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ABSTRACT
New piperazine–chalcone hybrids and related pyrazoline derivatives have been designed and synthesised
as potential vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. The National Cancer
Institute (NCI) has selected six compounds to evaluate their antiproliferative activity in vitro against 60
human cancer cells lines. Preliminary screening of the examined compounds indicated promising anti-
cancer activity against number of cell lines. The enzyme inhibitory activity against VEGFR-2 was evaluated
and IC50 of the tested compounds ranged from 0.57mM to 1.48mM. The most potent derivatives Vd and
Ve were subjected to further investigations. A cell cycle analysis showed that both compounds mainly
arrest HCT-116 cell cycle in the G2/M phase. Annexin V-FITC apoptosis assay showed that Vd and Ve
induced an approximately 18.7-fold and 21.2-fold total increase in apoptosis compared to the control.
Additionally, molecular docking study was performed against VEGFR (PDB ID: 4ASD) using MOE 2015.10
software and Sorafenib as a reference ligand.
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1. Introduction

Cancer is a major global health problem characterised by uncon-
trolled growth of abnormal cells. Although cancer research
resulted in a range of innovative and promising approaches, the
medications used as therapies have strong drawbacks and cancer
is expected to be the leading cause of death in the future1–3.
Targeted cancer treatments have recently been approved to treat
specific cancers such as melanoma, renal, colon, lung, ovary, cen-
tral nervous system, breast, and leukaemia4. Targeted chemother-
apy requires several strategies, including angiogenesis inhibition,
which has proved to be a successful technique for tumour

growth5. Angiogenesis is an important physiological process in
which the pre-existing vessels form new blood vessels. It is a vital
physiological process that happens during inflammation and
wound healing6,7. New blood vessels penetrate tumour masses
and provide them with oxygen and nutrients which promote
tumour progression and metastasis in pathological angiogenesis8.
Therefore, blocking angiogenesis could be a promising strategy to
inhibit growth of tumours with lower adverse effects than other
typical chemotherapies5.

The vascular endothelial growth factor (VEGF) isoforms were
particularly attractive targets to inhibit angiogenesis9,10. The

CONTACT Radwan El-Haggar radwan_elhaggar@pharm.helwan.edu.eg Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University,
Cairo 11795, Egypt; Marwa F. Ahmed marwa.farg@tu.edu.sa Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif 21974,
Kingdom of Saudi Arabia

Supplemental data for this article can be accessed here.

� 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY
2021, VOL. 36, NO. 1, 307–318
https://doi.org/10.1080/14756366.2020.1861606

http://crossmark.crossref.org/dialog/?doi=10.1080/14756366.2020.1861606&domain=pdf&date_stamp=2020-12-21
https://doi.org/10.1080/14756366.2020.1861606
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


expression of VEGF during embryonic stages is high and is
thought to play a crucial role in new (vasculogenesis) or pre-
existing blood vessels (angiogenesis)11. For certain solid tumours,
overexpression of VEGF contributes to increased tumour growth
and metastasis, which may be attributed to improved nutrient
replenishment availability for the metabolising cell12,13. Vascular
endothelial growth factor receptor-2 (VEGFR-2) is a subtype of
tyrosine kinase receptor VEGF family (VEGFR-TK)14,15. It is respon-
sible for normal and abnormal changes in vascular endothelial
cells16,17. VEGFR-2 inhibition will affect tumour cell blood supply,
inhibiting its development, proliferation, and metastasis. VEGFR
signalling pathway inhibition is a key therapeutic target for
tumour inhibition18,19.

N-aryl piperazine derivatives are important organic compounds
that have recently attracted considerable interest for their anti-
cancer activity20–23. On the other hand, pyrazole a simple aromatic
five-membered ring contains two adjacent nitrogen atoms is
included in many derivatives that display a variety of pharmaco-
logical activities such as anti-Alzheimer disease24, anticonvul-
sant25,26, anti-tubercular27,28, anti-microbial29,30, anti-inflammatory,
and analgesic31,32. Numerous pyrazole derivatives have proved
their anti-cancer efficacy against different types of cancer33–38.
Chalcones, (1,3-diaryl-2-propene-1-ones) derivatives that can con-
ventionally be synthesised by Claisen–Schmidt condensation39

remained a curiosity among researchers due to their diversified
biological activities40, such as antimalarial41, anti-histaminic42, anti-
diabetic43, anti-inflammatory44, and anti-neoplastic activity45,46.

On the other hand, many chalcone derivatives (compound 147,
compound 248, and compound 349) along with pyrazole deriva-
tives (compound 450 and compound 551) and piperazine deriva-
tives (compound 652 and compound 753) display potential
inhibitory activity of VEGFR-2 kinase which is an essential factor in
angiogenesis (Figure 1). Thus, chalcone and analogues

demonstrated potential inhibitory activity of VEGFR could be con-
sidered as important cancer prevention targets54–56.

Molecular hybridisation is one of the effective chemotherapeu-
tic agent production techniques that require the synthesis of two
distinct bioactive units. In the present research, the design and
synthesis of novel hybrid compounds bearing piperazine and chal-
cone or piperazine and pyrazoline (Figure 2) are our target. Newly
synthesised compounds have been submitted for evaluation of
their anticancer activity to the National Cancer Institute (NCI). Six
compounds were selected by NCI, and 60 lines of human cancer
cells were screened in vitro. The inhibitory activity had been also
tested against VEGFR-2.

