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ABSTRACT: Predicting carbon dioxide (CO2) solubility in water and brine is crucial
for understanding carbon capture and storage (CCS) processes. Accurate solubility
predictions inform the feasibility and effectiveness of CO2 dissolution trapping, a key
mechanism in carbon sequestration in saline aquifers. In this work, a comprehensive
data set comprising 1278 experimental solubility data points for CO2−brine systems
was assembled, encompassing diverse operating conditions. These data encompassed
brines containing six different salts: NaCl, KCl, NaHCO3, CaCl2, MgCl2, and Na2SO4.
Also, this databank encompassed temperature spanning from 273.15 to 453.15 K and a
pressure range spanning 0.06−100 MPa. To model this solubility databank, cascade
forward neural network (CFNN) and generalized regression neural network (GRNN)
were employed. Furthermore, three optimization algorithms, namely, Bayesian
Regularization (BR), Broyden−Fletcher−Goldfarb−Shanno (BFGS) quasi-Newton,
and Levenberg−Marquardt (LM), were applied to enhance the performance of the
CFNN models. The CFNN-LM model showcased average absolute percent relative error (AAPRE) values of 5.37% for the overall
data set, 5.26% for the training subset, and 5.85% for the testing subset. Overall, the CFNN-LM model stands out as the most
accurate among the models crafted in this study, boasting the highest overall R2 value of 0.9949 among the other models. Based on
sensitivity analysis, pressure exerts the most significant influence and stands as the sole parameter with a positive impact on CO2
solubility in brine. Conversely, temperature and the concentration of all six salts considered in the model exhibited a negative impact.
All salts exert a negative impact on CO2 solubility due to their salting-out effect, with varying degrees of influence. The salting-out
effects of the salts can be ranked as follows: from the most pronounced to the least: MgCl2 > CaCl2 > NaCl > KCl > NaHCO3 >
Na2SO4. By employing the leverage approach, only a few instances of potential suspected and out-of-leverage data were found. The
relatively low count of identified potential suspected and out-of-leverage data, given the expansive solubility database, underscores
the reliability and accuracy of both the data set and the CFNN-LM model’s performance in this survey.

1. INTRODUCTION
Despite the worldwide endeavor to curb carbon emissions in
the wake of the “Paris Treaty,” the greenhouse gas emissions
persist at unsustainable levels.1,2 Due to its profound impact on
global climate change, the substantial increase in carbon
dioxide (CO2) concentration within the Earth’s atmosphere is
a matter of critical concern.3 The mitigation of CO2 emissions
is seen as a promising endeavor through the utilization of
carbon capture and storage (CCS) techniques.4−6 Reliable
sites for global CO2 storage include underground geological
formations like deep saline aquifers, depleted oil and gas
reservoirs, and unmineable coal seams.7−12 Among them, deep
saline aquifers offer the largest CO2 storage capacity.13 CCS in
saline aquifers primarily relies on several main mechanisms
including dissolution (solubility) trapping, mineral trapping,

and capillary trapping. Capillary trapping physically immobil-
izes CO2 in rock pores while dissolution causes it to dissolve
into brine, reducing its buoyancy. Mineral trapping involves
CO2 reacting with minerals for long-term storage as stable
carbonates, collectively ensuring secure carbon sequestra-
tion.14−16 In geological carbon storage, the injection of CO2
results in its dissolution into the reservoir brine. This process
elevates the brine’s density, creating a fluid density gradient
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within the formation. These gradients trigger convective
mixing, accelerating the dissolution of CO2 and effectively
leading to significant CO2 solubility trapping.15−17 The
significance of the dissolution trapping mechanism in the
success of geological carbon storage is notable. Additionally,
the interplay of CO2 and reservoir brine solubility has a
profound impact on long-term storage security, as well as the
intricate physical and chemical interactions among minerals
and fluids within the reservoir.18 In order to accurately assess
these impacts and ensure efficient carbon storage, it is
imperative to possess a dependable model for forecasting the
solubility of CO2 in reservoir brines within the context of
geological carbon storage conditions.

