotic mixture (100 mg mL−1 penicillin, 100 mg mL−1 steptomycin and
0.25 mg mL−1 amphotericin B) and fetal calf serum (heat-inactivated, 2% v/v). Confluent
cell layers were washed with serum-free treatment medium (DMEM, Invitrogen Cat. No.
19938-025), supplemented with glutamine, antibiotic-antimycotic mixture and 1.0 mg mL−1

AlbuMax (Gibco Cat. No. 11020-021). Advanced DMEM was not used for the treatments,
because it contained added proteins and growth factors, including low concentrations
of human Fe2Tf [11]. After washing, the wells were filled with the treatment medium
containing metal additions (detailed in B1–B9 of Table 1). The treatment media were
sterilized by filtration through 0.2 µm membrane filters, and pre-equilibrated for 24 h
at 310 K and 5% CO2 prior to the addition to cells, except for sample B1 that was used
immediately after preparation. All the treatments were performed in triplicate, using
random well positions to avoid experimental bias.

2.6. Measurements of Cellular Ru and Fe Uptake

After 24 h incubation with the treatment media (B1–B9 in Table 1), the medium from
each well was collected for the determination of Ru–protein binding and BLI analyses, and
the wells were washed twice with PBS (0.50 mL/well). The cells were then lysed with
NaOH (0.10 M, 0.10 mL per well) for 3 d at 277 K. A 25 µL aliquot of each cell lysate was
mixed with HCl (975 µL, 0.10 M) and kept for 24 h at 295 K, followed by centrifugation for
5 min at 16,000 g. The supernatants were used for Ru and Fe determination by ICP-MS
using a Perkin-Elmer Nexion 350X spectrometer with standard Ru and Fe solutions (1.0–100
ppb) and 193Ir peak as an internal standard.
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The values of metal uptake were normalized using protein content in cell lysates. For
protein determination, Bradford reagent (Sigma Cat. No B6916; 98 µL) was mixed with
a small aliquot (2.0 µL) of each cell lysate, and the absorbance at 600 nm was measured
using a Victor V3 plate reader. The instrument was calibrated using solutions prepared
by mixing BSA (2.0 µL, 0–2 mg mL−1 in 0.10 M NaOH, freshly prepared) with Bradford
reagent (98 µL). The test and calibration samples were analyzed in triplicate. Statistical
analysis of results was performed using one way ANOVA in Origin software (version 6.1,
MicroCal, Northampton, MA, USA, 1999).

2.7. Determination of Ru–Protein Binding in Cell Culture Medium

An aliquot (50 µL) of cell culture medium from each well was passed through a
separate Bio-Rad P6 centrifugal gel filtration column that was pre-saturated with PBS,
according to manufacturer’s instructions. The eluants (50± 5 µL volume) contained protein-
bound Ru fractions (>6 kDa molecular mass) [30,31]. The protein recovery, measured by
Bradford assays, exceeded 95%. Another 50 µL sample of each medium was taken into
separate tubes. Both the original and gel-filtered media samples were digested with 0.20 mL
of 65% (v/v) HNO3 for 24 h. The digests were diluted with 0.75 mL of 0.10 M HCl, and
the Ru content in the samples was determined by GFAAS. The percentage of protein
binding was determined from the ratio of Ru content in the gel-filtered and original media
samples [30,31].

3. Results
3.1. Effect of Ru Complexes on Tf–TfR1 Binding in Cell-Free Systems

The experimental data for the binding of Ru(III)–Tf and Ru(III)–Fe(III)–Tf adducts
(samples A1–A9 in Table 1) to recombinant human TfR1 from BLI [24,27,30,31], UV-vis
spectroscopy and particle size analysis are summarized in Table 2 and Figure 1.

Table 2. Summary of UV-Vis, BLI and mean particle size data for Fe(III)–Tf and Ru(III)–Tf adducts a.

Sample b λmax, nm εmax, M−1 cm−1 KD, nM c Mean Particle Size, nm

apoTf 280 8.2 × 104 d 43 7 ± 1
Ru2Tf (A1) 380 e 7.0 × 102 162 7 ± 1
Fe2Tf (A2) 470 4.9 × 102 d 4.6 f 7 ± 2

monoFeTf (A3) 460 2.5 × 102 19 7 ± 1
RuFeTf (A4) 460 2.8 × 102 31 6.5 ± 1

monoFeTf + 1.0 eq. KP1019 (A5) 290 1.4 × 104 no binding 175, 805
apoTf + 2.0 eq. KP1019 (A6) 290 2.0 × 104 no binding 450, 970
apoTf + 4.0 eq. KP1019 (A7) 290 2.4 × 104 no binding >1000
Fe2Tf + 1.0 eq. KP1019 (A8) 460 6.2 × 102 5 7 ± 2
Fe2Tf + 5.0 eq. KP1019 (A9) 620 7.5 × 102 10 9 ± 2

a See Figure 1 and Figure S1 for details. b Numbers in parentheses correspond to Table 1. c Dissociation
constants (KD) for the binding of metal–Tf complexes to TfR1 were calculated using the 1:1 binding model in BLItz
software [24,30]. Lower KD values correspond to stronger binding. d These values agreed with those reported
in the literature [41]. e This value is consistent with that reported in the literature (broad absorbance band at
300–400 nm) for Ru2Tf [40]. f This value agrees with that reported in the literature for the Fe2Tf–TfR1 binding
constant (KD~5 nM for the 1:1 binding model) [44,45].