2. Results and discussion

2.1. Chemistry

Compounds Va–h were synthesised via the reaction of 40-pipera-
zino-acetophenone III and the appropriate aldehyde (Scheme 1).
The reaction of the chalcone Va, Ve, and Vf and hydrazine
hydrate afforded pyrazoline derivatives VIa–c (Scheme 2). The
structures of all newly synthesised compounds were confirmed by
various methods of spectroscopic analysis, such as 1H NMR, 13C
NMR, IR, and mass spectrometry.

2.2. Biological activity

2.2.1. Screening of anticancer activity
Six compounds were selected by the NCI, according to NCI’s DTP
selection guidelines57, for evaluation of their anticancer activity at
a single-dose of 10 mM against 60 human tumours cell lines. The
compounds’ screening findings are summarised in Table 1. Data
analysis resulting from the primary assay showed that chalcone

Figure 1. Examples of chalcones, pyrazoles, and piperazine derivatives as VEGFR inhibitors.
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derivatives Vd, Ve, and Vf showed moderate to good inhibitory
activity mainly against leukaemia and colon cancer cell lines.

As illustrated in Table 1, compound Vf bearing 3-fluoropyridine
moiety showed weak anti-proliferative activity against non-small
cell lung cancer HOP-92, leukaemia K-562, colon cancer HT29, leu-
kaemia SR, and breast cancer MCF7 cancer cell lines, with cell
growth promotion (82.34%, 85.84%, 86.42%, 92.99%, 99.38%; cell
growth inhibition: 17.66%, 14.16%, 13.85%, 7.01%, and 0.62%,

respectively). It also showed moderate activity against leukaemia
HL-60(TB) (cell growth promotion 79.28%; cell growth inhibition:
20.72%), leukaemia CCRF-CEM (78.16%; cell growth inhibition:
21.84%), and colon cancer HCT-116 (cell growth promotion
73.87%; cell growth inhibition: 26.13%).

Replacing 3-fluoropyridine of compound Vf with 3-fluoro-
phenyl moiety, compound Vd significantly increased growth
inhibition against number of cancer cell lines, such as leukaemia

Scheme 1. Synthesis of target compounds Va–h. Reagents and conditions: (i) DMSO, heating at 110 �C, 24 h; (ii) alcoholic NaOH (10%), stirring 5 h.

Scheme 2. Synthesis of target compounds VIa–c. Reagents and conditions: (i) hydrazine hydrate, absolute ethanol, reflux 12 h.

Figure 2. Design of newly synthesised derivatives as VEGFR inhibitor.
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HL-60(TB), non-small cell lung cancer HOP-92, leukaemia CCRF-
CEM, leukaemia SR, and breast cancer MCF7 with percent growth
inhibition of 39.17%, 41.59%, 41.82%, 44.28%, and 48.28%,
respectively, compared to that of compound Vf (20.72%, 17.66%,
21.84%, 7.01%, and 0.62%, respectively). In addition, compound
Vd, showed good to excellent activity against colon cancer HCT-
116, colon cancer HT29, and leukaemia K-562 with percent growth
inhibition of 57.92%, 69.56%, and 83.45%, respectively.

Furthermore, replacing 3-fluorophenyl moiety with 4-fluoro-3-
methoxyphenyl moiety compound Ve markedly increase growth
inhibition towards many cancer cell lines. It showed cell growth
promotion for non-small cell lung cancer HOP-92 (55.00%; cell
growth inhibition: 45.00%), leukaemia SR (46.22%; cell growth
inhibition: 53.78%), breast cancer MCF7 (34.68%; cell growth
inhibition: 65.32%), leukaemia HL-60(TB) (28.91%; cell growth inhib-
ition: 71.09%), colon cancer HCT-116 (27.43%; cell growth

Table 1. In vitro growth inhibitory percent for compounds Vd, Ve, Vf, VIa, VIb, and VIc at 10 mM concentration, towards the 60 subpanel can-
cer cell lines, results were given as a percentage of cell growth promotion.

Panel Subpanel Vd Ve Vf VIa VIb VIc

Leukaemia CCRF-CEM 58.18 22.15 78.16 71.21 69.44 80.81
HL-60(TB) 60.38 28.91 79.28 81.63 76.95 77.32
K-562 16.55 12.37 85.84 78.12 58.92 77.92
MOLT-4 68.62 80.75 91.63 96.02 72.10 74.15
RPMI-8226 76.47 49.59 97.33 88.98 72.01 92.51
SR 55.72 46.22 92.99 94.43 67.42 90.38

Non-small cell lung cancer A549/ATCC 76.84 67.25 78.75 78.06 68.21 76.20
EKVX 95.54 97.12 99.11 101.50 95.41 91.04
HOP-62 80.17 101.42 102.01 86.44 86.01 83.16
HOP-92 58.41 55.00 82.34 83.18 57.13 72.42
NCI-H226 87.11 86.54 99.71 93.10 89.08 82.88
NCI-H23 77.30 92.63 102.52 91.73 75.49 83.85
NCI-H322M 75.26 73.01 96.26 98.35 89.15 89.29
NCI-H460 74.45 97.07 106.01 101.50 95.16 94.92
NCI-H522 71.57 61.19 78.82 69.51 66.27 81.93

Colon cancer COLO 205 96.91 83.00 111.89 113.04 93.87 95.69
HCC-2998 94.99 100.21 100.88 96.75 104.57 101.72
HCT-116 42.08 27.43 73.87 85.83 61.10 73.82
HCT-15 73.49 43.16 111.39 112.02 85.57 97.59
HT29 30.44 49.97 86.42 87.83 20.27 60.16
KM12 77.75 60.47 105.34 97.48 93.81 96.23
SW-620 61.08 50.69 105.59 94.11 91.67 93.46