Given the crucial relevance of CO2 solubility in both pure
water and brine, numerous extensive studies have been
conducted to acquire valuable insights into CO2 dissolution
in aqueous solutions. These investigations entail extensive
experimental measurements of CO2 solubility in pure
water19−25 and brine,26−36 considering a range of geological
pressure and temperature conditions, as well as the presence of

various salts commonly found in brine compositions. Never-
theless, due to the multitude of factors influencing solubility
under real conditions, such as the presence of diverse salts in
the formation of brine and variations in pressure and
temperature across different geological formations, researchers
are primarily focused on the development of models or
correlations to estimate solubility data. A literature survey
reveals that the majority of the models proposed for CO2−
brine mutual solubility rely on equations of state and activity
coefficient models.24,25,33,37−45 The primary drawback of these
models lies in their requirement for precise mixing rules,
adjustable parameters, intricate iterative calculations, relatively
high margin of error, and ultimately, their limitation in
encompassing various parameters and delivering a compre-
hensive modeling approach.46 Hence, in recent years,
researchers have shifted their focus toward utilizing artificial
intelligence techniques to model CO2 solubility in aqueous
solutions, recognizing them as potent tools for modeling highly
intricate systems characterized by a significant degree of
nonlinearity. Ali Ahmadi and Ahmadi47 employed 54 data

Figure 1. Research steps to model CO2 solubility in brine.
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points related to CO2−brine solubility in order to develop an
LSSVM model for estimating solubility data. Mohammadian et
al.48 conducted experimental work to determine CO2 solubility
in low-salinity NaCl brines and then employed the extreme
learning machine to estimate solubility data based on their
findings. Menad et al.49 employed a databank consisting of 570
data points and a radial basis function (RBF) neural network
to model the solubility of CO2 in NaCl brine. Hemmati-
Sarapardeh et al.50 employed the Least-Squares Support Vector
Machine (LSSVM) method to model CO2 dissolution in pure
water under high-temperature and high-pressure states,
utilizing a data set comprising 785 experimental data points.
Sayahi et al.51 employed hybrid intelligence strategies to
predict CO2 solubility in aqueous brine systems. Mohamma-
dian et al.52 developed a correlation for estimating CO2
solubility in NaCl brine using a genetic algorithm and a data
set of 164 data points. Nakhaei-Kohani et al.53 gathered a data
set of 289 data points and applied gradient boosting techniques
to model CO2−N2 gas mixtures in aqueous electrolyte systems.
Their findings demonstrated that intelligent models out-
performed equations of state in terms of precision. Lv et
al.54 utilized a similar database as in Nakhaei-Kohani et al.’s
study53 to formulate correlations for estimating the solubility
of CO2−N2 gas mixtures in brine. They employed the group
method of data handling and gene expression programming for
this purpose. Ratnakar et al.55 introduced several machine
learning models to estimate CO2 solubility in both pure water,
utilizing 137 instances, and brine solutions. Khoshraftar and
Ghemei56 collected 240 data points related to CO2 solubility in
pure water and employed response surface methodology and
deep learning to develop a model for this solubility
phenomenon. In 2022, Vo Thanh et al.57 investigated CO2
storage performance in underground saline aquifers using a
databank consisting of 1509 data points. Their results showed
that extreme gradient boosting (XGBoost model) achieved a
root-mean-square error (RMSE) of 0.0041. In addition, Al-
qaness et al.58 estimated CO2 trapping indexes in deep saline
aquifers using a Long−Short-Term-Memory (LSTM) model.
The developed swarm intelligence method (AOSMA) boosts
the prediction capability of the LSTM model. In 2023,
Davoodi et al.59,60 predicted CO2 trapping indexes in deep
geological formations utilizing LSSVM, RBF, general regres-
sion neural network (GRNN), and convolutional neural
network (CNN). Based on their findings, hybrid machine
learning (HML) models outperform conventional machine
learning (ML) models in estimating CO2 trapping indexes.
The literature review underscores the sustained research focus
on CO2 solubility in saline solutions over recent decades, with

numerous modeling approaches being developed in recent
years. However, these models have primarily centered on NaCl
brine and relied on limited data sets. Researchers have
endeavored to broaden the models’ operational scope over
time, yet there remains a substantial gap in achieving a
comprehensive model capable of elucidating the impact of
various salts on CO2 solubility in brine. Such a model would be
instrumental in understanding the dissolution trapping
mechanism and enhancing the efficiency of geological carbon
storage.

