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Effects of arbuscular mycorrhizal 
fungi on rice-herbivore interactions 
are soil-dependent
Lina Bernaola    & Michael J. Stout

The effect of soil type on establishment of arbuscular mycorrhizal (AM) fungi, and their effects on 
plant growth and resistance to rice pests are poorly understood. We investigated the effects of 
inoculation with AM fungi on rice plants in two different unsterilized field soils under greenhouse and 
field conditions in two consecutive years in Louisiana, United States. We tested whether inoculation 
with AM fungi in the two soils changed plant biomass, nutrient concentration, resistance to pests, and 
yields. Inoculation with a commercial formulation of AM fungi increased root colonization by fungi in all 
soils, regardless of soil P availability; it also increased densities of root-feeding rice water weevil larvae 
and growth of leaf-feeding fall armyworm larvae, but these effects were soil-dependent. Inoculation 
with AM fungi had no effect on N and P concentrations or rice yields. The effect on plant biomass was 
also soil-dependent. Our study provides evidence for the first time that inoculation with AM fungi 
can increase colonization of roots of rice plants, but the effects of colonization on resistance to pests 
and plant biomass appear to be soil dependent. Moreover, the increased susceptibility to pests of rice 
colonized by AM fungi does not appear to be related to nutrient concentrations.

Arbuscular mycorrhizal fungi (AM fungi) belong to the phylum Glomeromycota and are obligate symbionts that 
form mostly mutualistic associations with the roots of ca. 90% of terrestrial plants1. AM fungi are found in almost 
all soils2,3 and share a long history of coevolution with plants in various ecosystems, resulting in adaptation to 
specific geographic areas4. The most important function of these symbiotic associations involves the transfer of 
nutrients such as phosphorus (P) and nitrogen (N) by the fungus to the host plant in exchange for carbon (C), 
in the form of sugars and lipids1,5, to the fungi by the plants. Colonization by AM fungi generally promotes plant 
growth and also influences the interactions of plants with insect herbivores6, although the mechanisms remain to 
be elucidated. The effects of colonization by AM fungi on plant-herbivore interactions are variable; colonization 
by AM fungi can have beneficial, detrimental, or no effects on herbivore fitness7–9. For example, a detrimental 
effect was reported for black vine  weevil feeding on AM fungi-inoculated strawberry plants10, beneficial effects 
were reported for rice water weevil feeding on AM fungi-colonized rice11,12 and clover root weevil feeding on AM 
fungi-colonized clover plants13, and no effect was seen for Junonia coenia feeding on Plantago lanceolata14. The net 
effect of colonization by AM fungi on herbivores may depend on the balance of the positive effects resulting from 
increases in concentrations of plant nutrients and the negative effects resulting from increases in plant defenses 
against herbivores13,15,16.

Inoculation of soil with commercial AM fungi has been proposed as an alternative production practice that 
may contribute to more efficient nutrient use in crops17. Despite extensive research on the effects of AM fungi 
on their host plants, however, the impacts of agricultural practices that affect the soil environment, such as fer-
tilization, tillage, and monoculture, on colonization by AM fungi are insufficiently known4,18–20. For instance, 
Barber et al.21 reported that input-intensive conventional agriculture might select for inferior fungal mutualists. 
Furthermore, it has been demonstrated that high concentrations of P in the soil negatively influence colonization 
by AM fungi in different crop plants22. In addition, effectiveness of soil inoculation with AM fungi varies depend-
ing on the mix of AM fungi species involved23. The disadvantages of soil inoculation with commercial formu-
lations of AM fungi in agricultural fields include high application costs, the lack of positive effects of AM fungi 
under conditions of high nutrient (especially P) availability, and lack of effect on plant growth in some plants in 
some environments24. Despite these challenges, a meta-analysis conducted by Berruti et al.23 revealed that soil 
inoculation with AM fungi increased root colonization rates, and increased root colonization rates led in turn to 
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increased root and shoot biomass, improved plant nutrition, and higher crop yields under diverse experimental 
conditions. Because the effects of AM fungi inoculation on plant nutrition and other plant traits vary with soil 
source, soil characteristics will likely influence the effects of AM fungi colonization on herbivores6.

Rice (Oryza sativa L.) is one of the world’s most important cereal crops and is also an important crop in 
the southern United States. In the southern U.S., including Louisiana, the majority of rice is grown under a 
delayed-flood cultural system in which rice is drill-seeded into dry soil, surface-irrigated as necessary to estab-
lish a stand, and flooded approximately four weeks after seeding25. Rice is very susceptible to different insect 
pests, which are one of the major problems during the growing season. The rice water weevil (Lissorhoptrus 
oryzophilus, RWW) and fall armyworm (Spodoptera frugiperda, FAW) are two chewing pests that can cause 
significant economic losses in rice production25,26. Current management practices to control these pests rely 
on the use of insecticides, but insecticides are expensive and also can cause environmental harm. Only a few 
studies have explored how AM fungi colonization influences the resistance of rice plants to herbivore feeding or 
pathogen infection and their consequences for rice fitness, with contrasting results11,27. Campos-Soriano et al.27 
reported that inoculation with AM fungi enhanced resistance to the foliar pathogen Magnaporthe oryzae, while 
Cosme et al.11 found that females of the root-feeding RWW laid more eggs in rice plants inoculated with AM 
fungi, an effect that may have been caused by AM fungi-mediated increases in plant nutrient concentrations. 
Recently, Bernaola et al.12 demonstrated that AM fungi inoculation increases local and systemic susceptibility 
of rice plants to different pest organisms, including RWW and FAW, under field and greenhouse conditions. It 
is still not clear how soil characteristics influence colonization by AM fungi or the effects of colonization by AM 
fungi on the interactions between rice and its insect herbivores. In particular, whether AM fungi colonization 
reduces rice resistance in all soil environments is still not known.

