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Macular Ganglion Cell-Inner 
Plexiform Layer Thickness 
Prediction from Red-free Fundus 
Photography using Hybrid Deep 
Learning Model
Jinho Lee   1,2, Young Kook Kim1,2*, Ahnul Ha1,2, Sukkyu Sun3, Yong Woo Kim   1,2,  
Jin-Soo Kim   4, Jin Wook Jeoung   1,2 & Ki Ho Park1,2

We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular 
ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer 
photographs (RNFLPs). A total of 789 pairs of RNFLPs and spectral domain-optical coherence 
tomography (SD-OCT) scans for 431 eyes of 259 participants (183 eyes of 114 healthy controls, 68 eyes 
of 46 glaucoma suspects, and 180 eyes of 99 glaucoma patients) were enrolled. An HDLM was built by 
combining a pre-trained deep learning network and support vector machine. The correlation coefficient 
and mean absolute error (MAE) between the predicted and measured mGCIPL thicknesses were 
calculated. The measured (OCT-based) and predicted (HDLM-based) average mGCIPL thicknesses were 
73.96 ± 8.81 µm and 73.92 ± 7.36 µm, respectively (P = 0.844). The predicted mGCIPL thickness showed 
a strong correlation and good agreement with the measured mGCIPL thickness (Correlation coefficient 
r = 0.739; P < 0.001; MAE = 4.76 µm). Even when the peripapillary area (diameter: 1.5 disc diameters) 
was masked, the correlation (r = 0.713; P < 0.001) and agreement (MAE = 4.87 µm) were not changed 
significantly (P = 0.378 and 0.724, respectively). The trained HDLM algorithm showed a great capability 
for mGCIPL thickness prediction from RNFLPs.

Glaucoma is the leading cause of visual impairment worldwide, affecting more than 70 million people1. Effective 
screening strategies are important, as most patients do not present any symptoms before the disease has reached 
the advanced stage2,3.

There has been remarkable progress in glaucoma screening thanks to the development of deep learning 
algorithms such as convolutional neural networks (CNNs) for visual recognition4–6. A number of studies have 
reported the diagnostic performance of the deep learning model as excellent in terms of area under receiver 
operating characteristic curve (AUC). Ting et al. reported on a deep learning system for multiethnic diabetic 
cohorts that achieved an AUC of 0.9427. Li et al. reported a deep learning model that had been trained on a very 
large-scale dataset with over 48,000 fundus photographs and that achieved an AUC of 0.986 for referable glau-
comatous optic neuropathy6. However, the deep learning models of most of the previous studies require ground 
truth labeling by human graders. This labeling process is labor-intensive as well as subjective.

Spectral domain-optical coherence tomography (SD-OCT) is widely utilized for detection and quantitative 
assessment of glaucomatous structural loss of retinal nerve fiber layer (RNFL) and macular ganglion cell-inner 
plexiform layer (mGCIPL)8–11. It is useful not only for diagnosing glaucoma but also for monitoring glaucoma 
progression even before apparent visual field (VF) change12,13.

Recently, several studies have shown that RNFL thickness and minimum rim width relative to Bruch’s 
membrane opening (BMO-MRW) under SD-OCT can be successfully quantified from monoscopic optic disc 
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photographs by deep learning models14,15. They showed the potential of deep learning models to provide quan-
titative information on the extent of neural damage from qualitative data (optic disc photographs). Although 
these studies are enlightening, mounting evidence from the investigation of glaucomatous damage implicates 
early macular involvement10,16,17. Analyses of the optic nerve head (ONH) and RNFL alone, therefore, potentially 
overlook glaucomatous macular damage.

Thus prompted, this study developed and validated a novel hybrid deep learning model (HDLM) to quan-
tify mGCIPL thickness from red-free RNFL photographs (RNFLPs) so as to determine if HDLM-based RNFLP 
analysis could be an effective alternative to macular SD-OCT at clinics or glaucoma-screening centers where 
SD-OCTs are unavailable.

