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SUMMARY
Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized

cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simulta-

neous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor

complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic

potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities,

where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model

is of general relevance for the understanding of tumor dynamics and clonal evolution.
INTRODUCTION

Leukemias are proliferative diseases that arise fromHSCs or

progenitors that fail to obey the regulatory signals that nor-

mally restrict their self-renewal and direct differentiation.

Sequential ‘‘linear’’ acquisition of mutations in tumor sup-

pressor genes or oncogenes has long been thought to drive

leukemogenesis, as postulated in the original clonal evolu-

tion hypothesis (Knudson, 1971; Nordling, 1953; Nowell,

1976). However, the use of advanced genomic techniques

to investigate clonal diversity and evolution now shows

that tumors are often organized in a nonlinear, branching

hierarchy (Anderson et al., 2011; Campbell et al., 2010;

Jan and Majeti, 2013; Mullighan et al., 2008; Wu, 2012).

It had been shown that only a subfraction of cells within

the leukemic cell population, termed leukemic stem cells

(LSCs), possesses the ability to initiate and sustain disease

(Bonnet and Dick, 1997; Lapidot et al., 1994). Early publi-

cations demonstrating heterogeneity within the LSC popu-

lation utilized the detection of viral integration sites after

transduction of acute myeloid leukemia (AML) cells and

showed that human LSCs differ in their self-renewal capac-

ities after transplantation in immunodeficient mice (Hope

et al., 2004). However, it has recently been reported that

xenotransplantation might not always reflect subclonal

heterogeneity in patients’ leukemia due to species-specific

selective pressures (Klco et al., 2014).

Later approaches employed fluorescence in situ hybridi-

zation (FISH) to monitor translocations and copy number

alterations to investigate genetic heterogeneity within

pediatric acute lymphoblastic leukemia (ALL) (Anderson

et al., 2011). However, the resolution of this FISH-based
74 Stem Cell Reports j Vol. 4 j 74–89 j January 13, 2015 j ª2015 The Author
method to identify heterogeneity and subclonal origin is

limited. Deep sequencing genomic DNA or RNA (exome

sequencing) of malignant cells from patients provides the

highest possible resolution for identification of mutations

or other genetic abnormalities within a tumor. Such at-

tempts have recently been made in leukemic patients

(Landau et al., 2013; Sanders and Valk, 2013; Schuh et al.,

2012). Although potentially very powerful, it is difficult

to define (sub)clones based on a large set of genomic data

from a pool of genetically diverse cells (Glauche et al.,

2013), and it requires complex computational approaches

and multiple assumptions. For example, the assumption

that a certain mutation occurs only once and therefore

represents a stable ‘‘unique mark’’ is often made. However,

genomes of cancers are generally unstable, and the same

mutation may have occurred twice. Another assumption

is that the allelic frequency with which a particular muta-

tion occurs depends on the time point of its origin. How-

ever, this does not always have to be the case, as primitive

LSCs might actually be dormant. In addition, it remains

difficult to distinguish which genetic abnormalities are

causal to disease progression and which are functionally

neutral passenger mutations (Welch et al., 2012).

Although previous studies begin to recognize the po-

tential complex genetic architecture of leukemia, unambig-

uous longitudinal detection of leukemic clones remains

difficult to achieve. Ideally, clones should be prospectively

defined by unique labeling of cells before tumor initiation,

and detection of different clones should be performed at

high resolution. A recently described method, which

would potentially accomplish this, is the marking of cells

by the introduction of a unique, heritable mark that can
s
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be detected in its offspring experimentally (Bystrykh et al.,

2012; Gerrits et al., 2010; Naik et al., 2014; Schepers et al.,

2008). These methods rely on the viral integration of a

random ‘‘barcode’’ sequence of fixed length in the genome

of target cells. After transplantation of barcoded cells, their

offspring can be traced by quantifying the abundance of

unique barcodes using deep sequencing.