CNS cancer SF-268 85.41 94.03 100.92 100.24 93.72 107.32
SF-295 101.78 95.92 101.95 103.66 97.70 98.00
SF-539 94.49 95.87 101.29 105.04 84.21 104.39
SNB-19 71.95 59.87 96.07 95.34 95.65 97.45
SNB-75 85.44 89.05 89.08 90.58 88.85 101.50
U251 72.39 67.21 95.03 94.54 78.59 95.06

Melanoma LOX IMVI 71.13 49.01 103.22 99.03 79.56 94.31
MALME-3M 94.15 112.40 99.98 106.87 102.13 93.43
M14 81.16 78.43 95.53 104.47 84.68 95.86
MDA-MB-435 94.27 80.14 102.37 102.57 101.87 105.18
SK-MEL-2 96.08 85.44 91.63 94.51 87.70 92.72
SK-MEL-28 109.03 106.02 115.56 114.17 109.51 115.80
SK-MEL-5 76.85 79.33 101.11 93.27 80.94 85.78
UACC-257 75.92 76.08 70.86 85.21 80.93 83.07
UACC-62 79.23 80.13 92.01 88.47 86.00 81.93

Ovarian cancer IGROV1 67.97 59.94 97.17 93.22 82.04 67.96
OVCAR-3 93.74 70.18 106.22 101.64 91.15 98.79
OVCAR-4 80.53 68.87 110.55 101.39 91.49 108.25
OVCAR-5 94.72 121.73 111.84 113.63 101.51 111.45
OVCAR-8 67.16 57.23 95.35 90.36 84.09 95.06
NCI/ADR-RES 109.37 79.31 107.53 102.72 104.69 106.03
SK-OV-3 79.98 87.98 96.68 96.47 83.58 85.00

Renal cancer 786-0 85.24 87.22 103.38 106.73 94.50 111.09
A498 95.14 100.79 97.22 93.08 90.59 97.17
ACHN 84.70 68.11 113.06 104.24 101.47 99.87
CAKI-1 68.63 79.37 86.18 83.12 86.62 80.62
RXF 393 75.94 101.92 97.78 108.30 95.32 104.89
SN12C 68.16 57.67 99.00 98.09 83.08 89.56
TK-10 114.19 101.24 95.83 130.17 113.60 122.80
UO-31 76.58 58.35 89.78 86.28 76.56 77.18

Prostate cancer PC-3 66.01 51.40 73.56 83.35 64.23 70.34
DU-145 77.70 105.61 108.14 104.00 103.62 107.16

Breast cancer MCF7 51.72 34.68 99.38 93.05 68.65 73.03
MDA-MB-231/ATCC 73.60 94.50 98.76 95.96 81.98 84.58
HS 578T 79.41 91.26 99.19 91.67 84.17 89.15
BT-549 73.16 66.42 90.81 96.87 70.80 85.33
T-47D 87.54 74.40 118.12 89.99 73.62 82.20
MDA-MB-468 94.85 46.48 100.32 101.01 96.57 114.26
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inhibition: 72.57%), leukaemia CCRF-CEM (22.15%; cell growth inhib-
ition: 77.85%), and leukaemia K-562 (12.37%; cell growth inhibition:
87.63%). From previous results, we can conclude that chalcone
derivative bearing 4-fluoro-3-methoxyphenyl moiety (Ve) was the
most potent chalcone towards leukaemia CCRF-CEM, leukaemia HL-
60(TB), leukaemia K-562, leukaemia SR non-small cell lung cancer
HOP-92, colon cancer HCT-116, and breast cancer MCF7 cell lines.

On the other hand, pyrazole analogues VIa, VIb, and VIc
showed promising cytotoxicity towards a variety of cancer cell
lines. Compound VIa bearing benzonitrile moiety exhibited a
weak growth inhibition against several cancer cell lines as it dis-
played cell growth promotion for leukaemia SR (94.43%; cell
growth inhibition: 5.57%), colon cancer HT29 (87.83%; cell growth
inhibition: 12.17%), colon cancer HCT-116 (85.83%; cell growth
inhibition: 14.17%), and non-small cell lung cancer HOP-92
(83.18%; cell growth inhibition: 16.82%). In addition, it showed
good inhibitory activity against many cancer cell lines with cell
growth promotion for leukaemia K-562 (78.12%; cell growth inhib-
ition: 21.88%), non-small cell lung cancer A549/ATCC (78.06%; cell
growth inhibition: 21.94%), leukaemia CCRF-CEM (71.21%; cell
growth inhibition: 28.79%), and non-small cell lung cancer NCI-
H522 (69.51%; cell growth inhibition: 30.49%).

Replacing benzonitrile moiety with 3-fluoropyridine moiety,
compound VIc increased anti-proliferative activity against few can-
cer cell lines such as colon cancer HCT-116, non-small cell lung
cancer HOP-92 and colon cancer HT29 with percent of cell growth
inhibition of 26.18%, 27.58%, and 39.84%, respectively.

Finally, compound VIb with 4-fluoro-3-methoxyphenyl moiety
was the most potent pyrazole derivative and exhibited moderate to
good inhibitory activity towards many cancer cell lines. It showed
percent of cell growth promotion for colon cancer HCT-116, leukae-
mia K-562, non-small cell lung cancer HOP-92, and colon cancer
HT29 of 61.10%, 58.92%, 57.13%, and 20.27%, respectively (cell
growth inhibition: 38.9%, 41.08%, 42.87%, and 79.73%, respectively).