In this study, a comprehensive data set comprising 1278
experimental solubility data points for CO2−brine systems is
assembled, encompassing diverse operating conditions. These
data encompass brines containing six different salts: NaCl,
KCl, NaHCO3, CaCl2, MgCl2, and Na2SO4. To model this
solubility databank, Cascade Forward Neural Network
(CFNN) and Generalized Regression Neural Network
(GRNN) are employed. Furthermore, three optimization
algorithms, namely, Bayesian Regularization (BR), Broyden−
Fletcher−Goldfarb−Shanno (BFGS) quasi-Newton, and Lev-
enberg−Marquardt (LM), are applied to enhance the perform-
ance of the CFNN models. Graphical error analyses and
statistical parameters are used to assess the validity of the
proposed models. Moreover, sensitivity analysis is conducted
to evaluate the relative influence of input parameters on CO2
solubility as the output. Eventually, both potential suspected
data and the applicability scope of the best-proposed model are
investigated using the Leverage approach. The research process
depicted in Figure 1 outlines the steps followed in this survey
to model the solubility of CO2 in brine.

2. DATA COLLECTION
In this work, an exhaustive collection of experimental data
encompassing 1278 data points related to the solubility of CO2
in both pure water and brine has been compiled from existing
published sources.20,21,25,26,29−31,33−38,42,61−80 A crucial aspect
of this database is its inclusion of brine solutions containing six
different salts: NaCl, KCl, NaHCO3, CaCl2, MgCl2, and
Na2SO4. This stands in contrast to the majority of databases
utilized in the literature as stated earlier, which predominantly
rely on NaCl brine for modeling purposes. This diversity of
salts enhances the realism of the brine compositions, mirroring
the complexity of brine found in actual reservoirs. Within this
research, the input variables taken into account encompass the
concentration of each salt in terms of molality (mol/kg) in
brine solution, in addition to the operational conditions of
temperature (K) and pressure (MPa). The models in this

Table 1. Statistical Summary of the Gathered Database

NaCl
(mol/kg)

KCl
(mol/kg)

NaHCO3
(mol/kg)

CaCl2
(mol/kg)

MgCl2
(mol/kg)

Na2SO4
(mol/kg)

temperature
(K)

pressure
(MPa)

CO2 solubility
(mol/kg)

mean 0.94 0.26 0.03 0.14 0.16 0.02 339.27 10.07 0.58
median 0.00 0.00 0.00 0.00 0.00 0.00 323.15 6.51 0.54
mode 0.00 0.00 0.00 0.00 0.00 0.00 323.15 15.00 0.15
SD 1.68 0.88 0.14 0.68 0.71 0.15 44.29 11.34 0.41
kurtosis 1.36 11.09 34.08 35.37 28.66 119.33 −0.28 9.19 −0.91
skewness 1.66 3.49 5.85 5.80 5.24 10.68 0.78 2.31 0.39
minimum 0.00 0.00 0.00 0.00 0.00 0.00 273.15 0.06 0.01
maximum 6.00 4.50 1.00 5.21 5.00 2.00 453.15 100.00 1.76
count 1278 1278 1278 1278 1278 1278 1278 1278 1278
variable
status

input input input input input input input input target
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study yielded as output the solubility of CO2 (measured in
mol/kg) in both pure water and synthetic brine solutions
containing NaCl, KCl, NaHCO3, CaCl2, MgCl2, and Na2SO4.
Table 1 provides a thorough statistical analysis of the input and

target variables existing in the solubility databank that have
been collected in this study. The statistical analysis reveals that
the experimental data collected covers a range of CO2
solubility values at temperatures ranging from 273.15 to