In this study, we investigated how soil type altered the effects of inoculation of rice plants with a commercial 
formulation of AM fungi on plant growth and plant-herbivore interactions. We conducted field and greenhouse 
experiments with two soil types differing in nutrient concentration levels. A commercial formulation of AM 
fungi containing six species of Glomus was used, and effects of inoculation with AM fungi on performance of two 
insects were assessed.

Here, two hypotheses were tested:
(H1) The effects of inoculation with AM fungi on rice-herbivore interactions differ in soils that have different 

properties such as concentrations of P and/or N.
(H2) The effects of inoculation with AM fungi on plant growth, plant nutrient concentrations and yield differ 

in soils that have different properties.
This study represents the first study to demonstrate the soil dependency of the effects of AM fungi inoculation 

on plant-herbivore interactions in rice. These data will facilitate the agricultural exploitation of AM fungi-crop 
symbioses.

Results
Field experiments.  AM fungi root colonization rates in response to AM fungi inoculation in two soil 
types.  Colonization of roots of field-grown plants by AM fungi was higher in plots inoculated with commercial 
AM fungal inoculant than in control plots (Fig. 1A). The effect of inoculation with AM fungi was significant in 
RWW-M1 (29 dai, F1,8 = 23.04, P = 0.001), RWW-M2 (40 dai, F1,8 = 140.31, P < 0.0001), and RWW-C1 (44 dai, 
F1,8 = 25.57, P = 0.001) (Table 1). For RWW-M1, in which colonization was assessed both before and after flood-
ing, 29-day-old rice plants inoculated with AM fungi exhibited a colonization rate of 13% before flooding. This 
colonization rate decreased after 13 days of flooding; colonization rates of 45-day-old (RWW-M1) rice plants 
inoculated with AM fungi decreased from 13 to 4% (Fig. 1A) after flooding. The largest values detected for AM 
fungi colonization in the field experiments were for mycorrhizal plants in RWW-C1 and RWW-M2 with 68.0% 
and 68.8%, respectively. Overall, our data confirmed that the inoculation with AM fungi increased the abundance 
of AM fungi living in rice roots grown under field conditions even in soils with different P availability.

Insect performance in response to AM fungi inoculation in two soil types.  In experiments conducted at the Mamou 
field location (RWW-M1 & RWW-M2), densities of RWW larvae and pupae in core samples collected three and four 
weeks after flooding did not differ among AM fungi treatments (Fig. 2, Table 1). In the experiments conducted at 
the Crowley location, in contrast, larval densities were significantly higher in plots inoculated with AM fungi than in 
control plots in RWW-C1 (F1,24 = 11.20, P = 0.003). In addition, a marginally significant increase in larval densities 
in AM fungi-inoculated plots was observed in RWW-C2 (F1,18 = 3.85, P = 0.06). Increases in RWW densities in AM 
fungi-inoculated plots ranged from 35% in RWW-C1 to 24% in RWW-C2 (Fig. 2). Thus, the effect of inoculation 
with AM fungi on insect densities showed a soil dependency under field conditions.

Plant growth responses to AM fungi inoculation in two soil types.  The shoot (leaf + stem) dry weights (SDW) of 
plants varied with AM fungi inoculation (Fig. 3). At the Mamou location, analysis of the SDW data revealed a sig-
nificant increase with AM fungi inoculation in RWW-M1 (F1,8 = 14.34; P = 0.02). As with SDW, root dry weights 
(RDW) of mycorrhizal plants were greater than that of the nonmycorrhizal plants in RWW-M1, as indicated by a 
significant main effect of inoculation with AM fungi (Table 1; F1,8 = 9.01; P = 0.04). Inoculation with AM fungi did 
not increase SDW or RDW in RWW-M2 (Fig. 3; Table 1), but a trend toward higher weights in mycorrhizal plants 
was observed. At the Crowley location, an increase in SDW (F1,6 = 6.62; P = 0.04) was observed in RWW-C2, but 
no significant effect of AM fungi inoculation on SDW was observed in RWW-C1 (F1,8 = 1.71; P = 0.23) (Fig. 3). A 
significant increase in RDW with AM fungi inoculation was observed in both experiments (RWW-C1: F1,8 = 6.30; 
P = 0.03; RWW-C2: F1,6 = 6.62; P = 0.04) (Fig. 3; Table 1). Overall, the highest shoot biomass increase was observed 
in RWW-C2 (26.0%) and RWW-C1 showed the highest increase in root biomass (27.0%).
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Plant nutrient responses to AM fungi inoculation in two soil types.  Nutrient (N and P) concentrations in plant 
tissues were largely unaffected by inoculation with AM fungi (Fig. 4A,B; Table 1). The concentration of P in 
shoot tissues was affected by AM fungi inoculation only in RWW-C1, with a significantly higher concentration 
observed in the nonmycorrhizal control as compared to mycorrhizal plants (F1,8 = 14.65; P = 0.01; Fig. 4B).

Grain yield responses to AM fungi inoculation in two soil types.  Grain yields were not affected by inoculation with 
AM fungi in any of the field experiments (see Supplementary Fig. S1 and Table 1).