2.2.2. Vascular endothelial growth factor receptor-2 inhibition
VEGFR is considered as an important target for the development
of potential anti-cancer candidates54–56. Therefore, compounds
Vd, Ve, Vf, VIa, VIb, and VIc were further investigated for their
ability to inhibit VEGFR-2 using colorimetric assay of human
VEGFR-2 ELISA (enzyme-linked immunosorbent assay) and
Sorafenib as a reference drug. Results were presented as half
maximal inhibitory concentration (IC50) values (Table 2). IC50 of
the tested compounds ranged from 0.57mM to 1.48mM.
Compound Ve was the most potent VEGFR-2 inhibitor among the
tested compounds with an IC50 value of 0.57mM which was com-
parable to results of Sorafenib that had IC50¼0.51mM. In addition,
compound Vd showed significant VEGFR-2 inhibitory activity with
IC50¼0.80 mM. These results supported that VEGFR-2 could be a
possible target for anti-tumour activity of our tested compounds.

2.2.3. Cell cycle analysis
Most of cytotoxic compounds exert their anti-proliferative effect
via arresting the cell cycle at certain phase. Flow cytometric ana-
lysis is considered a valuable method for determining and analy-
sing the cell cycle parameters58. In this study, compounds Vd and
Ve as the most potent derivatives were selected to explore their
effect on cell cycle progression and induction of apoptosis in HCT-
116 cell line using the standard concentration of 10mM. The effect
on the cell cycle distribution was assessed by a DNA flow cytome-
try analysis and the cell cycle parameters were compared to
untreated control cells in HCT-116 cells which had been incubated
with 10mM of Vd and Ve compounds and the results are shown
in Table 3 and Figure 3. The results revealed that, the percentage
of HCT-116 cells at G2/M phase markedly increased from 15.44%
to 50.44% and 46.85% after incubation with compound Vd and
Ve, respectively. On the other hand, the percentage of HCT-116
cells at G1 phase decreased from 54.38% in control to 21.78% for
compound Vd and 24.57% for compound Ve indicating that com-
pounds Vd and Ve induced cell arrest at G2/M phase. The per-
centage of cell death at pre-G1 phase for compounds Vd and Ve
was 16.54% and 18.22%, respectively.

2.2.4. Annexin V-FITC apoptosis assay
Double staining assay of annexin-V/propidium iodide (PI) was
used to investigate the mode of induced HCT-116 cell death
when treated with the tested compounds Vd and Ve. HCT-116
cells were treated for 24 h with 10mM from each tested com-
pound. The results obtained are outlined in Table 4 and Figure 4.
The percentage of apoptosis caused by the Vd and Ve com-
pounds respectively was (16.54 and 18.22). We can also conclude
that in early stage treatment of HCT-116 cells with Vd and Ve
compounds results in an increase in the percentage of apoptotic
cells from 0.51% for control untreated cells to be 3.92 and 4.76,
respectively. In late stage, the percentage of apoptotic cells was
10.32–11.35% compared to control (0.25%). The results indicate
that the tested Vd and Ve induced apoptosis in HCT-116 cell line.

2.3. Molecular docking

Molecular modelling is considered as an important tool to study
molecular interactions of certain ligands and binding site of the
corresponding protein. The ligand–protein interaction behaviour
at the active site was estimated based on the docking score func-
tion as implemented in MOE 2015.1059. In this study, six active
potential anticancer compounds Vd, Ve, Vf, VIa, VIb, and VIc
were subjected to molecular docking studies using MOE program
on the 3D structure of VEGFR using Sorafenib as reference com-
pound. Binding free energy data obtained after the docking pro-
cedure showed that the tested compounds exhibit favourable
docked complexes with the active site of target protein. The
tested compounds Vd, Ve, Vf, VIc, VIb, and VIc exhibited interac-
tions with the VEGFR active site to different extents and the dock-
ing score free energy of the tested compounds found to be this
order: Ve>VIa>Vd>Vf>VIc>VIb, as shown in Table 5. Also, the
other scoring parameters such as rmsd_refine, E_conf, E_place,

Table 2. In vitro VEGFR-2 inhibitory assay.

Compound IC50 (lM)

Vd 0.80
Ve 0.57
Vf 1.33
VIa 1.48
VIb 1.06
VIc 1.31
Sorafenib 0.51

IC50 values of compounds Vd, Ve, Vf, VIa, VIb and VIc and
Sorafenib reference drug.

Table 3. Effect of compounds Vd and Ve on the phases of cell cycle of HCT-
116 cells.

Code %G2/M %S %G0/G1 %Pre-G1 Comment

Vd 50.44 27.78 21.78 16.54 cell cycle arrest@G2/M
Ve 46.85 28.58 24.57 18.22 cell cycle arrest@G2/M
Control 15.44 30.18 54.38 1.97
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and E_refine, indicated that the tested compounds were correctly
docked in the biding site as the reference ligand Sorafenib.

Based on the obtained scoring results, compounds Ve, VIa,
and Vd showed the highest binding affinity to the VEGFR-2 active
site. Compound Ve was the best among the synthesised com-
pounds with docking score (–7.9154 kcal/mol) compared to the
reference ligand Sorafenib docking score (–11.1354 kcal/mol), and
it formed a direct interaction in the active site, similar to that of
Sorafenib. Also, compounds VIa and Vd showed a good docking
score (–7.4371 kcal/mol) and (–7.3974 kcal/mol), respectively, com-
pared to Sorafenib. Figure 5 reveals that the tested compounds
VIa and Vd along with Sorafenib reacted with important amino
acids in the active binding site. The carbonyl group of the chal-
cone moiety in both compounds Ve and Vd acts as H-bond
acceptor and formed a H-bonding with LYS868 (Figure 5(a,b)). On
the other hand, the reference compound Sorafenib formed sev-
eral hydrogen bonding with the active side nearby amino acids
GLU885, CYS919, ASP1046, and PHE1047 (Figure 5(c)).