Figure 2. Box plots of all variables existing in the solubility databank.
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453.15 K and pressures spanning from 0.06 to 100 MPa. Here,
a box plot is used to illustrate a data set’s five-number
summary, which includes the minimum, first quartile, median,
third quartile, and maximum values. When creating a box plot,
a rectangular box extends from the first quartile to the third
quartile, with a horizontal line intersecting the box at the
median value. Figure 2 showcases a series of box plots
representing all variables contained in the database used in this
study. The wide range of input parameters for the models,
spanning diverse values, provides a strong foundation for
developing a comprehensive predictive correlation for CO2
solubility in brine. To partition the data for modeling, a
random split of the database was employed, resulting in an
80% training set and a 20% test set. We used the data in their
original format reported in the literature. In fact, we did not
modify the data or select the specific data and trusted the

experimental data reported in the literature. The uncertainty of
experimental data may affect our results. In addition, the
models are data-driven models and their applicability domain
is within the region that these models were developed. Using
the data out of this range may result in higher errors.

3. METHODOLOGY
3.1. Models. 3.1.1. Cascade Forward Neural Network

(CFNN). The CFNN81 is a feed-forward network designed with
the idea that increasing the connections between layers can
enhance the network’s ability to capture the underlying
relationships between dependent and independent variables.
This back-propagation neural network features a distinct
structure compared to traditional feed-forward networks,
specifically in terms of the count of connections between
each layer. In the CFNN, every layer (excluding the input

Figure 3. Schematic illustration of the CFNN model developed in this work.

Figure 4. Schematic illustration of the GRNN architecture.
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layer) establishes connections with all preceding layers through
weighted links.82 In the CFNN, much like in other feed-
forward networks, one can observe the presence of one or
multiple interconnected hidden layers and activation functions.
These networks can be trained using a variety of training
algorithms. Training algorithms aim to find the best weights
and biases to minimize prediction errors.83 While CFNN
requires fewer hidden neurons for problem-solving, its higher
count of weights and biases may lead to slightly slower training
in comparison to conventional networks.84 Figure 3 depicts a
schematic overview of the CFNN architecture, which includes
two hidden layers, as well as the connections between the input
and output variables. A brief explanation of the optimization
techniques, namely, Levenberg−Marquardt (LM), Bayesian
regularization (BR), and Broyden−Fletcher−Goldfarb−Shan-
no (BFGS) quasi-Newton applied in the present study is
presented in the Supporting Information file.
3.1.2. Generalized Regression Neural Network (GRNN).

The GRNN concept, pioneered by Specht85 in 1991, serves as
a type of RBF network characterized by its rapid general-
ization, adaptable structure, and the absence of an iterative
process for parameter optimization. This method relies on
kernel regression, a common statistical approach, and can be
conceptualized as a normalized RBF neural network with a
hidden neuron positioned at the centroid of the training
data.86,87 The GRNN constructs a function estimate directly
from training data, tracing it as a probability density function,
without making assumptions about a particular functional
form.88,89 As depicted in Figure 4, The GRNN architecture
comprises four distinct layers: input, pattern, summation, and
output. Within the GRNN, the utilization of a normal
distribution as a probability density function is a fundamental
characteristic, which is formulated as follows90
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Here, σ is the spread parameter, which plays a crucial role and
needs to be optimized. Also, Y signifies the predicted output
value corresponding to the given input X. The optimization of
σ is essential for fine-tuning the GRNN’s performance and
achieving accurate predictions.91

4. RESULTS AND DISCUSSION
4.1. Developed Models. This study aimed to model CO2

solubility in pure water and brine by employing a data set of
1278 data points, considering input variables like pressure,
temperature, and salts concentrations. To evaluate model
accuracy and reliability, the data set was randomly divided into
80% for training and 20% for testing. The trial-and-error
approach was used to fine-tune the number of hidden layers
and neurons in each hidden layer for CFNN models. It is also
employed to optimize the spread coefficient (σ) for the GRNN
model. Table 2 displays the optimized parameters and features
of all of the models developed in this study.