Previously, we have shown that overexpression of the

Polycomb PRC1 member Cbx7 in bone marrow cells causes

leukemia (Klauke et al., 2013).While typically a single onco-

gene causes one specific tumor type, the epigeneticmodifier

CBX7 causes a wide spectrum of leukemias, including T-

ALL, erythroid, and undifferentiated leukemias. Since only

long-term hematopoietic stems cells (LT-HSCs), short-term

HSCs (ST-HSCs), and multipotent progenitors (MPPs), but

not lineage-restricted progenitors are responsive to Cbx7

overexpression (Klauke et al., 2013), the different types of

leukemias are not likely to depend on the cell of origin in

which Cbx7 is overexpressed. Rather, the phenotypic varia-

tion seems to be an inherent virtue of CBX7.

In the present paper, we have generated a mouse model

in which overexpression of Cbx7 serves as the initial

leukemic ‘‘hit’’ and every pre-LSC is uniquely labeled by a

barcode. We show how our approach allows for the identi-

fication of LSC-derived clones in the transplanted primary

and secondary recipients. We prospectively describe clonal

dynamics in mice that succumb to leukemia and highlight

the complexity of clonal evolution.
RESULTS

Overexpression of Cbx7 in Primitive Bone Marrow

Cells Induces Distinct Types of Leukemia

We previously reported that CBX7 has a strong, but dy-

namic oncogenic potential (Klauke et al., 2013). Overex-

pression of this Polycomb gene in hematopoietic stem

and progenitor cells (HSPCs) induces multiple leukemia

subtypes (Figure 1A) (Klauke et al., 2013). Morphological

and immunophenotypic analyses (Figure 1; Table S1 avail-

able online) of cells isolated from various hematopoietic

tissues such as blood, bone marrow, spleen, and lymph no-

des showed that themajority ofmice developed a Tcell leu-

kemia. Some mice developed an erythroid leukemia, and

undifferentiated (lineage negative) leukemias were also de-

tected (Figure 1A) (Klauke et al., 2013). Typically, mice were

anemic and spleens were profoundly enlarged, while white

blood cell counts in peripheral blood were increased in

most mice (Figure 1B; Table S1).

The Cbx7-induced leukemic mice that were reported in

this previous study were established by transplantation of

HSPCs transduced with Cbx7 barcode vector libraries,

composed of 200–300 unique barcodes (Figure 1C). This al-
Stem
lows for the sensitive identification of single LSC-derived

clones in the transplanted recipient. Clonal waves of

normal and LSC contributions to the blood and emergence

and persistence of clonal dominance were analyzed by reg-

ular blood sampling (Figure 1C). The additional clonal

compositions in bone marrow and spleen were analyzed

postmortem, after leukemia development. In multiple in-

stances, bone marrow cells were serially transplanted in

secondary and tertiary recipients (Figure 1C). Altogether,

this experimental design allowed us to precisely determine

the relative contribution of distinct clones to leukemia

initiation and progression.

Cbx7-Induced Leukemias Are Monoclonal or

Oligoclonal

We analyzed contributions of major and minor clones in

different hematopoietic tissues in every individual control

or leukemic mouse and retrieved barcodes (Table S2) from

blood, bone marrow, and spleen samples taken at the

time of sacrifice (Figures 1A–1C).

Occasionally, multiple vectors carrying different barco-

des may have integrated in a single cell. In these instances,

a LSC clone can be composed of multiple barcodes. We

indeed found barcodes that were likely to belong to the

same clone since the highly coordinated behavior of such

barcodes was unlikely to occur by chance (Bray-Curtis dis-

tance, see Supplemental Experimental Procedures). In the

figures we have indicated these linked barcodes by the suf-

fix a, b, c (for example, in mouse 9 barcode 1a–1c represent

clone 1, and barcode 2a and 2b represent clone 2; Fig-

ure 2C). These mice were transplanted with bone marrow

cells where 40% transduction efficiency was reached. Since

the chance of the occurrence of three to four integration

sites under these conditions is small (expected �1%–2%

of cells with three and 0 %–16% with four integrations

(Poisson, p < 0.05), this indicates that high Cbx7 gene

dosage due to multiple vector integrations might have a

positive effect on cell proliferation and clonal selection.