3. Experimental

3.1. Chemistry

All melting points were uncorrected and measured by Electro
thermal IA 9000 series digital melting point apparatus at the
Micro-analytical Center, Cairo University (Giza, Egypt). IR spectra

had been reported on FT. IR 670-Nicolet spectrophotometer-Nexus
(Thermo Scientific, Madison, WT); determination of 1H NMR and
13C NMR spectra on a JEOL AS NMR spectrometer (Tokyo, Japan).
Mass spectra were measured on Finnigan Mat SSQ 7000 mode EI
70 ev (Thermo Inst. Sys. Inc., Waltham, MA). Thin-layer chromatog-
raphy was performed using chloroform/methanol (10:1, v/v) on
thin-layer chromatographic plates of silica gel 60 F254 (Merck,
Kenilworth, NJ), and the spots were observed for a few seconds
by exposure to UV lamps at k254 nm and used to monitor the
reaction time. 1-(4-(Piperazin-1-yl)phenyl)ethan-1-one III was pre-
pared as reported method60.

3.2. General method for preparation of (Va–h)

A mixture of 40-piperazinoacetophenone III (0.01mol) and the cor-
responding aldehyde derivatives IV, namely, 2-cyanobenzaldehyde,
4-cyanobenzaldehyde, 2-flurobenzaldehyde, 3-flurobenzaldehyde,
4-fluro-3-methoxy benzaldehyde, 3-fluroisonicotinaldehyde, 2-
hydroxyl-5-nitrobenzaldehyde, and 2-furaldehyde (0.01mol) was dis-
solved in 10% alcoholic sodium hydroxide (25mL) and stirred for
5 h at room temperature. The precipitate was filtered, washed with
water, dried, and crystallised from ethanol to give the target com-
pounds Va–h, respectively.

3.2.1. 2-(3-Oxo-3-(4-(piperazin-1-yl)phenyl)prop-1-enyl)benzonitrile
(Va)
Yield 70%, m.p. 150 �C. Analysis calculated for C20H19N3O; Calc.: %
C, 75.69; H, 6.03; N, 13.24; found: % C, 75.74; H, 6.12; N, 13.10. IR:
tmax./cm

�m 3230 (NH), 3020 (C–H aromatic), 2200 (CN), 1700
(C¼O), 1580 (C¼C). 13C NMR (DMSO-d6): 189, 145, 138, 137,133,
132, 130, 128, 127, 126, 121, 112, 115, 109, 54, 45. 1H NMR: d 2.1
(s, 1H, NH, D2O exchangeable), 2.4–3.0 (m, 8H, piperazinyl pro-
tons), 6.8 (d, 1H, J¼ 15.0 Hz, CH═), and 7.0–8.0 (m, 9H, Ar-H, CH═).
MS: m/z (% relative intensity)¼317 (Mþ, 20%), 215 (100%).

Figure 3. Effect of compounds Vd and Ve on the phases of cell cycle of HCT-116 cells.

Table 4. Apoptosis and necrosis percent induced by compounds Vd and Ve in
HCT-116 cells.

Apoptosis

NecrosisTotal Early Late

Vd 16.54 3.92 10.32 2.3
Ve 18.22 4.76 11.35 2.11
Control 1.97 0.51 0.25 1.21
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3.2.2. 4-(3-Oxo-3–(4-(piperazin-1-yl)phenyl)prop-1-enyl)benzonitrile
(Vb)
Yield 75%, m.p. 170 �C. Analysis calculated for C20H19N3O; calcd.:
% C, 75.69; H, 6.03; N, 13.24; found: % C, 75.72; H, 6.10; N, 13.15.
IR: tmax./cm

�1 3240 (NH), 3010 (C–H aromatic), 2210 (CN), 1720
(C═O), 1590 (C═C). 13C NMR (DMSO-d6): 190, 149, 139, 136,133,
132, 128, 127, 121, 118, 112, 111, 55, 46. 1H NMR: d 2.0 (s, 1H, NH,
D2O exchangeable), 2.5–3.1 (m, 8H, piperazinyl protons), 6.8
(d, 1H, J¼ 15.2 Hz, CH═), and 7.3–8.1 (m, 9H, Ar-H, CH═). MS: m/z
(% relative intensity)¼317 (Mþ, 7%), 77 (100%).

3.2.3. 3-(2-Fluorophenyl)-1-(4-(piperazin-1-yl)phenyl)prop-2-en-1-
one (Vc)
Yield 70%, m.p. 176 �C. Analysis calculated C19H19FN2O; calcd.: %
C, 73.53; H, 6.17; N, 9.03; found: % C, 73.49; H, 6.34; N, 9.12.
IR: tmax./cm

�1 3310 (NH), 3000 (C–H aromatic), 1720 (C═O), 1590

(C═C). 13C NMR (DMSO-d6): 192, 161, 145, 138, 132, 130, 129, 127,
125, 123, 121, 115, 112, 55, 46. 1H NMR: d 2.2 (s, 1H, NH, D2O
exchangeable), 2.7–3.3 (m, 8H, piperazinyl protons), 6.7 (d, 1H,
J¼ 15.5Hz, CH═), and 7.1–7.9 (m, 9H, Ar-H, CH═). MS: m/z (% rela-
tive intensity)¼310 (Mþ, 50%), 291 (100%).