Results
Eight-hundred and fifty-two (852) pairs of RNFLPs and SD-OCT scans from 441 eyes of 266 participants 
were enrolled. Among them, 63 image pairs were excluded: 42 for poor-quality RNFLP and SD-OCT; 11 for a 
poor-quality SD-OCT mGCIPL thickness map, and 10 for a poor-quality SD-OCT RNFL deviation map. The 
remaining 789 image pairs from 431 eyes of 259 subjects (183 eyes of 114 healthy controls, 68 eyes of 46 glaucoma 
suspects, and 180 eyes of 99 glaucoma patients) were examined in the ensuing analysis. The subjects’ demo-
graphic characteristics are summarized in Table 1. The mean age was 57.4 ± 13.4 (21–87) years; 106 of the sub-
jects were men (40.9%) and 153 were women (59.1%). The spherical equivalent of refractive error ranged from 
−8.75 to 3.50D (−2.78 ± 3.41 D); AL, from 22.83 to 26.85 mm (24.6 ± 1.81 mm); treated IOP, from 8 to 20 mmHg 
(14.4 ± 2.9 mmHg); MD, from −15.52 to 4.28 dB (−2.6 ± 3.9 dB).

The measured (SD-OCT-based) average mGCIPL thickness was 73.92 ± 7.36 µm, and the predicted 
(HDLM-based) average mGCIPL thickness was 73.96 ± 8.81 µm (P = 0.844; LMM). These results indicated strong 
agreement (MAE = 4.76 µm). A hexbin scatterplot also demonstrated a strong correlation between the meas-
ured and predicted average mGCIPL thicknesses (Pearson’s correlation coefficient = 0.739; R2 = 0.545; Fig. 1). 
Figure 2 shows the Bland-Altman plot evaluation of the agreement between predictions and measurements: The 
95% confidence limits of agreement ranged from −11.7 (95% CI, [−12.4, −11.0]) µm to 11.8 (95% CI, [11.1, 
12.5]) µm without evidence of systemic bias (bias = 0.034 [−0.38, 0.46] µm). The distribution of the predicted 
and measured mGCIPL thicknesses for each group is shown as violin plots in Fig. 3. In the subgroup analysis, 
the measured average mGCIPL thicknesses were 81.8 ± 5.4, 75.6 ± 3.8, 67.6 ± 6.6 µm, and the predicted average 
mGCIPL thicknesses were 79.1 ± 6.0, 75.6 ± 6.1, 69.5 ± 5.7 µm in the normal, glaucoma suspect, and glaucoma 
groups, respectively.

When the ONH was masked using the Gaussian blur function, the predicted average mGCIPL thickness was 
73.9 ± 5.94 µm (P = 0.983; LMM). The correlation (r = 0.713; R2 = 0.508; P < 0.001) was still strong and was not 
statistically decreased (P = 0.378). Also, the agreement between the measured and predicted average mGCIPL 
thicknesses was still good (MAE = 4.87 µm), and there was no significant difference relative to the results for 
RNFLP without ONH masking (P = 0.724).

The HDLM’s ability to differentiate eyes with glaucomatous VF loss from healthy eyes was excellent 
(AUC = 0.918, 95% CI [0.898–0.939]; sensitivity 0.901, 95% CI [0.852–0.945]; specificity 0.805, 95% CI [0.764–
0.843]). The classifier’s classification accuracy for the three groups (normal, glaucoma suspect, glaucoma) was 
81.7%. Likewise, its ability to determine temporal raphe sign positivity was good as well (AUC 0.843, 95% CI 
[0.816–0.870]; sensitivity 0.779 [0.737–0.821]; specificity 0.761 [0.719–0.801]). Figure 4 plots ROC curves show-
ing the HDLM’s diagnostic ability for glaucomatous VF loss and temporal raphe sign positivity. Representative 
cases of correct and incorrect prediction of mGCIPL thickness by the HDLM are shown in Figs. 5 and 6, 
respectively.