Greenhouse experiments.  AM fungi root colonization rates in response to AM fungi inoculation in two 
soil types.  In the greenhouse, sterilization of the soil prevented colonization by AM fungi in the roots of non-
mycorrhizal plants independently of soil type in FAW-1 (Fig. 1B; root colonization was not evaluated in FAW-
2). Inoculation with AM fungi significantly enhanced the percentage of root fragments colonized by AM fungi 
in both soil types, with inoculation leading to higher colonization in Crowley soil (19 ± 2.6%) than in Mamou 
soil (3.5 ± 1.0%) (Fig. 1B, Table 2). The effects of inoculation on the percentage of root colonized by AM fungi 
depended on soil type as shown by a highly significant ‘soil type’ x ‘AM fungi inoculation’ interaction (F1, 12 = 34.39, 
P < 0.0001, Table 2).

Effects of AM fungi inoculation on FAW growth in two soil types.  Two-way ANOVA evaluating the effects of 
inoculation with AM fungi and soil type on growth of FAW larvae showed a soil dependency in effects of inoc-
ulation with AM fungi on larval growth. Weight gains of larvae were significantly affected by inoculation with 

Figure 1.  Effects of inoculation with a commercial formulation of AM fungi on percent colonization by 
AM fungi in rice plants grown in field (A) and greenhouse (B) conditions in two types of soil (Crowley and 
Mamou). Soils were either treated with mycorrhizal (grey bars) or with nonmycorrhizal inoculum (white bars). 
Quantification of colonization was carried out from four field experiments and one greenhouse experiment 
in 2014–2015. Experiments were designated as: Rice Water Weevil Mamou 1 (RWW-M1), Rice Water Weevil 
Mamou 2 (RWW-M2), Rice Water Weevil Crowley 1 (RWW-C1), Rice Water Weevil Crowley 2 (RWW-C2), 
and Fall Armyworm 1 (FAW-1). Root colonization was evaluated twice in RWW-M1 (pre- and post-flood) and 
once (pre-flood) in the other experiments. Percentages are means ± SE, n = 5. Different letters accompanying 
bars indicate means that differ significantly (LSD, P ≤ 0.05). See Table 1 for details of ANOVA results.
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AM fungi in both experiments (FAW-1: F1,76 = 14.18; P = 0.0003 and FAW-2: F1,76 = 8.95; P = 0.004) (Table 2). 
Weight gains of FAW larvae were also affected by ‘soil type’ in both experiments (FAW-1: F1,76 = 15.90; P = 0.0002 
and FAW-2: F1,76 = 16.43; P = 0.0002) (Table 2), but the interaction of ‘soil type’ and ‘inoculation’ was significant 
only in FAW-1 (F1,76 = 10.00; P = 0.002) (Fig. 5). In both experiments, the increase in FAW growth on plants 
inoculated with AM fungi was seen for insects reared on plants grown in the Crowley soil but not the Mamou 
soil. Increases in larval growth on mycorrhizal plants in Crowley soil averaged about 46% over both experiments 
(FAW-1: 0.039 ± 0.003 to 0.021 ± 0.002, mean ± SE; and FAW-2: 0.013 ± 0.001 to 0.007 ± 0.001, mean ± SE) when 
compared to the nonmycorrhizal control plants.

Discussion
In agricultural ecosystems, crop plants often interact simultaneously with herbivores and with AM fungi, and AM 
fungi and herbivores may interact indirectly through changes in their shared host plant. These tripartite inter-
actions may be influenced by environmental factors. Building on past studies that have focused on the effects of 
inoculation with AM fungi on rice growth and resistance to pests11,12, our study investigated the effects of soil type 
on AM fungi-rice-herbivore interactions in two different soil types under controlled and field conditions over two 
years. Our results highlight the context-dependency of the effects of inoculation with AM fungi on rice growth 
and the interaction of rice with its herbivores.

AM fungi are known to have widespread geographical distributions28 and to be well-adapted to agricultural 
ecosystems6. Verbruggen et al.29 reported that compatibility with the environment is an important factor deter-
mining successful establishment of AM fungal inoculants in agricultural soils. In this study, colonization by AM 
fungi was successfully established using a granular commercial formulation of AM fungi over multiple years and 
locations. Increased root colonization levels after inoculation with AM fungi in rice fields indicated that AM 
fungi are compatible with different soil conditions as shown by colonization in soils with variation in pH (5.1 to 
7.4), P availability (8.6 to 33.3 mg/kg), K availability (36.5 to 117.6 mg/kg), and organic matter content (0.96% to 
2.25%) (Table 3), and is consistent with other studies showing that inoculation with AM fungi usually enhances 
root colonization by AM fungi in other plant species17,30,31. While these other studies focused in crop systems such 
as clover, alfalfa, and strawberry in different parts of the world, the results from our study support the hypothesis 
that inoculation with AM fungi increases root colonization in rice plants in different locations in Louisiana, and 
therefore perhaps, other rice-producing areas of the world as well.

In addition to soil type, other factors may have been important in determining levels of root colonization. 
Since only two rice cultivars were used in the experiments, data from this study are insufficient to clearly indicate 
whether rice variety influenced root colonization. As seen in Fig. 1, there was no evident correlation between col-
onization and rice variety, but future studies should include this aspect in their experimental design, because root 
colonization after inoculation with AM fungi has been shown to vary among varieties within a plant species32. 
Another aspect to consider when interpreting the results of these experiments is whether colonization rates dif-
fered among the six AM fungi species in the commercial inoculum. Quantification of colonization by AM fungi 
in this study focused on colonization by all fungal structures, regardless of fungal species identity. Different spe-
cies of AM fungi are known to vary not only in their ability to provide nutrients to plants1 but also in their effects 
on plant resistance to herbivores33. Irrespective of these two factors, data from this study demonstrate that AM 
fungi were able to influence plant biomass and yield under field experiments.