3.2.4. 3-(3-Fluorophenyl)-1-(4-(piperazin-1-yl)phenyl)prop-2-en-1-
one (Vd)
Yield 80%, m.p. 200 �C. Analysis calculated C19H19FN2O; calcd.: %
C, 73.53; H, 6.17; N, 9.03; found: % C, 73.59; H, 6.25; N, 9.10. IR:
tmax./cm

�1 3315 (NH), 3010 (C–H aromatic), 1720 (C═O), 1600 (C═
C). 13C NMR (DMSO-d6): 189, 162, 145, 137, 136, 133, 131, 127,
124, 122, 115, 114, 113, 55, 47. 1H NMR: d 2.3 (s, 1H, NH, D2O
exchangeable), 2.6–3.1 (m, 8H, piperazinyl protons), 6.8 (d, 1H,
J¼ 15.0Hz, CH═), and 7.2–7.7 (m, 9H, Ar-H, CH═). MS: m/z (% rela-
tive intensity)¼310 (Mþ, 100%).

Figure 4. Effect of compounds Vd and Ve on the percentage of annexin V-FITC-positive staining in HCT-116 cells. The experiments were done in triplicates. The four
quadrants identified as: LL: viable; LR: early apoptotic; UR: late apoptotic; UL: necrotic.

Table 5. Docking energy scores (kcal/mol) derived from the MOE for compounds Vd–f, VIa–c, and the reference ligand Sorafenib.

Comp. no. Score rmsd_refine E_conf E_place E_score1 E_score2 E_refine

Vd –7.3974 2.6436 89.8860 –55.3257 –13.3058 –7.3974 –30.4426
Ve –7.9154 1.4800 118.5701 –66.3756 –12.5551 –7.9154 –33.5940
Vf –6.9883 1.5306 101.3355 –81.8762 –11.3026 –6.9883 –27.0719
VIa –7.4371 1.3288 121.3822 –71.7816 –13.2958 –7.4371 –20.1583
VIb –6.7455 0.9160 103.8081 –80.8748 –12.5471 –6.7455 –16.9364
VIc –6.9328 1.2209 99.4951 –46.3408 –11.6422 –6.9328 –22.0011
Sorafenib –11.1354 1.0623 –57.2969 –94.4447 –12.8634 –11.1354 –69.0130

Score: lower scores are more favourable; rmsd_refine: the root mean square deviation of the pose from the docking pose compared to the co-crystal ligand position;
E_conf: free binding energy of the conformer; E_place: free binding energy from the placement stage; E_score 1: free binding energy from the first rescoring stage;
E_score 2: free binding energy from the second rescoring stage; E_refine: free binding energy from the refinement stage.
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3.2.5. 3-(4-Fluoro-3-methoxyphenyl)-1-(4-(piperazin-1-yl)phenyl)
prop-2-en-1-one (Ve)
Yield 70%, m.p. 180 �C. Analysis calculated C20H21FN2O2; calcd.: %
C, 70.57; H, 6.22; N, 8.23; found: % C, 70.50; H, 6.19; N, 8.27. IR:
tmax./cm

�1 3400 (NH), 3050 (C–H aromatic), 1730 (C═O), 1600 (C═
C). 13C NMR (DMSO-d6): 190, 151, 149, 145, 137, 132, 131, 127,
123, 121, 117, 113, 112, 57, 50, 45. 1H NMR: d 2.4 (s, 1H, NH, D2O
exchangeable), 2.8–3.3 (m, 8H, piperazinyl protons), 3.80 (s, 3H,

OCH3), 7.0 (d, 1H, J¼ 15.1 Hz, CH═), and 7.1–7.8 (m, 8H, Ar-H, CH═
). MS: m/z (% relative intensity)¼340 (Mþ, 24%), 85 (100%).

3.2.6. 3-(3-Fluoropyridin-4-yl)-1-(4-(piperazin-1-yl)phenyl)prop-2-
en-1-one (Vf)
Yield 75%, m.p. 225 �C. Analysis calculated C18H18FN3O; calcd.: % C
69.44; H, 5.83; N, 13.50; found: % C, 69.49; H, 5.95; N, 13.61. IR:

Figure 5. Docking of compounds Vd, Ve and the reference ligand Sorafenib into VEGFR active sites. (a) Compounds Vd. (b) Compound Ve. (c) Sorafenib.
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tmax./cm
�1 3450 (NH), 3040 (C–H aromatic), 1720 (C═O), 1590 (C═

C). 13C NMR (DMSO-d6): 187, 156, 146, 144, 139, 136, 133, 131,
128, 126, 118, 113, 53, 45. 1H NMR: d 2.3 (s, 1H, NH, D2O
exchangeable), 2.7–3.4 (m, 8H, piperazinyl protons), 6.7 (d, 1H,
J¼ 15.0 Hz, CH═CH), and 6.9–7.8 (m, 8H, Ar-H, CH═). MS: m/z (%
relative intensity)¼311 (Mþ, 100%).

3.2.7. 3-(2-Hydroxy-5-nitrophenyl)-1-(4-(piperazin-1-yl)phenyl)prop-
2-en-1-one (Vg)
Yield 65%, m.p. 185 �C. Analysis calculated C19H19N3O4; calcd.: % C
64.58; H, 5.42; N, 11.89; found: % C, 64.50; H, 5.37; N, 11.83. IR:
tmax./cm

�1 3400 (NH), 3320 (OH), 3010 (C–H aromatic), 1700 (C═
O), 1590 (C═C). 13C NMR (DMSO-d6): 195, 163, 141, 140, 139, 131,
129, 126, 125, 120, 119, 116, 112, 54, 45. 1H NMR: d 2.0 (s, 1H, NH,
D2O exchangeable), 2.4–3.1 (m, 8H, piperazinyl protons), 6.6 (d,
1H, J¼ 15.2Hz, CH═ ), 7.3–7.9 (m, 8H, Ar-H, CH═ ), and 9.1 (s, 1H,
O-H). MS: m/z (% relative intensity)¼353 (Mþ, 10%), 290 (100%).