Normal Suspect Glaucoma P

No. of Eyes (patients) 183 (114) 68 (46) 180 (99) N/A

No. of images 292 109 388 N/A

Age (years) 56.5 ± 13.5 57.2 ± 16.0 58.3 ± 12.3 0.464

Female (%) 104 (56.5%) 42 (62.7%) 105 (58.3%) 0.681

IOP (mmHg) 13.8 ± 2.5 13.6 ± 2.7 15.3 ± 3.2 0.176

SDOCT mGCIPL thickness (μm) 81.8 ± 5.4 75.6 ± 3.8 67.6 ± 6.6 <0.001

Temporal Raphe Sign Positivity 11 (3.8%) 75 (68.8%) 355 (91.5%) <0.001

Average RNFL thickness (μm) 91.9 ± 9.8 86.2 ± 9.1 69.7 ± 9.5 0.001

SAP MD (dB) −0.2 ± 2.0 −0.7 ± 2.3 −5.1 ± 6.0 <0.001

SAP PSD (dB) 2.2 ± 1.1 2.6 ± 1.7 6.7 ± 4.7 <0.001

SE (D) −2.5 ± 3.5 −1.3 ± 2.3 −3.6 ± 3.4 0.717

Central corneal thickness (μm) 553.3 ± 33.1 535.5 ± 38.1 540.9 ± 37.3 0.002

Axial Length (mm) 24.8 ± 1.2 24.3 ± 0.7 24.9 ± 1.3 0.143

Table 1.  Demographic and clinical characteristics of the eyes included in the study. SD-OCT = spectral 
domain-optical coherence tomography; mGCIPL = macular ganglion cell-inner plexiform layer; dB = 
decibels; SE = spherical equivalent; D = diopters; SAP = standard automated perimetry; MD = mean deviation; 
PSD = pattern standard deviation.
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To estimate the possibility of learning random thickness rather than true features related to mGCIPL, the effi-
cacy of the model was further investigated with various corruption ratios. As shown in Supplementary Table S1, 
the R2 score and MAE of 5-fold CV became worse as the corruption ratio increased. With the corruption ratio ≥ 
0.4, the R2 scores were even negative values. When the prediction error of the model is worse than just predicting 
the mean value, the R2 score can be negative18. Supplementary Fig. S1 depicts the relationship between the pre-
dicted mGCIPL thickness and the target thickness with the corruption ratios of 0.4 (Fig. S1A) and 0.8 (Fig. S1B). 
With the corruption ratio of 0.4, a weak positive correlation could still be observed, whereas no correlation was 
found with the corruption ratio of 0.8.
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Figure 1.  Scatterplot showing relationship between average mGCIPL thicknesses predicted by HDLM and 
actually measured by SD-OCT. A strong correlation was found between the predicted and the measured 
mGCIPL thicknesses (Pearson’s correlation coefficient = 0.739; R2 = 0.545). (mGCIPL = macular ganglion cell-
inner plexiform layer; HDLM = hybrid deep learning model; SD-OCT = spectral domain-optical coherence 
tomography).

Mean of Predicted and Measured mGCIPL Thickness (µm)

D
iff

er
en

ce
 b

et
w

ee
n 

Pr
ed

ic
te

d 
an

d 
M

ea
su

re
d 

m
G

C
IP

L 
Th

ic
kn

es
s 

(µ
m

)

−20

−10

0

10

20

50 60 70 80 90

Figure 2.  Bland-Altman plot with histograms to demonstrate agreement between prediction and measurement. 
The predicted mGCIPL thickness showed good agreement with the actual measurement (95% confidence limits 
[−11.7 µm, 11.8 µm]). (mGCIPL = macular ganglion cell-inner plexiform layer).
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Discussion
A novel deep learning model for quantification of mGCIPL thickness from RNFLPs was validated in this study. 
The predicted mGCIPL thickness using the HDLM algorithm showed strong correlation and good agreement, 
even after ONH shielding, with the measured mGCIPL thickness.

SD-OCT has become an essential tool for objective monitoring of glaucoma. There are several studies that 
demonstrated the potential of deep learning models for glaucoma diagnosis using SD-OCT data19,20. Going one 
step further, research has shown the possibility of deep learning-based quantitative prediction (RNFL thickness 
or BMO-MRW) beyond the limits of simple classification of disease status14,15. Thus prompted, we undertook a 
new challenge, which was to use the HDLM algorithm to convert qualitative data (RNFLP) to quantitative data 
(mGCIPL thickness). On RNFLPs, the mGCIPL is not noticeable by graders. Nevertheless, the HDLM predicted 
the mGCIPL thickness from RNFLPs with considerable accuracy.