As expected, bone marrow cells transduced with bar-

coded retroviral control vectors repopulated all hemato-

poietic lineages (Figures 2A and 2B). The hematopoietic

system of most of these control mice was repopulated by

13 to 26 different clones (Figure 2B, mice 1 and 2; Figure S1

mice 4 and 5). Typically, two to three major clones were

found to predominate in the various tissues (blood, bone

marrow, and spleen) and made up approximately 30%–

60% of all hematopoietic cells. One mouse displayed a bi-

clonal hematopoietic system (in blood, bone marrow, and

spleen) (Figure 2B, mouse 3), yet this did not evolve in

malignancy.

In Figures 2C–2E, we display lineage contributions and

the clonal composition of various hematopoietic tissues

(blood, bone marrow, and spleen) of individual leukemic
Cell Reports j Vol. 4 j 74–89 j January 13, 2015 j ª2015 The Authors 75
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Figure 1. Cbx7-Induced Leukemia Phenotypes
(A) HSPCs were transduced with a barcoded Cbx7 vector library and transplanted in 19 irradiated recipients (Klauke et al., 2013). Mice
developed different types of leukemia indicated by the color of the bar, at indicated time points. The number of each bar reflects to the
unique mouse identifier number that is used throughout this manuscript.
(B) Leukemic mice show increased white blood cell counts in the blood, anemia, variable bone marrow cellularity, and increased spleen size
and cell numbers herein. Also see Table S1.
(C) Overview of the experiments. Clonal contributions of HSCs to the blood were analyzed by regular blood sampling (weeks 4, 8, 16, and
24). Mice were sacrificed when leukemia developed, and the clonal composition in blood, bone marrow, and spleen was subsequently
analyzed. Bone marrow cells were isolated from primary leukemic mice and serially transplanted in secondary recipients. For clonal
analysis, cells were analyzed and/or purified by flowcytometry, and barcodes were retrieved from gDNA using deep sequencing.
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mice. As we observed a high and unpredictable variability

in clonal composition of leukemias, we below describe

most of our findings case by case.

In general, the hematopoietic system of leukemic mice

(Figures 2C–2E, S2A, and S2B) was composed of fewer

clones compared with healthy controls (Figure 2B; Fig-
76 Stem Cell Reports j Vol. 4 j 74–89 j January 13, 2015 j ª2015 The Author
ure S1). However, in many cases, the leukemic compart-

ment of T cell leukemic mice did not show monoclonality

(Figures 2C and S2A), with the exception of two T cell leu-

kemias (Figure 2C, mouse 1; Figure S2A, mouse 6). In these

oligoclonal leukemias, two to four LSC clones simulta-

neously contributed to malignant outgrowth of T cells in
s
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the blood, bone marrow, and spleen, resulting in increased

white blood cell counts and splenomegaly. As an example,

mice 4 and 9 (Figure 2C) both showed an oligoclonal T cell

leukemia. In mouse 4, the expansion of malignant CD3ε+

cellswasmost profound in the spleen. In thismouse, clones

2 and 3 together constitute�85% of cells in the spleen, and

the same clones are predominant in fluorescence-activated

cell sorting (FACS)-purified CD3ε+ cells (Figure 2F). In

mouse 9, two clones (clones 1 and 2) are responsible for

the expansion of malignant CD3ε+ cells (Figures 2C and

2F). In this mouse, but also inmouse 5 and 11 (Figure S2A),

malignant clones predominated the blood and spleen, but

not the bone marrow, in which no overt signs of leukemia

were detected. This suggests migration of malignant LSCs

and/or their progeny to the blood and spleen, after which

relatively normal hematopoiesis persisted in the bone

marrow by the activity of other clones.