3.2.8. 3-(Furan-2-yl)-1-(4-(piperazin-1-yl)phenyl)prop-2-en-1-one (Vh)
Yield 70%, m.p. 190 �C. Analysis calculated C17H18N2O2; calcd.: % C
72.32; H, 6.43; N, 9.92; found: % C 72.37; H, 6.52; N, 9.90. IR: tmax./
cm�1 3390 (NH), 3030 (C–H aromatic), 1700 (C═O), 1600 (C═C).
13C NMR (DMSO-d6): 188, 151, 140, 137, 130, 127, 126, 120, 114,
112, 110, 50, 45. 1H NMR: d 2.1 (s, 1H, NH, D2O exchangeable),
2.9–3.5 (m, 8H, piperazinyl protons), 6.7 (d, 1H, J¼ 15.5 Hz, CH═ ),
and 7.0–7.8 (m, 8H, Ar-H, CH═). MS: m/z (% relative intensity)¼282
(Mþ, 30%), 197 (100%).

3.3. General method for the preparation of VIa–c

A mixture of the chalcone Va, Ve, and Vf (0.006mol) and hydra-
zine hydrate (0.006mol, 98%) in absolute ethanol (30mL) was
heated for 12 h under reflux. The reaction was cooled, the formed
precipitate was filtered off and crystallised from ethanol to give
compounds VIa–c, respectively.

3.3.1. 2-(3-(4-(Piperazin-1-yl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)
benzonitrile (VIa)
Yield 64%, m.p. 165 �C. Analysis calculated C20H21N5; calcd.: % C
72.48; H, 6.39; N, 21.13; found: % C 72.54; H, 6.42; N, 21.10. IR:
tmax./cm

�1 3320 (NH), 3030 (C–H aromatic), 2220 (CN), 1600 (C═
C). 13C NMR (DMSO-d6): 151, 146, 134, 133, 131, 129, 128, 127,
125, 115, 112, 111, 54, 47, 45, 42. 1H NMR: d 2.1 (s, 1H, NH, D2O
exchangeable), 2.4–2.9 (m, 8H, piperazinyl protons), 3.3 (dd, 1H,
J¼ 11.4, 5.1 Hz, pyrazoline), 3.4 (dd, 1H, J¼ 11.3, 6.1 Hz, pyrazo-
line), 5.0 (dd, 1H, J¼ 11.0, 5.5 Hz, pyrazoline), 7.0–7.7 (m, 8H, Ar-H),
and 9.0 (s, NH, D2O exchangeable). MS: m/z (% relative
intensity)¼331 (Mþ, 14%), 77 (100%).

3.3.2. 1-(4-(5-(4-Fluoro-3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-
3-yl)phenyl) piperazine (VIb)
Yield 70%, m.p. 195 �C. Analysis calculated C20H23FN4O; calcd.: % C
67.78; H, 6.54; N, 15.81; found: % C 67.70; H, 6.59; N, 15.74. IR:
tmax./cm

�1 3400 (NH), 3040 (C–H aromatic), 1590 (C═C). 13C NMR
(DMSO-d6): 152, 150, 148, 140, 133, 130, 125, 120, 116, 112, 111,
56, 52, 50, 46, 43. 1H NMR: d 2.3 (s, 1H, NH, D2O exchangeable),
2.6–3.0 (m, 8H, piperazinyl protons), 3.2 (dd, 1H, J¼ 11.3, 6.1 Hz,
pyrazoline), 3.3 (dd, 1H, J¼ 11.7, 5.9 Hz, pyrazoline), 3.8 (s, 3H,
OCH3), 5.1 (dd, 1H, J¼ 11.9, 6.1 Hz, pyrazoline), 6.9–7.5 (m, 7H, Ar-

H), and 8.5 (s, NH, D2O exchangeable). MS: m/z (% relative
intensity)¼354 (Mþ, 100%).

3.3.3. 1-(4-(5-(3-Fluoropyridin-4-yl)-4,5-dihydro-1H-pyrazol-3-yl)
phenyl) piperazine (VIc)
Yield 70%, m.p. 135 �C. Analysis calculated C18H20FN5; calcd.: % C
66.44; H, 6.20; N, 21.52; found: % C 66.49; H, 6.25; N, 21.548
IR: tmax./cm

�1 3390 (NH), 3020 (C–H aromatic), 1595 (C═C). 13C
NMR (DMSO-d6): 152, 150, 147, 139, 138, 133, 130, 125, 124, 111,
54, 47, 45, 44. 1H NMR: d 2.3 (s, 1H, NH, D2O exchangeable),
2.7–3.2 (m, 8H, piperazinyl protons), 3.4 (dd, 1H, J¼ 11.2, 5.0 Hz,
pyrazoline), 3.6 (dd, 1H, J¼ 11.6, 5.9 Hz, pyrazoline), 5.2 (dd, 1H,
J¼ 12.0, 5.7 Hz, pyrazoline), 7.0–7.9 (m, 7H, Ar-H), and 8.8 (s, NH,
D2O exchangeable). MS: m/z (% relative intensity)¼325 (Mþ, 19%),
229 (100%).