A number of studies have found that early structural damage can occur in the macula, which fact emphasizes 
the necessity of macular SD-OCT for early-glaucoma detection8–10,16,17,21. Also, mGCIPL thickness measurement 
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Figure 3.  Violin plots demonstrating distribution of HDLM predictions and SD-OCT-measured average 
mGCIPL thicknesses in normal, suspect, and glaucomatous eyes. (HDLM = hybrid deep learning model; 
mGCIPL = macular ganglion cell-inner plexiform layer; SD-OCT = spectral domain-optical coherence 
tomography).
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Figure 4.  Receiver operating characteristic curve showing HDLM’s discriminating ability for glaucomatous 
visual field loss and temporal raphe sign. The temporal raphe sign, a step-like configuration near the temporal 
raphe on an HD-OCT mGCIPL thickness map, reflects the ST-IT mGCIPL asymmetry. The AUC of the 
HDLM’s determinations of glaucomatous VFD and temporal raphe sign positivity were 0.918 and 0.843, 
respectively. (HDLM = hybrid deep learning model; ST = superotemporal; IT = inferotemporal; mGCIPL = 
macular ganglion cell-inner plexiform layer; AUC = area under curve; VFD = visual field defect).
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is known to have less test-retest variability than RNFL22,23, with comparable diagnostic performance to RNFL 
thickness10,16. Furthermore, in a previous investigation, 94.0% (78/83) of early glaucoma showed temporal 
raphe sign positivity24. Taking this into account, the HDLM, which quantitatively predicts mGCIPL thickness 
and precisely judges the presence or absence of the temporal raphe sign, might be a useful means of detecting 
early-glaucomatous change occurring prior to evident RNFL loss.

Although SD-OCT is common tool for glaucoma monitoring, fundus photography is still the main modality 
for glaucoma screening considering the relatively higher cost of SD-OCT. According to the results of the present 
study, the HDLM algorithms showed the potential to be useful tools for early-glaucoma detection in clinics or 
glaucoma-screening centers where SD-OCTs are unavailable. Furthermore, since this is a regression model the 
follows a quantitative approach, it could be expanded to detect not only glaucomatous change but also disease 
progression. Further study with larger datasets including longitudinal observations would help to explicate this 
issue.

The strong correlation between average and sectoral mGCIPL and RNFL thicknesses is already well estab-
lished25. Hence, mGCIPL thickness prediction could be made based on the peripapillary area rather than on the 
macula. We used Gaussian blur to blur out the peripapillary area and performed the same training and testing 
process, and obtained similar results (r = 0.739 and 0.713, respectively). Thereby, we could deduce that the model 
considered the macular area as more important than the peripapillary area for prediction of mGCIPL thickness.

A brilliant study demonstrated that the deep learning model accurately predicted gender, based on only fun-
dus photography, to an AUC of 0.9726. On the heat maps, the fovea turned out to be the most important area 
for classification of gender. We could speculate that there was some unknown clinically useful information on 
the macular area discovered by artificial intelligence, although we cannot fully understand the relationship of 
the fovea to gender currently. Similarly to that previous report, in our present study, the HDLM made good 
predictions of mGCIPL thicknesses while human graders struggled. The performance, furthermore, did not sig-
nificantly diminish after masking of the peripapillary area, which suggests that there are currently unknown 
mGCIPL-associated features in the macular area of RNFLPs. Further studies investigating such important macu-
lar features certainly would be interesting.

Although we masked the peripapillary area to exclude the influence of the optic disc and circumpapillary 
RNFL for mGCIPL thickness prediction, it was unclear which features of RNFLPs were learned by the model to 
quantify mGCIPL thickness. Thus, it is not guaranteed that the model is really capturing true characteristics of 
the mGCIPL. The model could have learned and memorized the given thickness data. According to the work of 