Mouse 3 (Figure 2C) presented with a large number of

CD3ε+ T cells, but also the number of TER119+ erythroid

precursors and immature hematopoietic cells (LIN�) was

excessive (see Figure 1B for absolute cell counts). Three

distinct clones (clone 1, 2, and 3) were likely collectively

responsible for this malignancy. There are two explana-

tions for such oligoclonal contributions to phenotypically

distinct cell types. First, primitive LSCs may have retained

the ability to (an extent of) multilineage differentiation.

Alternatively, distinct LSC clones may have contributed

to the expansion of separate lineages. We cannot formally

discriminate between these possibilities since not all

distinct cell populations have been separately analyzed

for their clonal composition. However, since all three LSC

clones contributed to malignant CD3ε+ T cells (Figure 2F)

and since the prevalence of these clones together is

�95% in the spleen, these very same clones most likely

also contributed to the expansion of erythroid and imma-

ture cells. This suggests multilineage differentiation capac-

ities of LSCs. Additional data that are described below

further attest to this notion.

The hematopoietic system of the two mice that devel-

oped an erythroid leukemia (mice 13 and 14, Figure 2D)

showed oligoclonality in blood, bone marrow, and spleen.

In contrast, the hematopoietic system of mice that devel-

oped an immature leukemia was always found to bemono-

clonal (Figures 2E and S2B).

We also analyzed the clonal composition in purified

hematopoietic cell populations of individual mice. To

this end, different cell lineages from the blood and spleen

were FACS sorted, and barcodes were retrieved from

genomic DNA using deep sequencing (Figures 2F and

S2C). We found that minor, nonmalignant clones could

still contribute to residual normalmyelopoiesis (GR1+ cells)

in leukemic mice. In addition, dominant barcodes could

mark both malignant T cells as well as nonmalignant gran-
Stem
ulocytes (Figures 2F and S2C). Thus, the cell from which

the leukemia derived possessed both lymphoid and

myeloid differentiation capacities, which suggests that

the oncogenic origin of leukemias in this mouse model

lies within multipotent stem cells.

The Onset of Clonal Dominance

We next assessed the emergence and kinetics of clonal

dominance during leukemia development.

At early time points after transplantation, only a few (two

to eight) clones contributed to blood cell regeneration (Fig-

ures 3 and S3). Some clones that later became highlymalig-

nant contributed to normal hematopoietic reconstitution

and showedmultilineage differentiation capacities early af-

ter transplantation (Figure 3, for example, mouse 1 clone 1,

mouse 15 clone 1). At the time point of leukemia develop-

ment, these initiallymultilineage clones showedmalignant

proliferation in preferentially one hematopoietic cell type.

We also found cases where the minor clones remained

undetectable in the blood at earlier time points and only

later became dominant and contributed to leukemia devel-

opment (Figure 3, mouse 5 clone 6, mouse 18 clone 1; Fig-

ure S3, mouse 11 clone 1).

Taken together, we show that the emergence of malig-

nant cells does not always coincide with the expansion

of a single malignant clone. Premalignant clones can

contribute to multiple lineages at earlier time points, and

dormant clones can suddenly emerge and become malig-

nant. Therefore, our data reveal a highly variable and un-

predictable timing of the onset of clonal dominance.

Clonal Stability after Serial Transplantation

Next, we testedwhether leukemiaswere transplantable and

whether the leukemic subtypes, as assessed by organ

involvement, tissuemorphology, and immune phenotype,

were maintained from the original donor to the recipients.

For this purpose, we serially transplanted bone marrow

cells from leukemic mice into secondary recipients. Once

more, it appeared that leukemias behaved unpredictably

when challenged by serial transplantation. For that matter,

we describe these serial transplantation studies case by

case.