Insect performance on rice was either positively affected or not affected by inoculation with AM fungi, 
depending on the soil in which the plants were grown: inoculation increased densities of a root-feeding herbivore 
(RWW larvae) and growth of a leaf-feeding herbivore (FAW larvae) in the Crowley soil type but not the Mamou 
soil type. Bernaola et al.12 had previously shown that inoculation of rice plants with AM fungi increased suscep-
tibility to RWW and FAW and a rice pathogen (sheath blight) in experiments conducted in the Crowley soil. Our 
results are consistent with these findings and extend them to demonstrate that this AM fungi-induced suscepti-
bility is soil dependent. Currie et al.13 and Koricheva et al.7 have also shown root and chewing insects benefited 

Source of variation

RWW-M1 RWW-M2 RWW-C1 RWW-C2

d.f. F P d.f. F P d.f. F P d.f. F P

AMF % colonization 1, 8 23.04 0.001 1, 8 140.3 <.0001 1, 8 25.57 0.001 1, 8 1.92 0.20

RWW density (core) 1, 16 0.92 0.35 1, 16 0.36 0.56 1, 24 11.20 0.003 1, 18 3.85 0.07

Shoot dry weight 1, 8 14.34 0.02 1, 8 1.99 0.19 1, 8 1.71 0.23 1, 6 7.73 0.03

Root dry weight 1, 8 9.01 0.04 1, 8 3.57 0.13 1, 8 6.30 0.03 1, 6 6.62 0.04

Shoot N concentration 1, 8 0.01 0.91 1, 8 0.18 0.68 1, 6 0.01 0.93

Shoot P concentration 1, 8 0.00 0.97 1, 8 14.65 0.01 1, 6 2.47 0.17

Root N concentration 1, 8 0.01 0.93 1, 8 2.83 0.13 1, 6 1.48 0.27

Root P concentration 1, 8 0.07 0.79 1, 8 1.40 0.27 1, 6 1.37 0.29

Adjusted yield 1, 8 0.05 0.83 1, 8 1.08 0.33 1, 8 0.00 0.96 1, 6 1.10 0.33

Table 1.  Results for the mixed models assessing effects of inoculation with AM fungi (Mycorrhizal and 
Nonmycorrhizal) and soil type (Crowley and Mamou) treatment on percent colonization by AM fungi, 
infestation by rice water weevil (RWW), root and shoot dry weights, and nutrient concentrations of rice plants 
grown in four experiments conducted in the field over two years (2014 and 2015). Experiments were designated 
as: Rice Water Weevil Mamou 1 (RWW-M1), Rice Water Weevil Mamou 2 (RWW-M2), Rice Water Weevil 
Crowley 1 (RWW-C1), and Rice Water Weevil Crowley 2 (RWW-C2).
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from colonization by AM fungi, but Yang et al.34 and Gange10 found that colonization by AM fungi inhibited the 
growth of root-feeding insects. Koricheva et al.7 suggested that specialist herbivores perform better on AM fungi 
inoculated plants, whereas generalists do worse. However, in this study, we demonstrated that both specialist 
root-feeding and generalist shoot-feeding chewing insects were positively affected by AM fungi inoculation. To 
our knowledge, this is the first direct demonstration of soil dependence in the effect of AM fungi on rice-insect 
interactions. However, there are a few other studies have shown soil dependence in AM fungi-insect interactions 
in different crop systems6,21.

Figure 2.  Effects of inoculation with a commercial formulation of AM fungi on the densities of rice water 
weevils (larvae and pupae per core sample ± SE) in rice plants grown in four field experiments of two locations 
with different types of soil (Crowley and Mamou) during the 2014 and 2015 growing seasons. Soils were 
either treated with mycorrhizal (grey bars) or with nonmycorrhizal inoculum (white bars). Experiments were 
designated as: Rice Water Weevil Mamou 1 (RWW-M1), Rice Water Weevil Mamou 2 (RWW-M2), Rice Water 
Weevil Crowley 1 (RWW-C1), and Rice Water Weevil Crowley 2 (RWW-C2). Values are means ± SE, n = 5. 
Different letters accompanying bars indicate means that differ significantly (LSD, P ≤ 0.05). See Table 1 for 
details of ANOVA results.

Figure 3.  Effects of inoculation with a commercial formulation of AM fungi on shoot (above x-axis) and root 
(below x-axis) dry weights (grams ± S.E.) of rice plants grown in four field experiments of two locations with 
different types of soil (Crowley and Mamou) during the 2014 and 2015 growing seasons. Rice plants were 
inoculated with mycorrhizal (grey bars) or with nonmycorrhizal inoculum (white bars). Experiments were 
designated as: Rice Water Weevil Mamou 1 (RWW-M1), Rice Water Weevil Mamou 2 (RWW-M2), Rice Water 
Weevil Crowley 1 (RWW-C1), and Rice Water Weevil Crowley 2 (RWW-C2). Values are means ± SE, n = 5. 
Different letters accompanying bars indicate means that differ significantly (LSD, P ≤ 0.05). See Table 1 for 
details of ANOVA results.
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Figure 4.  Effects of inoculation with a commercial formulation of AM fungi on concentrations of Nitrogen 
(A) and Phosphorus (B) in shoot (above x-axis) and root (below x-axis) of rice plants grown in three field 
experiments of two locations with different types of soil (Crowley and Mamou) during the 2014 and 2015 
growing seasons. Rice plants were inoculated with mycorrhizal (grey bars) or with nonmycorrhizal inoculum 
(white bars). Experiments were designated as: Rice Water Weevil Mamou 2 (RWW-M2), Rice Water Weevil 
Crowley 1 (RWW-C1), and Rice Water Weevil Crowley 2 (RWW-C2). Values are mean ± SE, n = 5. Different 
letters accompanying bars indicate means that differ significantly (LSD, P ≤ 0.05). See Table 1 for details of 
ANOVA results.