4.2. Assessment of Developed Models. An assessment
of the proposed models’ performance and accuracy in both
training and testing phases was conducted through statistical
error analysis. This analysis involved the use of various metrics,
including root-mean-square error (RMSE), determination
coefficient (R2), standard deviation (SD), average percent

relative error (APRE), and average absolute percent relative
error (AAPRE). The following formulas represent these
statistical criteria92
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where, Yi,exp shows the experimental CO2 solubility in brine,
Yi,pred is the predicted CO2 solubility in brine by the suggested
models, and N stands for the number of data points.

In Table 3, you can find the calculated statistical errors for
the models suggested in this survey. The results in Table 3
highlight that out of the four models developed, the CFNN-
LM model consistently exhibits the lowest error values across
various metrics, including RMSE, SD, APRE, and AAPRE.
More specifically, the CFNN-LM model showcases AAPRE
values of 5.37% for the overall data set, 5.26% for the training
subset, and 5.85% for the testing subset. Additionally, the R2

value assesses the model’s goodness of fit, where a value of 1
signifies a perfect fit. In this regard, the CFNN-LM model
demonstrates outstanding accuracy, boasting the highest
overall R2 value of 0.9949 among the other models.
Consequently, following thorough statistical analyses, the
CFNN-LM model stands out as the most accurate among
the models crafted in this study, anticipating CO2 solubility in
both pure water and brine. Overall, the models can be ranked
in order of performance as follows, from best to least: CFNN-
LM, CFNN-BR, CFNN-BFGS, and GRNN.

Furthermore, to assess the performance of the proposed
models in this survey, graphical error analyses were employed.
Figure 5 presents cross-plots of these models used to anticipate
CO2 solubility in brine, plotting model-estimated values
against corresponding experimental data. The precision of a
model can be gauged by examining the concentration of data
points in proximity to the Y�X line. A denser cluster of data
points near this line signifies a more accurate model. Notably,

Table 2. Optimized Parameters and Features of All
Suggested Models

model parameter value

CFNN-LM hidden layer size [6 8]
transfer function tansig−logsig−purelin

CFNN-BR hidden layer size [6 8]
transfer function tansig−logsig−purelin

CFNN-BFG hidden layer size [6 8]
transfer function tansig−logsig−purelin

GRNN spread 0.0125
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the close alignment of training and testing data points along
the Y�X line indicates that all models excel at accurately
predicting experimentally measured CO2 solubility data. While
this holds true for all models, the CFNN-LM model, in
particular, stands out for its superior predictive accuracy.

Moving forward, Figure 6 provides a visual representation of
the distribution curves depicting relative discrepancies in both
data sets of train and test. In this graphic analysis, we focus on
relative errors, which are quantified using the subsequent
mathematical formula93

Table 3. Statistical Criteria of the Suggested Models

status CFNN-LM CFNN-BR CFNN-BFGS GRNN

APRE, % train −0.79 −0.92 −0.14 −8.88
test −0.61 −0.81 0.11 −2.56
total −0.75 −0.90 −0.09 −7.62

AAPRE, % train 5.26 5.47 7.22 14.11
test 5.85 6.27 7.82 17.93
total 5.37 5.63 7.34 14.87

RMSE train 0.028 0.027 0.040 0.035
test 0.034 0.050 0.055 0.099
total 0.029 0.033 0.043 0.054

SD train 0.103 0.109 0.131 0.478
test 0.109 0.119 0.147 0.367
total 0.104 0.111 0.134 0.458

R2 train 0.9953 0.9956 0.9903 0.9925
test 0.9931 0.9846 0.9832 0.9425
total 0.9949 0.9935 0.9888 0.9824

Figure 5. Cross-plots of developed models in the current work.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07962
ACS Omega 2024, 9, 4705−4720

4711

https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07962?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 6. Relative error distribution graphs of developed models.

Figure 7. Cumulative frequency graph of developed models.
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In Figure 6, it becomes evident that a conspicuous absence
of error trends was discernible across all models, a significant
point within the realm of modeling. Particularly noteworthy is
the CFNN-LM model, wherein a substantial proportion of
data points elegantly coalesce into compact clusters along the
zero-error axis, thereby encapsulating the full spectrum of
experimental CO2 solubility in brine. This underscores a
significant alignment between the CFNN-LM model’s
forecasts and the experimental data set.