The UV-vis spectra of apoTf, Fe2Tf and Ru2Tf (Figure 1a–c) were consistent with
those reported in the literature [40,41]. The BLI data for Fe2Tf (black lines in Figure 1d–f)
represent a functional model of the Tf cycle in a cell-free system [24,27]. This includes
the following: (i) strong binding of Fe2Tf to TfR1, which is immobilized on a BLI probe
that models the cell surface (step A, pH 7.4); (ii) slow dissociation of Fe2Tf from TfR1
under extracellular conditions (step B, pH 7.4); (iii) removal of Fe(III) from Fe2Tf under the
endosome-mimicking conditions (step C, pH 5.6); and (iv) rapid dissociation of the formed
apoTf from TfR1 when the endosome is returned to the cell surface (step D, pH 7.4) [24,27].
The dissociation constant for the Fe2Tf–TfR1 system (KD = 4.6 nM using a 1:1 binding
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model, Table 2) was consistent with the literature data [44,45] and with our previous
results [24,27,30,31]. Detailed kinetic analysis of BLI data [27,31] was out of scope of
this work.

As reported previously [24,27,44,45], binding of apoTf to TfR1 was weak compared
with that of Fe2Tf (blue line in Figure 1d). The measured value of KD was 43 nM (Table 2),
although this value likely reflected the partial Fe-saturation of Tf by the trace amounts of
Fe present in the buffer [27]. Notably, the binding of Ru2Tf to TfR1 was even weaker than
that of apoTf (red line in Figure 1d; KD = 162 nM in Table 2). This result is consistent with
the earlier observation [24] that Ru(III) binding to the Fe(III)–binding sites of Tf disrupts
the Tf binding to TfR1. Mean particle sizes in apoTf, Fe2Tf or Ru2Tf solutions (10 µM Tf in
the binding buffer) were ~7 nm according to DLS measurements (Table 2 and Figure S1
in Supplementary Material), which indicates the existence of monomeric protein units in
solution [46]. Taken together, these data confirm the early report [40] that the reaction of
apoTf with [Ru(nta)2]3− in dilute aqueous solutions (A1 in Table 1) leads to strong and
selective Ru(III) binding to the Fe(III) binding sites of apoTf.

The formation of monoFeTf (a mixture of FeCTf and FeNTf forms) [28] by the reaction
of apoTf with one molar equivalent of [Fe(nta)2]3− (A3 in Table 1) was confirmed by UV-vis
spectroscopy [41] and BLI data (blue lines in Figure 1b,e). As expected [27], the binding
of monoFeTf to TfR1 (KD = 19 nM, Table 2) was weaker than that of Fe2Tf (KD = 4.6 nM,
Table 2). Reaction of pre-formed monoFeTf with one equivalent of [RuIII(nta)2]3− (A4 in
Table 1) led to spectral changes that indicated the formation of mixed Ru(III)–Fe(III)–Tf
adducts. This was consistent with further decrease in strength of Tf–TfR1 binding (red lines
in Figure 1b,e; KD = 31 nM, Table 2), which was closer to that of apoTf (KD = 43 nM) than
Fe2Tf. Formation of mixed Tf adducts with Fe(III) and exogenous metal ions, such as Ru(III),
is the most likely scenario in biological systems [31,47]. Both monoFeTf and RuFeTf adducts
retained monomeric states in solution (mean particle size ~7 nm, Table 2 and Figure S1). By
contrast, the reaction of pre-formed monoFeTf with one molar equivalent of KP1019 (A5 in
Tables 1 and 2) led to a strong decrease in absorbance at ~280 nm and to complete disruption
of Tf–TfR1 binding (green lines in Figure 1b,e). These changes corresponded to a drastic
increase in mean particle size (two peaks at ~175 nm and ~805 nm, Table 2 and Figure S1),
which pointed to protein aggregation [46]. Similarly, the reactions of apoTf with 2–4 molar
equivalents of KP1019 (A6 and A7 in Tables 1 and 2) led to decreases in UV-vis absorbance
intensity, complete disruption of Tf–TfR1 binding and a drastic increase in mean particle
sizes (Table 2). In addition, reactions of apoTf with 0.5–1 molar equivalents of KP1019 led to
smeared patterns in urea gel electrophoresis (Figure S2 in Supplementary Material), which
pointed to disruptions to the protein conformation [29]. Partial protein aggregation during
the reactions of apoTf with KP1019 was reported previously [32], but the effect was weaker
than that observed in this work, probably because of the differences in reaction conditions.