Heritability of Clonal Dominance and Leukemia Phenotype

In the first serial transplantation experiment (Figure 4A),

we observed a very stable pattern of both disease pheno-

type and clonal dominance. Three secondary recipient

mice transplanted with bone marrow cells from a primary

recipient with a monoclonal T cell leukemia all developed

T cell leukemias as well (Figures 4B and 4C; also see Table

S1). Barcode analyses revealed that the disease-causing

clone was identical in the donor mouse and all individual

recipients (Figure 4D, mouse 1 donor, and recipients 1-1,

1-2, 1-3, clone 1).
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Clonal Instability after Serial Transplantation

Although the behavior of some clones remained unaltered,

we frequently observed the appearance of different leu-

kemic phenotypes after serial transplantation (Figures 5,

6, S4, S5A, and S7). Immature (Figures 5A–5C) and

erythroid leukemias (Figures 6A–6C and S7A–S7C) ap-

peared after serial transplantation of bone marrow cells

from T cell leukemic mice. In these cases, malignant cells

from the recipient mouse displayed different cell-surface

markers [for example, lineage negative (Figures 5A and

5C, mouse 4-3) or TER119+ (Figures 6A and 6C, mouse

5-5; Figures S7A and S7C, mouse 2-3)] instead of CD3ε+,

which was expressed on the leukemic cells from the donor

(also see Table S1). In both these cases, lymph nodes were

not enlarged, while this is typical for T cell leukemias

(Figure S4).

To test whether these secondary leukemias were

correctly identified as a different subtype, we assessed

genome-wide gene expression from spleen cells from six

T cell leukemic mice, five erythroid mice, and one mouse

that developed an immature leukemia (Figures 5E, 6E, 7E,

and S5B).

Three hundred forty-three genes showed significantly

higher expression in T cell leukemias compared with

erythroid leukemias, while conversely, 225 genes were

significantly upregulated in erythroid leukemias as com-

pared with T cell leukemias (Benjamini Hochberg, p <

0.01; Figure S5B and Table S3). Complete linkage hierarchi-

cal clustering on the basis of these differentially regulated

genes showed that samples clustered by leukemia subtype

and not by transplantation experiment (Figure S5B). Genes

that showed a higher expression in leukemic T cells were

overrepresented in pathways involved in normal T cell

differentiation and lymphocyte activation (Figure S5C,

GO-analysis false discovery rate [FDR] < 0.053 10�3), while

genes that were high expressed in erythroid leukemias were

enriched in pathways associated with hemoglobin biosyn-

thesis (Figure S5D).
Figure 2. Clonality in Control and Cbx7-Induced Leukemic Mice
(A) Percentage of different GFP+ cell types in blood, bone marrow, a
(B) The number of clones and their relative contribution to blood, bo
planted with barcoded control vector transduced cells (also see Figur
(C–E) Mice were transplanted with bone marrow cells transduced with
GFP+ cells to the different cell lineages in blood, bone marrow, a
contribution of different clones to the blood, bone marrow, and splee
Figure S2A), erythroid leukemic mice (D), and mice with undifferenti
(F) Multiple FACS-purified hematopoietic lineages from the blood and/
but also unique barcodes contribute to different cell lineages. The siz
tissue. Also see Figure S2C.
For all individual mice, different clones are indicated by different colo
found among all samples from one transplantation experiment was nu
barcode was numbered barcode 2 (green) etc. In cases were multiple b
1c, etc.

Stem
Next, we compared gene expression profiles of leukemic

T cells and leukemic erythroid cells with previously pub-

lished data sets (GSE6506, Chambers et al., 2007, and

GSE18669, Weishaupt et al., 2010) in which different

normal hematopoietic cell types had been profiled. We ex-

tracted differentially regulated genes between normal he-

matopoietic subsets and compared this with differentially

expressed genes between Tcell leukemic and erythroid leu-

kemic cells. Genes found upregulated in leukemic T cells

were specific for normal T cell subsets (hypergeometric

test, p < 0.05; Figure S5E), while genes differentially upregu-

lated in leukemic erythroid cells were specific for normal

erythroid cells or erythroid precursor cells (hypergeometric

test, p < 0.05; Figure S5F).

Together, these data show that secondary leukemias can

be phenotypically and functionally distinct from the dis-

ease as it occurred in the original donor. Different scenarios

of clonal evolution explain these lineage conversions, as is

described in detail below.