3.4. In vitro cytotoxicity

In vitro cytotoxicity was performed in NCI according to
reported method61.

3.5. VEGFR-2 inhibition assay

IC50s of Vd, Ve, Vf, VIa, VIb, and VIc compounds were evaluated
in vitro using colorimetric assay of human VEGFR-2 ELISA
(enzyme-linked immunosorbent assay) kits (HTScanVR VEGF
Receptor 2 Kinase Assay Kit). It includes active VEGFR-2 kinase (a
biotinylated peptide substrate and a phospho-tyrosine antibody)
for detection of the phosphorylated form of the substrate peptide.
On a 96-well plate, a particular VEGFR-2 antibody was seeded and
100 mL of the normal solution or compound tested was applied,
incubated at room temperature for 2.5 h and washed.

Then, 100mL of the prepared biotin antibody was added, incu-
bated for an additional 1 h at room temperature and washed.
Following, 100mL of streptavidin solution was added at room tem-
perature, incubated for 45min and then, 100 mL of TMB substrate
solution was applied and incubated at room temperature for
30min. Finally, 50mL stop solution was added and the absorption
was measured at 450 nm instantly. The standard curve, the X-axis
concentrations, and the Y-axis absorbance were drawn.

3.6. Cell cycle analysis

HCT-116 cells were seeded at concentrations of 1� 105 cells per
well in a six-well plate, then incubated for 24 h. The cells were
treated for 24 h with vehicles (0.1% DMSO) or 10mM of Vd or Ve
compounds. Using ice-cold, 70% ethanol at 4 �C, cells were har-
vested and fixed for 12 h after that. Ethanol removal and cold PBS
washing of the cells were done. Then incubated in 0.5mL of PBS
containing 1mg/mL Ranse for 30min at 37 �C. In the dark, the
cells were stained with PI for 30min. Flow cytometer was then
used to detect contents of DNA62.

3.7. Annexin V-FITC apoptosis assay

For this study, annexin V-FITC/PI apoptosis detection kit was used;
HCT-116 cells were stained with annexin V fluorescein isothiocyan-
ate (FITC) and PI counter-stained. 1� 105 HCT-116 cells were 48 h
incubated with compound Vd or Ve, trypsinised, washed with
phosphate-buffered saline (PBS), stained in the dark at 37 �C for
15min. Then, analysed with a cytometer of FACS calibre flow63.
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3.8. Molecular docking

Molecular docking simulation studies were performed using
molecular operating environment (MOEVR ) version 2015.10. The
vascular endothelial growth factor receptor (VEGFR) (PDB 4ASD)
was used as a receptor for the docking study and Sorafenib as a
reference drug.

3.8.1. Target compounds optimisation
Using the MOE program builder interface, the tested compounds
Vd, Ve, Vf, VIa, VIb, and VIc were created into a 3D model. The
target structures were checked by 2D depiction and formal
charges on atoms, and then a conformational search was con-
ducted for the target compounds. All conformers were subjected
to energy minimisation done with MOE until an RMSD gradient of
0.01 kcal/mol and an RMS distance of 0.1 Å with MMFF94X were
automatically measured as a force-field and the partial charges.
The database of target compounds was then saved as MDB file
for use in the calculations for molecular docking.

3.8.2. Optimisation of VEGFR active site
The VEGFR has been prepared for docking experiments by adding
hydrogen atoms and their standard geometry. The atom’s connec-
tions and types were checked with automatic correction for any
errors that existed. Selection of the receptor and its potential
atoms has been fixed. MOE Alpha Site Finder used all default
items to search for the active site in the receptor structure, and
then dummy atoms were created from the alpha
spheres obtained.

3.8.3. Docking of the target compounds to the VEGFR active sites
Docking of the tested compounds’ conformational database was
performed using MOE-Dock software. To ensure a reasonable
docking accuracy and to determine the effect of the water mole-
cules, the co-crystallised ligand in the VEGFR (PDB 4ASD) was
docked to its corresponding protein (in the absence and in the
presence of water) and the RMSD values were determined
between the co-crystallised ligand and docked pose. The success
rates obtained were highly excellent where the active site of the
VEGFR was calculated from the binding of co-crystallised ligand
and saved as MOE file. The active site file of the VEGFR was then
loaded, and the docking tool was used. The program specifica-
tions have been adjusted to the dummy atoms as docking site, tri-
angle matcher as placement methodology, London dG as scoring
methodology that have been adjusted to its default values. The
MDB file of the ligands to be docked (Sorafenib and target com-
pounds) was loaded, and calculations for docking were run auto-
matically. The poses obtained were studied and the poses which
had the best ligand–receptor interactions were selected and
stored for calculating energy.

4. Conclusions

In summary, novel piperazine–chalcone hybrids and related pyra-
zoline analogues were synthesised and six of them were selected
at a single dose concentration (10�1 M) by NCI (Bethesda, MD) to
test their in vitro anticancer activity against full 60 lines of human
cancer cells. VEGFR-2 enzyme inhibitory assay was performed to
investigate the mechanism of anticancer activity of the tested
compounds. While, all tested compounds demonstrate good
inhibitory activity against VEGFR-2, the most active compounds

were Vd and Ve that have been shown to be able to cause cell
cycle arrest during the G2/M process and inducing apoptosis in
HCT-116 cells. The present research has led to the discovery of
new cytotoxic compounds that target the VEGFR-2. Furthermore, a
molecular docking study of selected compounds was carried out
and confirmed that compounds Vd and Ve exhibited a direct
interaction with the VEGFR.
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