In contrast with the results for monoFeTf, reaction of Fe2Tf with one molar equivalent
of KP1019 (A8 in Tables 1 and 2) did not cause drastic changes in UV-vis spectra, Tf–TfR1
binding patterns or protein particle size (see blue lines in Figure 1c,f and numerical values in
Table 2). Urea gel electrophoresis under these conditions showed a slight smear compared
with a sample of Fe2Tf (Figure S2). Reaction of Fe2Tf with five molar equivalents of KP1019
(A9 in Tables 1 and 2) produced a green-colored solution that showed an additional UV-vis
absorbance band at ~630 nm (red line in Figure 1c), a slightly decreased Tf–TfR1 binding
affinity compared with Fe2Tf (red line in Figure 1f; KD = 10 nM, Table 2) and a slightly
increased mean particle size in DLS measurements (~9 nm, Table 2 and Figure S1). The
green color was similar to that observed previously in the decomposition products of
KP1019 in the presence of proteins, although the structures of these species have not been
elucidated [36]. These features are consistent with non-specific Ru(III) binding to surface
His residues of Fe2Tf [25,26], which does not lead to major disruptions within the Tf
cycle [27].

Importantly, all the changes shown in Figure 1 and Table 2 were observed during
the reactions of Tf with Ru(III) complexes in an aqueous buffer (20 mM HEPES, 25 mM
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NaHCO3, 140 mM NaCl, pH 7.4) [27] that did not contain added proteins. Mixing of apoTf
(30 µM) with KP1019 (60 µM) in cell culture medium (DMEM supplemented with ~15 µM
BSA) did not have a major effect on Tf–TfR1 binding compared with the same medium that
contained added apoTf but not KP1019 (Figure S3a in Supplementary Material). In both
cases, BLI curves corresponded to those of partially Fe(III)-saturated Tf due to significant
background Fe levels in the medium (~6 µM as measured by GFAAS). These results were
in stark contrast with those observed in aqueous buffers, where the addition of KP1019
to apoTf or monoFeTf completely prevented Tf–TfR1 binding (Table 2 and Figure 1e).
Furthermore, incubation of whole human serum that naturally contains ~30 µM Tf and
0.60 mM HSA [42] with 100 µM of typical RuACDs (NAMI-A, KP1019 or RAPTA-C) [1,4,16]
did not have any effect on Tf–TfR1 binding, while the addition of Fe(III) (60 µM, as citrate) to
serum significantly increased the binding affinity (Figure S3b), in agreement with previously
published data [27]. These results show that KP1019 is more likely to react with other
components of serum or cell culture medium, such as albumin or amino acids [11,48],
compared with Tf. By contrast, Fe(III) ions are able to bind selectively to the vacant Tf
binding sites under these conditions.

3.2. Effect of Tf on the Uptake of Ru Complexes by HepG2 Cells

To further investigate the role of Tf in the uptake of RuACDs, human liver cancer
(HepG2) cells were used to study cellular uptake of KP1019, [Ru(nta)2]3− (a reference
Ru(III) complex) or isolated Ru2Tf. Cellular Fe levels were also measured to control the
Tf-mediated Fe uptake [30]. The experiments were designed based on similar protocols as
those published for Cr(III) uptake by HepG2 cells in the presence of Tf [30], and the results
are summarized in Table 3. Most of the conditions (B2-B9 in Tables 1 and 3) were relatively
non-toxic, as judged from the absence of significant changes in cell morphology. Note
that in these cases KP1019 was allowed to decompose and bind to the components of cell
culture medium for 24 h prior to the cell treatment, which led to reductions in cellular Ru
uptake and cytotoxicity [36]. One exception was the condition B1 (KP1019 freshly added to
cell culture medium), which led to significant cell detachment during the incubation due to
the toxicity of KP1019.

In agreement with previous data [36], treatment of cells with freshly prepared KP1019
solution in cell culture medium (60 µM Ru for 24 h) resulted in significant Ru uptake (B1
in Table 3), while decomposition of KP1019 in cell culture medium for 24 h prior to the
addition to cells resulted in a ~30-fold decrease in Ru uptake (B2 in Table 3). The addition of
HSA (30 µM) resulted in a further decrease in Ru uptake compared with the basal medium
(B3 in Table 3), due to Ru binding to HSA [48] that reduced its bioavailability to cells. This
finding parallels the corresponding findings for the Cr(III) uptake experiments, whereby the
interaction between HSA and Cr(III) resulted in a decrease in Cr(III) uptake [30]. Condition
B3 resulted in the lowest cellular uptake of Ru of all the studied experimental conditions,
except for untreated cells where no detectable Ru levels were found (Table 3).