Following that, the next graphical analysis entails a
cumulative frequency plot illustrating the cumulative frequency
of data in relation to the absolute relative error. The calculation
of the absolute relative error is based on the formula presented
below93

= ×

=

Y Y

Y

i n

absolute relative error 100

1, 2, 3, ... ,

i i

i

,e ,p

,e

(8)

This assessment provides insight into the models’ capacity to
accurately estimate different portions of the data. When the
cumulative frequency is elevated, and the curve closely
approaches the Y-axis, it signifies that the models exhibit
lower errors when predicting a substantial share of the data set.
Figure 7 illustrates the cumulative frequency plots for these
models. The CFNN-LM model, notably, excels in predicting
around 70% of the data with an absolute relative error below
5%. Furthermore, it achieves accurate predictions for 90% of
the data with errors below 12%. However, the remaining
models exhibit higher errors for specific portions of the data set
when compared to the CFNN-LM model. Therefore, the ELM
model outperforms others in forecasting CO2 solubility data.

4.3. Trend Analysis. Following a comprehensive exami-
nation of the models’ accuracy through both statistical and
graphical analyses, it became evident that the CFNN-LM

Figure 8. Experimental data on CO2 solubility in (a) pure water73 and (b) NaCl brine29 versus pressure and at constant temperatures, along with
CFNN-LM predictions.
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model outperforms others in terms of precision. Consequently,
this section now centers its attention on exploring changes
within the physical phenomenon of CO2 solubility in pure
water and brine, while also evaluating the predictive capacity
exhibited by the CFNN-LM model. To start, an assessment of
the impact of pressure on CO2 solubility was conducted in
both pure water, as documented in relevant literature
experiments,73 and in NaCl brine,29 similarly based on
experimental findings reported in the literature. This evaluation
was carried out under consistent temperature conditions. As
illustrated in Figure 8, there is a notable increase in the
solubility of CO2 in aqueous solutions as the pressure
increases. The solubility of CO2 in both water and brine
increases with higher pressure due to Henry’s Law.94 This law
dictates that the concentration of a gas in a liquid is directly
proportional to the gas’s partial pressure above the liquid,
resulting in more CO2 dissolving into the liquid as the pressure
increases. As depicted in Figure 8, CFNN-LM accurately
captures the increasing trend in CO2 solubility data at various
pressure levels.

Continuing with trend analysis, this section explores the
influence of temperature on CO2 solubility data. As Figure 9
illustrates, the impact of temperature on CO2 solubility in pure
water is examined across various constant pressures, drawing
from experimental findings reported in the literature.35 In this
example, it is observed that the solubility of CO2 in water
decreases slightly as the temperature increases while
maintaining constant pressure. Once again, the CFNN-LM
model demonstrated its ability to predict solubility data with
remarkable accuracy. The decrease in the solubility of CO2 in
pure water with increasing temperature is primarily driven by
increased kinetic energy, disrupting the equilibrium between
the gas and liquid phases and weakening intermolecular
interactions. These factors collectively promote the escape of
CO2 molecules from the liquid phase to the gas phase,
reducing its solubility as the temperature increases.95

Furthermore, it can be elucidated through Le Chatelier’s
principle that when a gas dissolves in a liquid, which is
inherently an exothermic process, an increase in temperature
results in a reduction in solubility.96 Observing the mentioned
trend in most instances, it is worth highlighting that the

literature survey73,97 reveals other dramatic trends in CO2
solubility with temperature. At low pressures (P ≲ 20 MPa),
CO2 solubility shows a gradual decrease as the temperature
increases. However, at higher pressures (P ≳ 20 MPa), the
behavior is more complex; initially decreasing with an increase
in temperature, it then reverses, showing an increase in
solubility as the temperature continues to increase.73,97

Finally, the study delved into the influence of salinity on
CO2 solubility in brine. Figure 10a illustrates CO2 solubility in
NaCl brine with different concentrations, maintaining a
constant temperature of 273.15 K and pressures of 10 and
40 MPa, based on experimental findings from the literature.78