Parameter Factor

FAW-1 FAW-2

d.f. F P d.f. F P

Total % AMF Colonization

Soil type 1, 12 34.39 <0.0001

Inoculation 1, 12 73.99 <0.0001

Soil x Inoculation 1, 12 34.39 <0.0001

FAW Weight gain (g)

Soil type 1, 76 15.90 0.0002 1, 57 16.43 0.0002

Inoculation 1, 76 14.18 0.0003 1, 57 8.95 0.004

Soil x Inoculation 1, 76 10.00 0.002 1, 57 0.09 0.7715

Table 2.  Results of two-way ANOVAs assessing effects of soil source (Crowley and Mamou), inoculation 
treatment (Mycorrhizal and Nonmycorrhizal), and their interaction on percent colonization by AM fungi 
and fall armyworm (FAW) growth on rice plants grown in two experiments conducted in the greenhouse in 
2014. Experiments were designated as: Fall Armyworm 1 (FAW-1) and Fall Armyworm 2 (FAW-2).
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Increased susceptibility of rice inoculated with AM fungi to herbivores was not associated with significant 
effects of AM fungi on plant nutrient concentrations. In particular, inoculation with AM fungi did not affect 
concentrations of P or N, the nutrients most commonly studied in plant-AM fungi interactions. Similarly, 
Barber et al.6 found that commercial AM fungi inoculum did not change leaf nutrient content. As plant nutrient 
status does not explain the positive effects of AM fungi on rice-herbivore interactions in this study, changes in 
other plant traits such as plant defenses might have been responsible for observed effects. Future efforts could 
also focus on effects of colonization by AM fungi on less-studied macro- or micronutrients such as K, Na, or Zn. 
It has been shown that the presence of these nutrients in plant tissues can influence the performance of insect 
herbivores6,35,36.

It has been previously hypothesized that effects of AM fungi inoculation on plant growth are 
context-dependent. In particular, it has been found that inoculation with AM fungi increases the growth of plants 
under P limitation37, but not under conditions of P abundance. In this study, AM fungi inoculation stimulated 
plant growth in all field experiments and effects of plant growth were not influenced by the nutrient (N and P) 
status of the plant. Unlike Bernaola et al.12, who found that AM fungi inoculation increased only shoot biomass 
of rice plants in field and greenhouse studies, this study showed that AM fungi inoculation increased both shoot 
and root biomass in field experiments at the Mamou location. In general, AM fungi inoculation is known to have 
positive effects on plant biomass, but it is also possible that other parameters are involved, such as concentrations 
of other soil nutrients in agricultural fields, climatic conditions, soil microflora, P application rates, since these 
interactions are not fully understood yet and require future study.

Previous studies on the effect of inoculation with AM fungi inoculation on rice grain yields have been contra-
dictory, some reporting higher yields38–40, lower yields, or unchanged yields as a result of inoculation with AM 
fungi41. In this study, grain yields did not differ between AM fungi treatments at either the Crowley or Mamou 
sites. However, the lack of an effect on grain yield may need further study, as yield components that might be 
affected by inoculation with AM fungi were not studied.

Conclusions
Our study reports for the first time that effects of inoculation with AM fungi on rice growth and rice-herbivore 
interactions are context dependent and differ in different soil types. Future work will include identification of soil 
characteristics responsible for this context dependency to facilitate an understanding of how production practices 
mediate the potential benefits of AM fungi in rice plants. In addition, selecting more soil locations with varying 
properties, not only in Louisiana but also  in other rice-producing areas, will be necessary to determine the effect 
of inoculation with AM fungi in those areas. Understanding how inoculation with AM fungi interacts with the 
rice plant and how inoculation with AM fungi changes plant responses to biotic stresses is important in order 
to improve rice production and to promote effective and sustainable management of rice pests in ecological and 
agronomic contexts.

Figure 5.  Effects of inoculation with a commercial formulation of AM fungi on weight gains of fall armyworm 
larvae in two greenhouse experiments using two different soil sources (Crowley and Mamou). Soils were 
either treated with mycorrhizal (grey bars) or with nonmycorrhizal inoculum (white bars). Experiments were 
designated as: Fall Armyworm 1 (FAW-1) and Fall Armyworm 2 (FAW-2). Values are means ± SE, n = 20. 
Different letters  accompanying bars indicate means that differ significantly (LSD, P ≤ 0.05). See Table 2 for 
details of ANOVA results.

Location Soil name Soil type Location pH N % P mg/kg K mg/kg

H. Rouse Caffey Rice 
Research Station Crowley Silt loam Acadia Parish, Louisiana 7.4 ± 0.2 0.097 ± 0.0 33.3 ± 0.5 117.6 ± 101

Kenneth LaHaye Farm Mamou Mowata silt loam Evangeline Parish, Louisiana 5.1 ± 0.0 0.099 ± 0.0 8.6 ± 0.8 36.5 ± 6.5

Table 3.  Properties of soils collected from two different locations for experiments conducted in 2014 and 2015. 
Average values for soils collected over two years are shown (means ± SE, n = 2).

https://doi.org/10.1038/s41598-019-50354-2
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Materials and Methods
Experiments were conducted under both field and greenhouse conditions. Field experiments were conducted at 
two locations with different soil properties to compare effects of inoculation with AM fungi on rice growth and 
RWW population densities in soils with different properties. Greenhouse experiments were conducted using soil 
collected from the two field locations to compare effects of inoculation with AM fungi on FAW growth rates in 
different soil types.