Measurements of Ru–protein binding in cell culture medium after the cell treatment
(Table 3) showed that ~50% of KP1019 decomposition products were protein-bound even
in the basal medium that contained ~15 µM BSA (conditions B1 and B2 in Table 3). The
addition of a minimal amount of BSA to the medium was required to protect cell viability
during the treatments [30]. The presence of added HSA, apoTf, or Fe0.6Tf, but not Fe2Tf
(30 µM protein in all cases; conditions B3-B6 in Table 3) resulted in further increases in
Ru–Tf binding, while the highest level of Ru–protein binding was observed for the isolated
Ru2Tf (condition B9 in Table 3). These results are consistent with preferential Ru(III)
binding to albumin, or to vacant Fe(III)-binding sites of Tf, rather than to the side chains of
Fe(III)-saturated Tf [49–51].
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Table 3. Ru and Fe uptake by HepG2 cells and Ru–protein binding in cell culture medium in the
presence or absence of Tf (24 h assays) a.

Conditions b Ru Uptake c Fe Content c % Ru–Protein d

no Ru added 0 1.9 ± 0.7 0
KP1019 fresh (B1) 6.6 ± 2.8 e 11.2 ± 6.5 f 46 ± 4

KP1019 decomposed (B2) 0.23 ± 0.09 e 1.2 ± 0.8 49 ± 1
KP1019 + HSA (B3) 0.062 ± 0.005 1.6 ± 0.5 73 ± 3 g

KP1019 + apoTf (B4) 0.13 ± 0.04 e 1.3 ± 0.6 64 ± 1 g

KP1019 + Fe0.6Tf (B5) 0.13 ± 0.03 e 3.4 ± 3.5 64 ± 1 g

KP1019 + Fe2Tf (B6) 0.26 ± 0.03 e 8.9 ± 1.7 f 53 ± 4
[Ru(nta)2]3− (B7) 0.09 ± 0.03 1.4 ± 0.4 2 ± 1 g

[Ru(nta)2]3− + Fe2Tf (B8) 2.9 ± 0.3 e 5.8 ± 1.7 f 3 ± 1 g

Ru2Tf (B9) 0.07 ± 0.06 1.9 ± 0.7 74 ± 3 g

a Mean values and standard deviations of three replicate measurements; see Figure 2 for graphical representation.
b Numbers in parentheses correspond to Table 1. The basal medium used was serum-free DMEM, supplemented
with 1.0 mg mL−1 (~15 µM) BSA; concentrations of added HSA or Tf were 30 µM, and that of added Ru was
60 µM [30]. c Cellular metal content was measured in nmol per mg protein. d Proportion of protein-bound Ru in cell
culture medium (molar %), measured by gel-filtration chromatography [30,31]. e Statistically significant difference
(p < 0.001 for B2 and B8; p < 0.01 for B4–B6) compared with condition B3. f Statistically significant difference
(p < 0.05) compared with untreated cells. g Statistically significant difference (p < 0.001 for B7 and B8; p < 0.05 for
B3–B5 and B9) compared with condition B2.

Decomposition of KP1019 in cell culture medium in the presence of apoTf, partially
Fe(III) saturated Tf (Fe0.6Tf), or Fe2Tf (condition B4–B6 in Table 3), caused a significant
(p < 0.01) increase in Ru uptake, compared with KP1019 decomposed in the presence of
HSA (condition B3). However, in all these cases, the Ru uptake did not exceed the Ru
uptake level when KP1019 was decomposed in the absence of added Tf (condition B2).
Furthermore, Ru uptake from isolated Ru2Tf was very low (condition B9 in Table 3) and
comparable with that of KP1019 decomposed in the presence of HSA (condition B3). These
data showed that Ru2Tf did not play an active part in Ru transport into cells, which is
similar to the previous findings for Cr2Tf and cellular Cr uptake [30].

In agreement with the previous data [30], the presence of Fe2Tf (conditions B6 and
B8 in Table 3), but not of apoTf or Fe0.6Tf (conditions B4 and B5 in Table 3) significantly
(p < 0.05) increased cellular Fe content over the basal level, due to active Fe2Tf transport
into the cells via the Tf cycle [27]. Cellular Fe levels were also increased for experiments
conducted under condition B1 (Table 3), possibly due to the protective reaction of cells to
KP1019 toxicity [52]. Most notably, co-treatment of HepG2 cells with [Ru(nta)2]3− (60 µM)
and Fe2Tf (30 µM) resulted in a highly significant (p < 0.001) increase in cellular Ru levels
at a very low level of Ru–protein binding (condition B8 in Table 3). This finding parallels
the previous observation [30] of high cellular Cr(III) (CrCl3·6H2O equilibrated with cell
culture medium) uptake in the presence of added Fe2Tf, which did not result in significant
Cr(III)–Tf binding. Contrary to previous suggestions [25,26], these results indicate that
covalent Ru binding to the side chains of Fe2Tf is not required for Tf-mediated cellular Ru
uptake (discussed in Section 4.4).