Figure 5.  Representative glaucomatous and non-glaucomatous cases. (A) Glaucomatous eye of 69-year-old 
woman. (A-1) Red-free RNFLP. A distinct inferior RNFL defect is shown. (A-2) RNFLP with peripapillary area 
masking. (A-3) On the mGCIPL thickness map, glaucomatous inferotemporal mGCIPL thinning is evident. (A-
4) RNFL deviation map. (A-5) Pattern deviation plot reveals superior hemifield defect. The mGCIPL thickness 
was predicted to be 69.95 μm, and the actual thickness was measured to 70.00 μm. After masking of the 
peripapillary area, the prediction was changed to 67.16 μm. (B) Healthy eye of 53-year-old man. (B-1) The red-
free RNFLP showed no definite structural damage. The mGCIPL thickness map (B-3) and RNFL deviation map 
(B-4) also showed normal findings. (B-5) The pattern deviation plot also indicated no evidence of glaucomatous 
damage. The mGCIPL thickness was predicted to be 76.94 μm and 79.26 μm before and after peripapillary area 
masking (B-2), respectively, while the actual thickness was measured to 77.00 μm. (RNFL = retinal nerve fiber 
layer; RNFLP = retinal nerve fiber layer photograph; mGCIPL = macular ganglion cell-inner plexiform layer; 
SD-OCT = spectral domain-optical coherence tomography).
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Zhang et al.27, deep learning models that have 2 layers with a rectified linear unit as an activation function are 
sufficiently large to memorize (overfit) the training dataset. However, the CNN model in this study was trained 
only with ImageNet data with its weights frozen so as not to change with the SD-OCT thicknesses. Hence, we 
could assume that overfitting would not occur by the CNN part of the hybrid model. However, the subsequent 
SVM is also prone to possible overfitting and memorization of just random noise. We re-trained and tested the 
models according to the same hyperparameters with perturbing of the target thicknesses. If the model easily fits 
corrupted thickness data, it might just learn randomly assigned values rather than truly meaningful features. 
However, the performance (R2 score and MAE) became significantly worse with higher corruption ratios. Further 
research could elucidate this issue more clearly.

Our study has several limitations. First, the dataset was relatively small for training of a deep learning net-
work, which forced us to freeze the deep learning network and to train the SVM regressor only. The accuracy 
of the HDLM may improve further by training of a deep learning network on a larger dataset. Moreover, most 
of the subjects were of Korean descent, and performance with different ethnic groups could differ. Second, we 
used SVM in addition to the deep learning network to achieve better performance; however, it was technically 
difficult to draw the heat map from it. Instead, we used Gaussian blur to mask the peripapillary area to infer the 
most important area for mGCIPL prediction, and obtained similar results. Third, there is a possibility that the 
accuracy of the model depends on the fact that the mGCIPL thickness in the present study was highly structured 
without any large variations. The mGCIPL thicknesses in this dataset were normally ranged in this study, which 
could have led to overestimation of performance. However, considering that normalization is commonly adopted 
in many machine-learning models to convert the distribution of an input dataset to a Gaussian distribution prior 
to the training process, the range and distribution of our dataset might not have severely jeopardized the general-
izability. Fourth, the hybrid model may simply have learned the distribution of thicknesses rather than the actual 
individual thicknesses of each subject. In the violin plots in Fig. 3, the shape difference between the prediction 
and actual data is apparent for each group. Training and testing the model in each subgroup with a larger dataset 
could address this issue. Fifth, we validated only the average mGCIPL thickness prediction of the HDLM, not 

Figure 6.  Examples of red-free fundus photographs from which mGCIPL thickness was incorrectly predicted 
by HDLM. (A) Myopic, glaucoma-suspect eye of 39-year-old woman. She had a spherical equivalent refraction 
of −10.1 diopters. On the red-free RNFLP (A-1) and RNFL deviation map in SD-OCT (A-3), superior and 
inferior RNFL defect is observed. (A-2) Diffuse mGCIPL thinning is also shown on the mGCIPL thickness 
map. The mGCIPL thickness was predicted to be 71.41 μm, while the actual thickness measured by SD-OCT 
was 52.00 μm. However, the temporal raphe sign was correctly predicted to be negative. (B) Healthy eye of 
44-year-old woman. There was no structural glaucomatous change on the RNFLP (B-1) or mGCIPL thickness 
map (B-2) or RNFL deviation map (B-3). The visual field test also was normal (B-4). The mGCIPL thickness 
was predicted to be 66.76 μm; however, the SD-OCT measured the mGCIPL thickness to 88.00 μm. Also, 
the temporal raphe sign was incorrectly predicted to be positive. (HDLM = hybrid deep learning model; 
RNFL = retinal nerve fiber layer; RNFLP = retinal nerve fiber layer photograph; mGCIPL = macular ganglion 
cell-inner plexiform layer; SD-OCT = spectral domain-optical coherence tomography).
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sector-by-sector. Minimum mGCIPL thickness is known to have the best diagnostic ability, followed by the IT 
sectors16. Future study investigating the accuracy of predicting sectoral mGCIPL thickness is warranted. Fourth, 
although mGCIPL thickness measurement is known to show great reproducibility comparable to RNFL22,23, its 
variability still can jeopardize the performance of the algorithm.