Activation of Dormant LCS Clones. To monitor the clonal

dynamics associated with the appearance of different leu-

kemic phenotypes after serial transplantation, the contri-

bution of each clone to leukemia progression in secondary

recipient mice was determined.

Bone marrow cells from donor mouse 4, with an oligo-

clonal T cell leukemia, were serially transplanted in three

recipient mice, of which recipient 4-1 and recipient

4-2 also developed a T cell leukemia (Figures 5A–5C and

5E). In contrast, recipient 4-3 developed an immature

leukemia.

We observed that the appearance of a different leukemia

subtype after serial transplantation coincided with the

emergence of a new dominant clone (Figure 5D). Different

cell populations were FACS purified from the blood and

spleen of secondary recipients, and the contribution of

each clone to different cell lineages was determined.

Clones 2 and 3 were identified as the malignant clones

present in the donor mouse since these cells contributed
nd spleen of control mice (n = 5, mean ± SD).
ne marrow and spleen is indicated for three mice that were trans-
e S1 for more mice).
barcoded Cbx7-expression vectors. The contribution of transplanted
nd spleen is shown in all panels on the left. The corresponding
n is shown in panels on the right in T cell leukemic mice (C; also see
ated leukemias (E; also see Figure S2B).
or spleen of mice 3, 4, and 9 were clonally analyzed in detail. Shared
e of the pie reflects the clonal contribution of cells in the indicated

rs and are uniquely numbered. The barcode that was most frequently
mbered barcode 1 (blue), and the second most frequently appearing
arcodes integrated in a single cell, barcodes were numbered 1a, 1b,
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Cbx7 mouse 5: T-cell leukemia
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Cbx7 mouse 18: immature leukemia
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Cbx7 mouse 15: immature leukemia
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Figure 3. Onset of Clonal Dominance in
Cbx7-Induced Leukemic Mice
The left panels show the percentage of
multiple GFP+ donor-derived hematopoietic
cell types in blood on indicated time points,
as analyzed by FACS in four mice. Panels on
the right display the contribution of
different clones to the blood on indicated
time points. The final time point is the day
of sacrifice (y) at clear signs of morbidity.
See Figure S3 for additional data on more
mice.
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Figure 4. Heritability of Clonal Dominance and Disease Phenotype
(A) Experimental setup. Serial transplantation of bone marrow cells isolated from mouse 1 with a T cell leukemia into three secondary
recipients (1-1, 1-2, and 1-3), which all developed T cell leukemias.
(B) Cell counts in blood, bone marrow, and spleen and spleen weight of all mice are indicated. Reference blood counts of control
nonleukemic mice are indicated by the gray box (dashed line refers to the mean values).

(legend continued on next page)
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to the expansion of CD3ε+ cells primarily in the spleen (Fig-

ure 5C). The same two clones were also highly dominant in

expanded CD3ε+ cells in blood (68% and 95% of cells) and

spleen (91% and 95% of total cells) from recipients 4-1 and

4-2 that developed T cell leukemias, similar to the donor.

However, the immature leukemia in recipient 4-3 was of a

different clonal origin. Different clones (clone 1 and clone

4) were responsible for the expansion of immature cells,

which composed 96% of cells in the blood and 98% of cells

in the spleen. Interestingly, clone 1 and clone 4 also

contributed to a modest expansion of immature cells in

the spleen of recipient 4-1 (30% of total cells). These clones

were barely detectable in the hematopoietic system of the

donor mouse at leukemia diagnosis and thus must previ-

ously have been relatively dormant.

Multilineage Differentiation Capacities of LSC Clones. A

similar pattern of activation of minor clones was observed

in the third serial transplantation experiment (Figure 6).