To summarize the similarities and differences in Ru(III) and Cr(III) uptake by HepG2
cells, Figure 2 shows: (a) a comparison of cellular metal content; and (b) the proportion of
total Ru bound to protein in cell culture medium for Ru(III) (Table 3) with the corresponding
published data for Cr(III) [30]. A crucial difference between Ru(III) and Cr(III), as observed
in these experiments, was their relative affinity for albumin vs. Tf (Figure 2b). Decomposed
KP1019 was strongly bound to albumin (30 µM of added HSA and/or 15 µM of background
BSA), while the addition of apoTf or partially Fe-saturated Tf only slightly increased Ru–
protein binding (Table 3). By contrast, Cr(III) bound stronger to the vacant Fe(III) binding
sites of Tf compared with albumin (Figure 2b). This difference is consistent with the
nature of Fe(III) and Cr(III) as hard Lewis acids, and Ru(III) as a softer Lewis acid [53].
Correspondingly, cellular uptake of Ru(III) was strongly suppressed by added HSA (a
strong Ru(III) binder) and slightly suppressed by apoTf, or by partially Fe-saturated Tf
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(weaker Ru(III) binders), while the reverse pattern was observed for Cr(III) (Figure 2a).
For both Ru(III) and Cr(III), pre-formed adducts with apoTf (designated M2Tf in Figure 2)
showed kinetic and thermodynamic stabilities in biological media, as judged from high
levels of metal–protein binding in cell culture medium, but were not significantly taken up
by cells.

Figure 2. Comparison of cellular Ru uptake (a) and proportions of protein-bound Ru(III) (b) from
Table 3 with the corresponding values for Cr(III) [30]. Unless indicated otherwise, the source of Ru(III)
was KP1019 and that of Cr(III) was CrCl3·6H2O. In all cases, the metal complexes (60 µM) were
pre-equilibrated with cell culture medium (DMEM with ~15 µM BSA) in the presence or absence of
added proteins (indicated on the X axis, 30 µM) for 24 h at 310 K and 5% CO2. Prepared medium was
added to HepG2 cells for further 24 h. The error bars represent mean values and standard deviations
of three replicate wells.

4. Discussion
4.1. Changing Paradigm in Anticancer Ru(III) Complexes

The initial design and development of KP1019 and related anticancer Ru(III) complexes
was based on the “activation by reduction” hypothesis [54,55]. This hypothesis assumed
that Ru(III) mirrors cellular uptake pathways of Fe(III) [21], including selective binding
to the Fe(III) sites of Tf, efficient transport of Ru(III)–Tf into cells via the TfR1-mediated
pathway, and intracellular reduction of Ru(III) to Ru(II) [54,55]. This pathway was expected
to lead to enhanced Ru(III) uptake by cancer cells that overexpress TfR1 [56] and selective
activation of the drug in the hypoxic environment of solid tumors [57] that facilitate
Ru(III) reduction to Ru(II) [54,55]. This hypothesis was subsequently challenged by several
experimental findings. First, human pharmacokinetic studies have shown that KP1019
decomposition products in blood serum are bound predominantly to albumin, while
Tf binding does not exceed 1–2% of total Ru [54,58]. Second, capillary electrophoresis
and X-ray absorption spectroscopic studies have shown that protein-bound Ru(III) is
unlikely to convert to Ru(II) under biologically relevant conditions [36,59–61]. Finally,
there is mounting evidence that binding of non-Fe metals to the Fe(III)-binding sites of Tf
disrupts the Tf–TfR1 binding and is likely to lead to exclusion of exogenous metal ions
from cells [24,25,30,31,47,62].

These observations, together with recent setbacks in human clinical trials of NAMI-A
and KP1019 [1,16], clearly show that better understanding of reactivity of anticancer Ru(III)
complexes in biological media is required to achieve further progress in this area. Although
the reactions of KP1019 with Tf and other serum proteins have been extensively studied
previously (reviewed in refs. [13,51]), application of the BLI technique [24,27] in this study
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provided novel insights into the roles of Tf in biological activities of KP1019 and other
metal-based anticancer drugs.

4.2. Interactions of Ru(III) Complexes with Tf in Aqueous Buffers

Initial in vitro experiments (Table 2 and Figure 1) were performed in aqueous buffers
under the conditions that facilitate metal–Tf binding [27,39–41] in the absence of blood
serum proteins (such as BSA). These studies showed a striking dependence of the mode of
Ru–Tf binding on the type of Ru(III) complex and the form of Tf used. In agreement with
literature data [40], the use of [Ru(nta)2]3− (Scheme 1a), an analogue of a Fe(III) complex
that is widely used for apoTf loading with Fe(III) [39], led to Ru(III) binding to the Fe(III)
binding sites of apoTf, as shown by UV-vis spectroscopy (Figure 1a).