In conclusion, we trained the HDLM to predict the SD-OCT-measured mGCIPL thickness from RNFLPs. 
Despite the small size of the dataset, the model predicted mGCIPL thickness with a strong measurement correla-
tion and agreement. Also, the HDLM showed an excellent AUC for discrimination of glaucomatous VF loss. The 
models also showed good ability to detect the temporal raphe sign and to differentiate normal, glaucoma suspect, 
and manifest glaucoma eyes. These results signify that HDLM-based RNFLP analysis has the potential to be an 
alternative to macular OCT at clinics or glaucoma-screening centers where SD-OCTs are unavailable.

Methods
The present research followed the tenets of the Declaration of Helsinki, the study protocol having been approved 
by the local ethical committee of Seoul National University Hospital. The need for informed consent was waived 
as part of the study approval by the ethical committee due to the retrospective nature of the study and the fully 
anonymized usage of the database.

Subjects.  The subjects in the study were chosen from Seoul National University Hospital (Korea)’s Glaucoma 
Clinic database representative of the years 2012 to 2018. All of the subjects underwent complete ophthalmo-
logic examinations, including best-corrected visual acuity measurement, intraocular pressure (IOP) meas-
urement by Goldmann applanation tonometry, refractive error measurement with an autorefractor (KR-890; 
Topcon Corporation, Tokyo, Japan), corneal pachymetry (Pocket II Pachymeter Echo Graph; Quantel Medical, 
Clermont-Ferrand, France), slit-lamp biomicroscopy, gonioscopy, and dilated fundus examination as well as ste-
reo optic disc photography. The subjects additionally underwent axial length (AL) measurement (Axis II PR; 
Quantel Medical, Inc., Bozeman, MT, USA) and standard automated perimetry (SAP) using the Swedish inter-
active threshold algorithm according to the 30-2 standard program (Humphrey Field Analyzer II; Carl Zeiss 
Meditec, Dublin, CA, USA).

Diagnosis of glaucoma was made based on both the structural change (e.g. glaucomatous optic disc cupping or 
RNFL defect) and the presence of glaucomatous VF loss on SAP, which was defined as the consistent presence of a 
cluster of 3 or more non-edge points on a pattern deviation plot with P < 5%, including one or more with P < 1%; 
a pattern standard deviation (PSD) < 5% or glaucoma hemifield test results outside the normal limits, and on 
the presence of glaucomatous optic disc cupping (i.e. neuroretinal rim thinning, notching, excavation) or RNFL 
defect. VF defects had to be repeatable on at least 2 consecutive reliable tests (false positive/negatives <15%, fixa-
tion losses <15%). Glaucoma suspects were defined as glaucomatous optic disc cupping or RNFL defect without 
VF defect. The appearance of the optic disc on the optic disc photography and the RNFL on the red-free RNFLP 
were evaluated by two glaucoma specialists (J.L., Y.K.K.) who were masked to all other information on the eyes. 
If the opinions on the diagnosis of glaucoma differed, the third investigator (K.H.P.) was consulted who served 
as an adjudicator.

The control subjects had an IOP ≤ 21 mmHg with no history of increased IOP, absence of glaucomatous disc 
appearance or RNFL defect, and a normal VF on SAP.

Individuals identified for exclusion showed: (1) a secondary cause of glaucomatous optic neuropathy, (2) ocu-
lar or systemic disease that may cause VF loss or other optic disc abnormalities, (3) high myopia (AL ≥ 27.00 mm) 
which could be accompanied by myopic maculopathy, and (4) severe media opacity that would significantly 
obscure optic disc photography or RNFLPs.