Plants, fungi, insects, and soil sources.  Two commercial varieties of rice (Oryza sativa L.) were used in 
our experiments. ‘Cocodrie’ and ‘CL111’ are both long-grain, high-yielding, early-maturing conventional vari-
eties developed at the Louisiana State University Agricultural Center H. Rouse Caffey Rice Research Station 
(Crowley, Acadia parish, LA, USA). ‘Cocodrie’ is susceptible to RWW and grown widely in the southern U.S., 
and was chosen for this study because it had been used in previous studies of rice-mycorrhizal-herbivore inter-
actions12. ‘CL111’ is an herbicide-tolerant variety chosen because it was the most widely grown rice variety in 
Louisiana in 2014–2015. Seeds of rice were kindly provided by the breeding and foundation seed program at the 
LSU AgCenter H. Rouse Caffey Rice Research Station.

A commercial inoculum of AM fungi containing only AM fungal propagules (ECOVAMTM VAM Endo 
Granular, Horticultural Alliance Inc., Sarasota, FL, USA) was selected to establish and promote symbiosis with 
rice plants in both field and greenhouse experiments. The inoculum consisted of spores, hyphae and colonized 
root fragments of six species of AM fungi as described in Bernaola et al.12. The six AM fungi species (Rhizophagus 
irregularis, Funneliformis mosseae, Glomus deserticola, Rhizophagus fasciculatum, Sclerocystis dussii, and Glomus 
microaggregatum) were originally obtained from the International Culture Collection of (Vesicular) Arbuscular 
Mycorrhizal Fungi (INVAM, West Virginia University, USA). The AM fungi propagules were carried in inert 
material consisting of a uniform mixture of zeolite, pumice, vermiculite, perlite and attapulgite. The formulated 
material contained an average of 132 spores of AM fungi (all six species) per gram, in addition to hyphae and 
colonized root fragments.

The rice water weevil (RWW; Lissorhoptrus oryzophilus Kuschel; Coleoptera: Curculionidae) is the most 
destructive insect pest of rice in the United States25,42,43. Field experiments relied on natural infestations of RWWs, 
which are abundant at the field sites25. Adult RWWs feed on young rice leaves, producing longitudinal scars, and 
females lay eggs primarily in leaf sheaths of flooded rice plants. Larval RWW have a strong impact on rice yields 
by feeding on roots of flooded rice11.

Larvae of the fall armyworm (FAW, Spodoptera frugiperda J.E. Smith; Lepidoptera: Noctuidae) were obtained 
from a colony maintained continuously on meridic diet in a laboratory. The colony originated from larvae col-
lected in rice fields near Crowley, LA, in 2013. Adult female armyworms oviposit eggs on leaf blades and other 
substrates, giving rise to larvae that feed on leaves26. The diet used for rearing of larvae was Fall Armyworm Diet 
(Southland Products Incorporated, Lake Village, AR, USA). The colony was maintained under controlled envi-
ronmental conditions (L14: D10, 28 ± 2 °C, 38 ± 2% R.H).

Field experiments were conducted at, and soils were sourced from, two locations in southwest Louisiana. 
The first location was the LSU AgCenter H. Rouse Caffey Rice Research Station (Crowley, Acadia Parish, 
30°14′22″N, 92°20′46″W), while the second location was in a farmer’s field in Mamou, Louisiana (Evangeline 
Parish, 30°38′28″N, 92°27′33″W). The physicochemical properties of soils from the two sites were analyzed by the 
LSU AgCenter Soil Testing & Plant Analysis Laboratory (STPAL, LSU, Baton Rouge, LA). The soils varied in their 
properties as shown in Table 3. Notably, soil P and K were at least four and three times higher in the Crowley soil 
than in the Mamou soil, respectively. The Mamou soil was more acidic (pH 5.1) than the Crowley soil (pH 7.4).

For greenhouse experiments, soils were collected from the top 6 inches of topsoil at each of the field sites 
described, in early summer in 2014. Before used in greenhouse experiments, soil was sterilized at 121 °C for 
60 min. After sterilization, Crowley and Mamou soils had a pH of 7.7 and 4.7, a total P content of 31.5 and 
10.9 mg/kg, and a total K content of 132.4 and 44.5 mg/kg, respectively.

Field experiments.  Previous small-plot experiments conducted at the Crowley location established that 
inoculation with a commercial formulation of AM fungi often increased the susceptibility of rice to RWW12. For 
the current study, four small-plot field experiments (one in 2014 and three in 2015) were carried out to evaluate 
the effects of soil type on the susceptibility of RWW to AM fungi inoculation. Experiments were designated as: 
Rice Water Weevil Mamou 1 (RWW-M1), Rice Water Weevil Mamou 2 (RWW-M2), Rice Water Weevil Crowley 
1 (RWW-C1) and Rice Water Weevil Crowley 2 (RWW-C2) (Table 4).

All experiments were laid out in a completely randomized design (CRD) and each experiment included 
two treatments, one in which plots were inoculated with AM fungi and one in which plots were inoculated 
with a nonmycorrhizal control. Each of the two treatments was replicated five times, resulting in 10 plots 
per experiment. For the nonmycorrhizal control, plots were seeded into soils treated with a mock inoculum, 
which contains all the inert ingredients of the AM fungi inoculum but without the fungi. For the mycor-
rhizal treatment, rice seeds were sown in soil inoculated with live AM fungi. Mock or live inoculum was 
applied to the surface of the soil after planting and gently raked in to incorporate the live or mock inoculum 
into the upper 2.5 cm of the soil. Because rice was grown in the field, soil was not sterilized and likely con-
tained native AM fungi.