Scheme 1. (a) Likely equilibrium processes involving Fe(III)– and Ru(III)–nta complexes [39] in
neutral aqueous solutions (the structures shown represent one of potential mixtures of geometric iso-
mers). (b) Binding of two equivalents of [FeIII(nta)2]3− to apoTf results in formation of Fe2Tf (closed
conformation of the protein) that binds tightly to TfR1 [27,44,45]. (c) Binding of two equivalents of
[RuIII(nta)2]3− to apoTf [40], which retains an open conformation of the protein and leads to weak
Ru2Tf–TfR1 binding [24]. (d) Binding of one equivalent of [RuIII(nta)2]3− to monoFeTf, which leads
to formation of a mixed-metal Tf complex that partially binds to TfR1 [44,45]. The two lobes of Tf
(C- and N-lobes) are not distinguished in this schematic representation. Values of dissociation
constants (KD, determined by BLI analysis) were taken from Table 2.

Binding of two equivalents of Fe(III) to apoTf is well known to lead to Tf folding into a
closed conformation that promotes tight association to TfR1 (Scheme 1b) [27,28,44,45]. No
such folding occurs in the case of Ru(III)–Tf adducts [24,40], which led to weak Ru(III)–Tf
binding to TfR1 (Scheme 1c), as was confirmed by BLI data (Table 2 and Figure 1d). In
addition, binding of one equivalent of Ru(III) to partially Fe(III)-loaded Tf did not increase
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the affinity of Tf–TfR1 binding (Scheme 1d and Table 3), contrary to suggestions in the
literature [31,47,63] that such mixed-metal Tf complexes may be particularly favorable for
cellular uptake. Note that the binding of Ru(III) from [Ru(nta)2]3− to the Fe(III) binding
sites of Tf (Scheme 1c,d) [40] is inconsistent with recent X-ray crystallography data [26]
that showed non-specific binding of Ru(III)–nta to the surface His residues of Tf. However,
this result is likely to be due to the conditions of crystal growth, which included soaking
of pre-formed monoFeTf crystals in a Ru(III)-containing buffer [26], where binding to
surface histidines was more kinetically favored over the multiple steps and conformational
changes required to bind to the Fe(III) site. Using preformed crystals can lead to difference
in coordination sites within proteins compared to when crystals are grown from solution,
as discussed previously [64]. Examples of binding of non-Fe metal ions to the Fe(III)
binding sites of Tf that retained open or partially open Tf conformation (confirmed by X-ray
crystallography) include Bi(III) [65] and Ti(IV) [66].

Reactions of KP1019 with apoTf or with monoFeTf in an aqueous buffer in the absence
of added proteins led to extensive protein aggregation and loss of activity (Table 1 and
Figure 1b,e), as shown in Scheme 2. This aggregation was probably caused by ligand-
exchange reactions of Cl− ligands of KP1019 with a range of potential surface binding sites
in Tf molecules, which would have led to protein cross-linking (Scheme 2a,b) [10,11,13,36].
On the other hand, reactions of one to five equivalents of KP1019 with Fe2Tf, which
resulted in Ru–Tf binding (evident from UV-Vis spectroscopic data, Figure 1c), did not lead
to significant protein aggregation (as shown by particle size analysis, Table 2), and had
a relatively minor effect on Tf–TfR1 binding (Table 2 and Figure 1f). These observations
suggested that Ru(III) from KP1019 can bind to the surface L-histidine (His) residues of
Fe2Tf (Scheme 2c), as was found in X-ray crystallographic analysis of KP1019 adducts with
human serum albumin [48].

Scheme 2. Proposed reaction modes of KP1019 with open (a), partially open (b) or closed (c) forms
of Tf in aqueous buffers (pH = 7.4) in the absence of added albumin.

Our re-analysis of a published crystal structure of human Fe2Tf (PDB entry 3QYT;
Figure 3) [65] revealed at least thirteen likely surface His residues (marked with red color
in Figure 3), in agreement with published data [67]. Notably, one of these sites that contains
two adjacent His residues (His349H350, marked in Figure 3) plays a crucial role in the
binding of C-lobe of holoTf to TfR1, and primes it for the release of Fe(III) under endosomal
condition (through the protonation of His at pH = 5.6) [68,69]. Since the His349His350
site is only moderately accessible for Ru(III) binding [26], the reaction of Fe2Tf with one
equivalent of KP1019 did not result in significant disruption to the Tf–TfR binding (Table 2
and Figure 1f). However, as the number of KP1019 equivalents increased, the probability of
binding to this site increased. Such binding to this crucial site as the KP1019-Fe2Tf ratio
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increased would have led to disruption of Fe2Tf–TfR1 binding. This could explain the
decreased binding affinity to TfR1 of Fe2Tf after treatment with five vs. one equivalent
of KP1019 (Table 2 and Figure 1f). Scheme 2 illustrates the likely reason for the observed
difference in KP1019 binding to apo- and holo-forms of Tf, as open protein conformation
and the availability of additional His residues in Fe(III) binding sites of apoTf [26] favors
protein crosslinking.