RNFLP examination.  Red-free RNFLPs were taken using a digital fundus camera (VX-10a; Kowa Optimed 
Inc., Tokyo, Japan) using a monochromatic green filter after maximum pupil dilation with tropicamide 0.5% and/
or phenylephrine 2.5%. All of the subjects underwent RNFL imaging by a single operator in a dark room without 
any illuminating device (except for the monitor). Images carefully focused on the posterior pole of the retina at 
45° field of view using the built-in split-line focusing device were obtained for the RNFLPs and reviewed on an 
LCD monitor28. Image quality of the RNFLPs were assessed based on field definition. Adequate field definition 
was confirmed only when (1) the entire optic disc, macula, and temporal major vascular arcades were visible in 
the image; (2) and there was no retinal shadow caused by small-pupil artifact29.

Cirrus HD-OCT measurement.  Optic-disc (optic disc cube 200 × 200 protocol) and macular scans 
(macular cube, 512 × 128 protocol) using high definition-OCT (HD-OCT) software (Cirrus, version 6.0; Carl 
Zeiss Meditec) for RNFL and mGCIPL thickness measurements, respectively, were performed. Subjects with 
high-quality SD-OCT images of signal strength ≥ 8 and without motion artifacts, involuntary saccade, overt poor 
centration, or algorithm segmentation failure were included in the study.

Design of HDLM.  In this study, a pretrained CNN for feature extraction and a support vector machine 
(SVM) model as the regression model were used. Since the study population was relatively small for training 
of the deep learning network, the weights of the pretrained CNN were frozen so as not to be trained further 
by our dataset. In particular, we adopted the Inception-Resnet-v2 pretrained with the ImageNet database to 
extract rich features from each RNFLP. This CNN has been shown to have superior Top-1 and Top-5 accuracies 
for object-recognition tasks compared with other CNNs such as Inception-v330. Before inputting the images 
into the deep learning architecture, the image pixel values were scaled to within the 0–1 range and then down-
sized to a resolution of 224 × 224. Data augmentation (horizontal flip, horizontal shifting (<10% of image size), 
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image scaling (95–100% of original size) was performed to make the HDLM more robust to heterogeneity. Since 
Inception-Resnet-v2 was originally designed for discrimination of ordinary objects rather than fundus images, we 
used only the convolution layers for feature extraction and discarded the final classification layer.

The feature vector extracted from the CNN was inputted to train the SVM regression model. SVM is a classical 
machine learning model widely used before the deep learning era. It strives to find a hyperplane that maximizes 
the boundaries between various types of points of data in multidimensional space using the kernel function31. It 
can be used to either regression or classification problem. A hybrid CNN-SVM classifier was previously reported 
to successfully recognize handwritten digits32. For the hyperparameter optimization, random search was per-
formed with 5-fold cross-validation (CV). No other clinical information (e.g. age or sex) were provided to the 
model for training or testing.

HDLM for discrimination of glaucomatous visual field loss.  Three variant HDLMs for evaluation 
of glaucoma-diagnostic ability were constructed. First, we formulated a hybrid CNN-SVM classifier to discrim-
inate eyes with glaucomatous VF loss from healthy eyes. In this model, only normal and glaucoma groups were 
included, the glaucoma suspects having been excluded from the training and validating process. Second, we 
made a similar hybrid classifier to classify all three groups including glaucoma suspect. In the second model, the 
number of target classes was greater than two, and thus, calculating the AUC with ROC analysis, sensitivity or 
specificity was unavailable. Instead, we calculated only diagnostic accuracy by 5-fold cross-validation.

HDLM for discrimination of temporal raphe sign.  Our group had already suggested the usefulness 
of the “temporal raphe sign”33–35, a step-like configuration near the temporal raphe (on the Cirrus HD-OCT 
mGCIPL thickness map) accounting for the well-known asymmetrical pattern of glaucomatous structural dam-
age around the macula36–38. It has been demonstrated to be useful for glaucoma diagnosis, even in high-myopia 
patients21,34. Hence, as a third, variant HDLM, we also constructed an HDLM classifier to discriminate eyes with 
from those without the temporal raphe sign and validated its diagnostic accuracy. All the patients of the 3 groups 
(including glaucoma suspects) were included from the training and validating process for this model.