Rice was drill-seeded on the dates specified in Table 4 at a rate of 85 g (68 kg/ha) of seeds per plot. Plots 
measured 1.4 m × 4.9 m. Each plot was inoculated with 17 kg of mock inoculum or live inoculum. The inoculum 
amounts used in both years corresponded to approximately 2.2 million AM fungi spores per plot. Plots were 
flushed with well water as necessary for the first month after seeding to establish stands of rice. After allowing the 
plants to grow without a flood for approximately one month, permanent floods were applied on the dates speci-
fied in Table 4. Plants possessed 4–5 leaves (early tillering) at permanent flooding.
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Densities of RWW larvae and pupae were determined after permanent flooding by taking root/soil core sam-
ples from each plot44. The core sampler was a metal cylinder with a diameter of 9.2 cm and a depth of 7.6 cm 
attached to a metal handle. Core sampling was conducted twice at the Mamou site and three times at the Crowley 
site for all experiments. All core sampling was conducted between three and five weeks after permanent flood. 
Dates of core samplings are shown in Table 4. For each core sampling, two or three (2014) and three or four (2015) 
core samples were taken from each plot. Core samples were transported in plastic bags to a processing facility, 
where each sample was placed into a 40-mesh screen sieve bucket to wash the soil and larvae from roots. Buckets 
with rinsed samples were placed into basins of salt water, and larvae and pupae were counted as they floated to the 
water surface45. RWW counts from two to four core samples from each plot per sampling date were averaged to 
obtain mean densities of immature weevils (larvae and pupae) per core sample.

Greenhouse experiments.  Additional experiments were conducted in the greenhouse to further test the 
hypothesis that differential effects of inoculation with AM fungi on susceptibility to insects were attributable to 
differences in the properties of soil at the two field sites. Two laboratory feeding assays were conducted in 2014 
using cut leaf material to determine whether mycorrhizal inoculation affected growth of FAW larvae. Experiments 
were designated as Fall Armyworm 1 (FAW-1) and Fall Armyworm 2 (FAW-2) (see Table 4). ‘Cocodrie’ rice plants 
were grown under two treatments, namely mycorrhizal and nonmycorrhizal.

All plants were grown in 2 liter round (15 cm diameter) plastic pots (Hummert International, Earth City, 
MO) filled with sterilized soil from one of the two field sites to which 50 g of mycorrhizal inoculum or 50 g 
mock inoculum were added. The inoculum was thoroughly mixed with the soil before filling pots. Four rice 
seeds were sown per pot and a total of 25 pots per treatment were set up. Plants were maintained under green-
house conditions with temperatures ranging from 25 °C to 35 °C and ambient lighting. Rice seedlings were 
thinned to two plants per pot two weeks after planting. Leaves for FAW feeding assays were taken from plants 
that were three weeks old; plants possessed three or four leaves at the time experiments were initiated. Because 
these experiments were conducted with rice at an early stage of growth, additional fertilizer was not necessary 
for satisfactory plant growth.

Neonate FAW that had eclosed within 24 hours were used for feeding assays. Feeding assays were conducted 
in 9 cm plastic petri dishes lined with moistened cotton batting to maintain turgor in excised tissues. Youngest 
fully-expanded leaves were removed from plants of each treatment group using scissors, transported on ice to 
the laboratory, cut into ca. 7 cm pieces, and placed in petri dishes. Three neonates were placed together in each 
petri dish with foliage and allowed to feed on excised leaf material for 10 days in each experiment. Larvae were 
observed daily to ensure they were not food-limited and leaves were changed every other day (every day for larvae 
in later stages). After ending the feeding assay, larvae were starved for three hours to ensure that the larval gut 
was emptied before final masses were determined. The mean mass of the remaining larvae in each petri dish was 
calculated. Weight gain (final weight) was recorded as the response variable and initial weight of neonates was 
considered to be zero. For each experiment, 20 petri dishes (replicates) were used for each treatment for a total of 
80 observations for each of the FAW experiments. Insects that died during feeding assays were excluded.

Quantification of mycorrhizal colonization.  In order to verify the effectiveness of AM fungi inocula-
tions, the extent of AM fungi colonization was measured in each experiment. Root colonization by AM fungi was 
evaluated twice during plant development in RWW-M1, before and after flood establishment. Root colonization 
was evaluated once (before flooding) in the other field (RWW-M2, RWW-C1 and RWW-C2) and greenhouse 
(FAW-1) experiments. Sampling was conducted by taking 9.2 cm diameter soil-root cores from field plots, or 
washing the roots from greenhouse pots containing entire rice plants. For the purpose of this study, one soil-root 
core (field experiments) or pot (greenhouse experiments) represented one plant sample. Ten root samples from 
each experiment were randomly collected from five plots or pots of each treatment group per sampling date 

Year Experiment Planting date Flooding date AM fungi sampling date RWW core sampling dates

Field

2014 RWW-M1 21st April 23rd May 20th May & 6th June 12th & 18th June

2015

RWW-M2 31st March 15th May 5th May 5th & 9th June

RWW-C1 25th March 15th May 8th May 9th, 16th & 23rd June

RWW-C2 4th May 10th June 5th June 30th June, 6th & 13th July

Year Experiment Planting date AM fungi 
sampling date FAW final weight measurements

Greenhouse

2014
FAW-1 1st Jul 30th July 11th August

FAW-2 26th Aug — 17th October

Table 4.  Planting and insect sampling dates for field and greenhouse experiments conducted over the 2014 and 
2015 growing seasons to evaluate the effects of inoculation with AM fungi on the performance of rice water 
weevil and the growth of fall armyworm on rice plants. Experiments were designated as: Rice Water Weevil 
Mamou 1 (RWW-M1), Rice Water Weevil Mamou 2 (RWW-M2), Rice Water Weevil Crowley 1 (RWW-C1), 
Rice Water Weevil Crowley 2 (RWW-C2), Fall Armyworm 1 (FAW-1), and Fall Armyworm 2 (FAW-2).
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(Table 4). Each soil-root core or pot, containing two to four plants, was placed in plastic bags (one core per bag) 
and taken to the laboratory to be processed for root staining.