Figure 3. Two views (front and back) of the crystal structure of holoTf (PDB entry 3QYT, processed
with PyMOL software) [65]. Pink spheres are the Fe(III) ions, and His residues that lie close to the
protein surface and are likely to be available for Ru(III) binding [26,67] are shown in red. The marked
His residues (349 and 350) occur at the C-lobe binding site to TfR1 [69].

4.3. Interactions of Ru(III) Complexes with Tf in Cell Culture Medium and in Blood Serum

One of the advantages of BLI studies of Tf interactions with metal-based drugs is the
ability to conduct experiments in biologically relevant fluids, such as cell culture medium, or
intact human serum, to probe the effects of metal complexes on Tf–TfR1 binding [27,30,31].
In this work, as well as in the previous studies [30,31], cell culture medium that was
collected after the metal uptake experiments (Table 3) was used directly for BLI studies
(after the dilution to [Tf] ~1 µM). The results (Figure S2a in Supplementary Material)
showed that a small amount of background protein in the medium (~15 µM BSA; 0.5 molar
equivalent relative to Tf) [30] largely restored the Tf–TfR1 binding in the presence of 30 µM
apoTf and 60 µM KP1019, which was completely suppressed in the absence of BSA (Table 2
and Figure 1e). These results show that albumin has a higher capacity to bind KP1019
compared with Tf, even when the former protein is present at a lower molar ratio. This
provided strong evidence that Ru(III)–Tf binding is unlikely to be responsible for cellular
metal uptake under typical cell culture conditions of up to 10% vol. bovine serum added to
the medium (up to 60 µM albumin) [11], or indeed from the blood stream from intravenous
administration. Measurements of cellular Ru uptake from the media that contain added Tf,
but not albumin [26,63], are physiologically irrelevant and can result in experimental data
that are not relevant to the clinical setting.



Biomolecules 2022, 12, 1319 14 of 19

Typical human serum contains ~0.6 mM albumin and ~0.1 mM immunoglobulins, as
well as hundreds of less abundant proteins [70], including ~30 µM Tf, of which ~1–10 µM
are in the holoTf form and ~10–20 µM are in the monoFeTf form (the values vary dependent
on the nutritional Fe status) [42]. Typical peak Ru concentrations in the blood of patients
treated with KP1019 in clinical trials were 0.1–0.4 mM [71]. Each HSA molecule contains
at least two surface His residues that readily bind KP1019 [48]. These data explain why
albumin easily outcompetes Tf for the binding of KP1019, or of two other common RuACDs
(NAMI-A and RAPTA-C) [33,35] in serum. This was shown experimentally by the absence
of significant changes in Tf–TfR1 binding curves for dilute human serum samples, which
were pre-treated with Ru complexes under clinically relevant conditions (0.10 mM for 4 h
at 310 K) [71] before dilution (Figure S2b in Supplementary Material).

In summary, comparison of the results of BLI studies of Tf–TfR1 binding in cell
culture medium or in dilute human serum (Figure S2) with those for aqueous buffers
(Figure 1) provided a good illustration of how important the components of biological
media, particularly proteins, can be in affecting the interactions of metal-based drugs with
their biological targets [10,11].

4.4. Roles of Tf in Cellular Ru Uptake

Scheme 3 summarizes the main possible scenarios of Tf involvement in cellular uptake
of RuACDs. Binding of Ru(III) to the Fe(III) binding sites of Tf is likely to retain an open
Tf conformation that does not bind tightly to TfR1 (Scheme 3a), as was shown previously
for NAMI-A [24] and in this work for [RuIII(nta)2]3− (Table 2 and Figure 1d,e). The current
research also confirmed that pre-formed Ru2Tf is not taken up by cells to any significant
extent (condition B9 in Table 3), probably because of the blocked endocytosis (Scheme 3a).

Scheme 3. Potential mechanisms that can lead to Tf-mediated cellular Ru uptake: (a) selective Ru(III)
binding to Fe(III)-binding sites of Tf; (b) strong covalent binding of Ru complexes to the surface
residues of Tf; and (c) trapping of non-covalently bound Ru complexes in the endosome during the
endocytosis of Fe2Tf.