Overcoming the black box problem: ONH masking.  Class activation maps (a.k.a. heat maps) of deep 
learning networks are drawn to visualize an area based on which a model has judged a given set of fundus photo-
graphs14,39. SVM models, however, are unable to generate such maps. Thus, the peripapillary area was masked on 
the RNFLPs and the same analyses were repeated in order to evaluate the effect of the ONH portion on mGCIPL 
thickness prediction with the RNFLPs. In brief, the RNFLPs were overlaid with SD-OCT RNFL deviation maps in 
Illustrator CS6 software (Adobe, San Jose, CA, USA) based on vascular landmarks in order to detect the objective 
optic disc boundary (Fig. 7)40. After that, ImageJ software (version 1.45 s; National Institutes of Health, Bethesda, 
MD, USA), was used to fit the best circle and to calculate the disc diameter (DD). Finally, the circular area includ-
ing the ONH (diameter: 1.5 DD) was masked using the Gaussian blur function (kernel size: (9, 9), standard 
deviation: 10).

Statistical analysis.  Among the healthy, suspect, and glaucoma groups, demographic, OCT and SAP 
parameters were compared by the linear mixed model (LMM) accounting for multiple measurements per patient. 
We evaluated the performance of the HDLM for quantifying mGCIPL thickness by comparing, before and after 
the peripapillary area masking process, the predictions with the actual SD-OCT-measured mGCIPL thicknesses. 
Five-fold CV was performed to calculate the predictions from the HDLM. In the 5-fold CV, all of the feature 
vectors were divided into five equally sized subsets, and four of the five arms were used to train the SVM model 
followed by calculation of the diagnostic performance using the remaining arm. The process was repeated five 
times to assure that each arm was used as a validation set once. On the 5-fold CV, patient-wise split was used to 
prevent RNFLPs of the same patient from being split into both the training and testing arms. The mean absolute 
error (MAE) of the predictions as well as the Pearson’s correlation coefficients were calculated and compared 
before and after masking of the peripapillary area.

Figure 7.  Example of peripapillary area masking on red-free RNFL photograph (RNFLP) (identical case to 
Fig. 5A). (A) Digital RNFLP. (B) RNFL deviation map/RNFLP overlay image with black line delineating optic 
disc boundary as defined by SD-OCT. (C) After best circle fitting by ImageJ software (National Institutes of 
Health), the circular area (diameter: 1.5 DD) was masked using the Gaussian blur function. (RNFL = retinal 
nerve fiber layer; SD-OCT = spectral domain-optical coherence tomography; DD = disc diameter).
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The discriminating ability for glaucomatous and healthy eyes was determined by the area under curve (AUC) 
of the receiver operating characteristic (ROC) analysis with 95% confidence intervals (CI). The sensitivity and 
specificity values were computed at the optimal cut-off value that maximized the Youden index (obtained as 
J = [sensitivity + specificity − 1]). To account for the use of multiple images of both eyes of the same participant 
in the analyses, a bootstrap resampling procedure was used to compute P values and confidence intervals, where 
the cluster of data for each participant was considered as the unit of resampling to adjust for standard errors41.

In addition, deep learning models are known to easily fit to given training data, which can lead to generali-
zation error. It is known that many deep learning models (even consisting of only 2 hidden layers) can generate 
any given functions including completely unstructured random noise27. To confirm that the model learned truly 
clinically meaningful features from RNFLPs, we intentionally perturbed the target SD-OCT thicknesses with 
normally distributed noise (mean 30.0, standard deviation 10.0)27. Target thickness was calculated by weighted 
average of the actual SD-OCT thickness and the noise value with corruption ratio (e.g. if the corruption ratio was 
0.2, the target mGCIPL thickness was computed by [actual thickness ∙ 0.8 + noise value ∙ 0.2]). We inspected the 
R2 score and MAE with the corruption ratio, varying the level of corruption from 0 (no corruption, actual thick-
ness) to 1 (complete noise).

All of the statistical analyses were performed using R software (version 3.5.2) for statistics. P values less than 
0.05 were considered statistically significant. The data ranges were recorded as mean ± standard deviations.

Meeting presentation.  This work was presented as e-Poster at the American Academy of Ophthalmology 
Annual Meeting 2019 in San Francisco.

Data availability
The dataset generated during the current study is available from the corresponding author on reasonable request.
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