The trypan blue method of Koske and Gemma46 was used with minor modifications for root staining of AM 
fungi colonization. Clearing and staining procedures require root samples to be washed from soil to remove all 
soil particles and then separating root and shoot tissues. For subsampling, roots from each soil-root core or pot 
were cut into 2-cm-long segments and placed in tissue processing cassettes (Ted Pella, Redding, CA). At least 250 
small root pieces per root sample (either soil-root core or pot) were cleared in 10% KOH in a water bath at 90 °C 
for 20 min. Clear pieces of roots were rinsed five times with tap water to remove KOH, and roots were immersed 
in 2% HCl at room temperature for 10–15 min to ensure the roots were effectively acidified for staining. Cassettes 
containing roots were immediately stained with 0.05% trypan blue (Sigma-Aldrich, St. Louis, MO, USA) by incu-
bation overnight and then transferred to vials containing lactoglycerol at 4 °C to allow excess stain to leach out of 
the roots. Stained root samples were stored in destaining lactoglycerol solution for 48 h before being mounted in 
the same solution on a microscope slide.

The method of McGonigle et al.47 was used with modification for quantifying the abundance of AM fungi colo-
nization. Five microscope slides for each root sample, each containing ten 2-cm-long root fragments, were mounted 
after staining on microscopic slides. Root fragments were randomly selected from each root sample and are represent-
ative of the whole root system as it was not possible to separate root types. A total of 50 root samples were collected 
from four field experiments and 20 root samples from one greenhouse experiment. For each root sample, 50 stained 
root fragments (250 stained root fragments per treatment) were examined with a compound microscope (Olympus 
CH2, Tokyo, Japan) at 40X magnification in order to confirm the levels of AM fungi colonization. The presence of 
blue-stained mycorrhizal structures in the root fragments including intraradical aseptate hyphae linked to either arbus-
cules or vesicles/spores were scored as colonized by AM fungi48 (Fig. 6). Photos of AM fungi structures on mycorrhizal 
colonized roots were taken using a microscope-mounted 5.0-megapixel digital camera (Leica DFC480, Cambridge, 
UK). Percent of root fragments with AM fungi colonization was averaged per treatment for the analyzed experiments.

Effects of AM fungi on rice growth and nutrient concentrations.  To determine the effect of inocu-
lation with AM fungi on plant biomass, entire plants were collected from AM fungi-inoculated and control plots. 
Four to five weeks after planting, entire plants were harvested from field plots by taking one soil-root core per 
plot. Entire plants were also collected from pots in greenhouse experiments (see above). Soil was washed from 
roots, and the shoot (leaf + stem), and root portions of plants were separated and blotted dry with a paper towel. 
Plant material was dried in an oven to constant weight (60 °C for 1 week) and shoot dry weight (SDW) and root 
dry weight (RDW) were measured for each plant.

To evaluate whether AM fungi inoculation affected nutrient concentrations in leaves and roots of rice 
plants, the same plant tissue samples collected for plant biomass were used for plant analysis. After the samples 
were dried and weighed, portions of plants were submitted to the LSU AgCenter Soil Testing & Plant Analysis 
Laboratory (STPAL, LSU, Baton Rouge, LA) to determine nutrient concentrations in shoot and root tissues. N 
and C content were determined by dry combustion using a LECO TruSpecTM CN analyzer (LECO Corp., St. 
Joseph, MI, USA), while concentrations of the remaining nutrients (Ca, Mg, S, P, K, Al, B, Cu, Fe, Mn, Na and Zn) 
were determined by inductively coupled plasma (ICP) analysis.

To assess the effect of the AM fungi inoculation on plant growth (field experiments only), mycorrhizal growth 
responses (MGR) were calculated as effect sizes using the individual biomass dry weights of the AM fungi-inoculated 
plants and mean biomass dry weight values of mock-inoculated control plants (average of five plots per treatment).

=
− − −

−
×MGR Dry weight mean dry weight

mean dry weight
% (AM fungi inoculated) (mock inoculated)

(mock inoculated)
100

Yield data were obtained only for field experiments. Four rice rows in the center of each plot were harvested at 
grain maturity by a mechanical combine and grain yield (expressed at 12% moisture) was calculated.

Figure 6.  Root fragments stained with trypan blue showing arbuscular mycorrhizal fungi structures in rice 
plants. Light micrographs of mycorrhizal inoculated-root fragments from some experiments conducted in 2015 
show: (A) Hyphae (h), arbuscule (a), and spore (s). (B) Hyphae, arbuscule, and spore (s).
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Statistical analyses.  Prior to analysis, data were analyzed to verify that they met assumptions of normality. 
Statistical analyses were conducted using SAS 9.4 (SAS Institute 2014). For field experiments, the effect of AM 
fungi inoculation on root colonization rates, RWW larval densities, plant biomass, nutrient concentrations, and 
grain yields were analyzed separately with analysis of variance (ANOVA) in PROC MIXED49. Data for RWW 
larval densities were analyzed independently each year by repeated measures ANOVA. Inoculation treatment was 
used as fixed effect and block as a random effect.

For greenhouse experiments, the effect of AM fungi inoculation on root colonization rates and FAW weight 
gain were analyzed by two-way ANOVAs with ‘soil type’ (Crowley and Mamou), ‘Inoculation treatment’, and their 
interaction as fixed effects, with replication as a random effect. Means were separated using the least significant 
difference (LSD, P ≤ 0.05) test.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
request.
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