Covalent binding of Ru(III/II) complexes [25,26], as well as of other medicinal metal
complexes [72], to the surface His residues of Fe2Tf has been considered as a likely scenario
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for cellular uptake of non-Fe metal ions (Scheme 3b). The outcome of this process depends
on whether the exogenous metal can dissociate from Tf under endosomal conditions and
exit from the endosome to the cytosol [25]. Failure of this process can result in return of
Tf-bound metal to the cell surface and low cellular metal uptake (Scheme 3b) [25], as was
recently suggested for V(V/IV) complexes [31]. In any case, this is an unlikely scenario
for KP1019 because of the absence of significant effect of Fe2Tf on cellular Ru uptake or
Ru–protein binding (condition B6 in Table 3).

The most remarkable result of cellular Ru uptake studies (Table 3 and Figure 2) is the
efficient uptake of [RuIII(nta)2]3− in the presence of Fe2Tf and albumin, neither of which
bind the Ru(III) complex to any significant extent (condition B8 in Table 3). As reported
previously for Cr(III) uptake [30], the most likely scenario in this case is the trapping of
Ru(III) species within the endosomes that are formed on the cell surface following the
binding of Fe2Tf to TfR1 (Scheme 3c). An increase in Fe2Tf concentration increases the
extent of Tf-TfR1 endocytosis and, hence, the uptake of drugs by this mechanism. There
are few reported examples when cellular uptake of small molecule drugs is enhanced via
receptor-mediated endocytosis without the need for such drugs to bind to proteins [73,74].
The mechanism shown in Scheme 3c appears realistic for metal complexes with strong
chelating ligands and no leaving groups, such as Ru(II) polypyridyl complexes [7]. Whether
or not such complexes can leave the endosome and enter the cytosol (Scheme 3c) via pH-
independent mechanisms requires further investigation. This mechanism can also explain
the observed decrease in cellular Ru uptake of a stable Ru(II) –phosphine–carboxylato
complex by breast cancer cells with silenced TfR1 expression [75], since a large decrease
in cellular TfR1 would greatly decrease Tf-TfR1 endocytosis and, hence, drug uptake. By
contrast, the mechanisms shown in Scheme 3a,b are unlikely to be realized in whole blood,
where the majority of Ru species will be bound to albumin rather than Tf [51,54,58].

4.5. Potential Application of KP1019 for Intratumoral Injections

As has been reported previously [36] and confirmed in this work (conditions B1 and
B2 in Table 3), decomposition of KP1019 in cell culture medium occurred within several
hours at 310 K and led to a dramatic decrease in cellular Ru(III) uptake and cytotoxicity.
Recently, limited stability of typical transition metal complexes in biological media has been
considered as a potential advantage for direct injections into tumors that are widely trialed
for the treatment of inoperable cancers [14,76]. These applications rely on the ability of
metal complexes with lipophilic organic ligands to enter cells rapidly via passive diffusion
and cause high cytotoxicity, while their decomposition products, such as metal–protein
complexes, are much less toxic and can have beneficial effects [14,76]. Potential beneficial
effects of Ru(III)–protein adducts [14] can include antimetastatic [16,77], immunomod-
ulatory [8,9,19], and antimicrobial [78] activities [14]. The development of these novel
applications is particularly attractive for KP1019 and other anticancer metal complexes
that have passed extensive animal testing but failed in human clinical trials [1] because of
unfavorable pharmacokinetic properties for the traditional intravenous chemotherapy [14].
Development of suitable nanoformulations for controlled Ru release [79] is likely to be the
key to success of this approach [14].

5. Conclusions

The nature of interactions of anticancer Ru complexes with transferrin (Tf) is deter-
mined by the following: (i) the nature of the complex, particularly the presence of leaving
groups, such as Cl−; (ii) the availability of Fe(III)-binding sites in Tf; and (iii) the presence
of competing proteins for Ru binding, particularly albumin.

Binding of Ru(III) to vacant Fe(III) binding sites of Tf leads to disruption of Tf cycle
and is unlikely to cause significant Ru uptake by cells.

Non-specific Ru binding to the surface His residues does not significantly disrupt the
Tf cycle and can lead to cellular Ru uptake under the condition that Ru species can dissociate
from Tf in the endosome and escape to the cytosol. However, this uptake mechanism is
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unlikely to occur in the presence of competing proteins, such as serum albumin in the
blood, that preferentially bind Ru.

Stable Ru complexes that are incapable of covalent binding to Tf or albumin can be
taken into cells by being trapped in the endosome during TfR1-mediated endocytosis of
Fe2Tf. This is the most likely scenario of Tf-mediated uptake of Ru complexes in vivo.

Complexes with lipophilic organic ligands, such as KP1019, are more likely to be taken
into cells intact via passive diffusion rather than by Tf-mediated pathways.

The limited lifetime of KP1019 in biological media can potentially be used to advantage
in intratumoral injections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12091319/s1, Figure S1: measurements of particle size
distribution in Ru(III)–Tf systems by DLS; Figure S2: typical results of urea gel electrophoresis
of apoTf and Fe2Tf in the presence or absence of KP1019; and Figure S3: typical results of BLI
measurements using cell culture medium or human serum as sources of Tf.
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