Additionally, Figure 10b presents CO2 solubility in MgCl2
brine with different concentrations, maintaining a constant
pressure of 15 MPa and temperatures of 373 and 423 K, as
experimentally investigated in the literature.36 In Figure 10, it
is evident that across the entire spectrum of temperature and
pressure, CO2 solubility in the solutions experiences a notable
decrease as the salt concentration increases. This phenomenon
is associated with what is known as the salting-out effect.34,98

This effect can be logically explained by the notion that as ions
become solvated, a portion of the water becomes inaccessible
for the solute, causing it to be effectively salted out from the
aqueous phase.73 Again, the CFNN-LM model demonstrated
exceptional accuracy in anticipating the solubility trends of
CO2 in brine under various scenarios, aligning closely with the
actual trends observed.

4.4. Sensitivity Analysis. The assessment of input
variables’ impact on the CFNN-LM model’s response,
specifically CO2 solubility in brine, involved the use of a
specific metric called the relevancy factor (r). A greater r-value
assigned to an input parameter signifies its increased
significance and influence on CO2 solubility in brine.82,99

The relevancy factor is determined through the application of
the following equation82,100
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Figure 9. Experimental data35 on CO2 solubility in pure water at various temperatures and constant pressures, along with CFNN-LM predictions.
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in this context, In pm,i signifies the mean value of the ith input
variable, and In pi,j denotes the jth value of the same input
variable. The variable i may encompass any of the input
parameters employed in the modeling process. In addition, Ym
represents the mean of the estimated CO2 solubility, while Yj
stands for the jth value of the estimated CO2 solubility.

Figure 11 provides a sensitivity analysis, demonstrating how
various inputs impact CO2 solubility in brine as predicted by
the CFNN-LM model. As the results indicate, pressure exerts
the most significant influence and stands as the sole parameter
with a positive impact on CO2 solubility in brine. Conversely,
temperature and the concentration of all six salts considered in
the model exhibited a negative impact. This means that as they
increase, CO2 solubility in brine decreases. Furthermore, it is
worth noting that while the temperature generally exhibits a
negative impact, as observed in most cases, especially at low
pressures, it can demonstrate a different trend at higher
pressures as explained earlier in the trend analysis section. All
salts exert a negative impact on CO2 solubility due to their
salting-out effect,34,73,79 with varying degrees of influence. The

salting-out effects of these salts can be ranked as follows, from
the most pronounced to the least: MgCl2 > CaCl2 > NaCl >
KCl > NaHCO3 > Na2SO4. It seems that salts containing ions
with higher valencies tend to have a stronger salting-out effect.
For example, divalent ions (like Mg2+ and Ca2+) can have a
more pronounced impact on reducing CO2 solubility
compared to monovalent ions (like Na+ and K+). However,
it is important to note that the specific behavior can vary
depending on the nature of the ions, the concentration of the
salt, and the conditions of temperature and pressure.
Therefore, the effect of the valency of salt on CO2 solubility
in brine is part of a broader set of factors that influence this
phenomenon.

4.5. Leverage Approach. This research utilized the
leverage approach101,102 to assess the applicability scope of
the CFNN-LM model and to detect any potentially
questionable data points within the CO2 solubility data set.
Within this approach, standardized residuals (SR) were
employed to measure the disparities between the model’s

Figure 10. Experimental data on CO2 solubility in (a) NaCl brine78 and (b) MgCl2 brine36 at various temperatures and constant pressures, along
with CFNN-LM predictions.
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predictions and the actual data. The SR values are computed as
below103,104

=
[ ]

e
H

SR
MSE(1 )i

i

i
2 (10)

Here, the leverage value for the ith data point is represented as
Hi while the corresponding error value is denoted as ei.
Additionally, the mean square of error is given by MSE. Next,
to calculate the Hat or leverage indices, one should calculate
the H matrix as shown below103

=H M M M M( )T 1 T (11)

In the provided context, the symbol MT denotes the
transpose of a matrix referred to as M. Matrix M is
characterized by its dimensions as (n × v), signifying n rows
corresponding to data points and v columns representing the
input variables. Additionally, the critical leverage (H*), which
is database-specific, can be determined using the subsequent
formula102

Figure 11. Sensitivity analysis using the result of the CFNN-LM model.

Figure 12. Williams plot for the CFNN-LM model obtained by the leverage approach.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07962
ACS Omega 2024, 9, 4705−4720

4716

https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07962?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07962?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= × +
H

v
n

3 ( 1)
(12)

The Williams plot is a visual method employed for
scrutinizing a data set, pinpointing possible out-of-leverage
and suspected data. Its purpose is to gauge the model’s
relevance by plotting SR values against Hat values. When a
substantial proportion of data clusters within the 0 ≤ H ≤ H*
and −3 ≤ SR ≤ 3 intervals, it signifies both the trustworthiness
of the data set and the accuracy of the model’s predictions
from a statistical standpoint.105 As depicted in Figure 12, a
total of 30 data points were identified as potentially doubtful
data, suggesting the absence of dubious laboratory observa-
tions in the solubility database. Furthermore, 72 data points
were identified as out of leverage, indicating that while the
model’s predictions were accurate, these data points fell
outside the model’s applicable range and statistically deviated
from the bulk of the data set. The fact that only a limited
number of potential suspected and out-of-leverage data were
identified, considering the extensive solubility database used in
this study, underscores the trustworthiness and precision of
both the data set and the performance of the CFNN-LM
model within this context. These models can be confidently
used for predicting CO2 solubility in saline aquifer, which is
very important for CO2 sequestration and storage

5. CONCLUSIONS
In this study, a data set consisting of 1278 experimental data
points was employed to construct models for CO2 solubility in
both pure water and brine. This encompassed a temperature
span from 273.15 to 453.15 K and a pressure range spanning
0.06−100 MPa. The modeling endeavor employed two robust
ANNs, namely, CFNN and GRNN, coupled with three
optimization algorithms, namely, LM, BR, and BFGS. Drawing
from the findings of this study, the following conclusions can
be made.

1. The CFNN-LM model showcases AAPRE values of
5.37% for the overall data set, 5.26% for the training
subset, and 5.85% for the testing subset. Also, the
CFNN-LM model demonstrates outstanding accuracy,
boasting the highest overall R2 value of 0.9949 among
the other models. Consequently, following thorough
statistical analyses, the CFNN-LM model stands out as
the most accurate among the models crafted in this
study.

2. Overall, the models can be ranked in order of
performance as follows, from best to least: CFNN-LM,
CFNN-BR, CFNN-BFGS, and GRNN.

3. The trend analysis showed a noteworthy positive impact
of pressure on CO2 solubility in brine, whereas salinity
and temperature were identified as factors causing a
decrease in CO2 solubility. Notably, the CFNN-LM
model exhibited remarkable predictive prowess, accu-
rately estimating CO2 solubility using experimental data
under diverse salinity, pressure, and temperature
conditions, yielding satisfactory results.

4. Based on sensitivity analysis, pressure exerts the most
significant influence and stands as the sole parameter
with a positive impact on CO2 solubility in brine.
Conversely, temperature and the concentration of all six
salts considered in the model exhibited a negative
impact. All salts exert a negative impact on CO2
solubility due to their salting-out effect, with varying

degrees of influence. The salting-out effects of the salts
can be ranked as follows, from the most pronounced to
the least: MgCl2 > CaCl2 > NaCl > KCl > NaHCO3 >
Na2SO4.

5. Utilizing the leverage approach, 30 data points were
pinpointed as potential suspected data, indicating the
data set’s credibility. Additionally, 72 data points were
categorized as out-of-leverage data. The relatively low
count of identified potential suspected and out-of-
leverage data, given the expansive solubility database,
underscores the reliability and accuracy of both the data
set and the CFNN-LM model’s performance in this
context.

6. The solubility of CO2 in brine plays an important role in
monitoring the CO2 sequestration process. CO2
solubility in brine is regarded as the principal parameter
in the CO2 sequestration in saline aquifers. Thus, precise
estimation is necessary to mitigate CO2 emissions into
the atmosphere.
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