While in donor mouse 5 clone 1 drove T cell malignancy

predominantly in the blood and spleen (Figures 6A–6C),

in recipientmice, different clones were contributing to leu-

kemia (Figures 6D and 6F). Only recipient 5-2 inherited the

same dominant clone (clone 1) as one of the disease-

causing clones in the donor, driving a similar disease

phenotype (T-ALL). Clone 3, which was relatively minor

in the donor mouse, became highly dominant after serial

transplantation, causing T cell leukemias in recipients 5-1

and 5-3. Although clone 2 (green) was highly prevalent

in the bone marrow of the donor mouse, at the time of sac-

rifice, it was not yetmalignant since it did not contribute to

the expansion of T cells in blood and spleen. However, this

clone developed into a T cell leukemia in recipient 5-4.

Surprisingly, the very same clone caused development of

an erythroid leukemia in recipient 5-5, as shown by organ

morphology (Figure S4), FACS phenotyping (Figure 6C),

and gene expression (Figures 6E and S5). We verified the

clonal identity of these samples by Sanger-sequencing

(data not shown) and by integration site analysis using in-

verse PCR (Figure 6F). We found the same vector integra-

tion site (into chromosome 4) in bone marrow cells from

both mouse 5-4 and mouse 5-5 and validated by con-

ventional PCR and Sanger sequencing that this integration

corresponds to clone 2. Mice carrying dominant clones do

not show abnormal expression of genes within a 50 kb

distance of the vector integration site (Figures S6A–S6C),

suggesting that insertional mutagenesis did not play any

detectable role in leukemia initiation and progression in

our experiments.
(C) Percentage of different donor-derived GFP+ hematopoietic cel
recipients.
(D) The contribution of different clones to the blood, bone marrow, a
different clones and are indicated by different numbers.
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The next experiment resulted in similar observations

(Figure S7). Serial transplantation of bone marrow cells

from amouse with a Tcell leukemia (mouse 2) also resulted

in development of erythroid leukemia in one recipient

(mouse 2-3, Figures S7A–7C, S7E, and S5). Tertiary trans-

plantation of bone marrow cells of this recipient with

erythroid leukemia resulted in stability of disease pheno-

type, as all four tertiary recipients also developed erythroid

leukemias.

While in the original donor clone 2 induced leukemia

and contributed tomalignant Tcells, clone 1 became domi-

nant after serial transplantation in recipients 2-1 and 2-3

(Figure S7D). While in recipient 2-1 this clone caused a

T cell leukemia, in recipient 2-3 and its tertiary recipients

(mouse 2-3-1, 2-3-2, 2-3-3, and 2-3-4) it caused develop-

ment of erythroid leukemias (Figure S7D).

This observation in two independent transplantation ex-

periments shows that a single clone is able to induce two

morphologically, phenotypically immune, and function-

ally distinct types of leukemia.

Differentiation of LSC Clones after Serial Transplantation.

Finally, we observed cases of evolution of a leukemic clone

from an undifferentiated phenotype to a differentiated

lymphoid lineage. Bone marrow cells from a mouse with

an immature leukemia, which did not express any of the

immunophenotypic lineage markers, were serially trans-

planted into three recipient mice (mouse 15, Figure 7A).

Strikingly, all three recipients developed a CD3ε+ T cell leu-

kemia (Figures 7B and 7C; Table S1). A single clone (clone 1)

was highly dominant in the donor as well as in all recipi-

ents (Figure 7D). To verify whether these similar barcodes

truly belong to the very same clone, clonal identity was

validated by integration site analysis (integration into

chromosome 1, data not shown). Thus, T cell leukemias

in the recipients originate from the same LSC clone as the

undifferentiated leukemia in the donor. Most likely, differ-

entiation of a primitive LSC clone into the lymphoid line-

age after serial transplantation resulted in a phenotypically

distinct leukemia type in all recipients.

Altogether, these observations show that multiple clones

with distinct leukemic properties can coexist in a single

mouse. Minor LSC clones with similar or different differen-

tiation potential can be relatively dormant in the bone

marrow of a leukemic mouse and progress to full-blown

leukemia only after serial transplantation. In addition,

some LSCs clones retainmultilineage differentiation capac-

ities, and one LSC clone can therefore induce phenotypi-

cally distinct leukemias.
l types in blood, bone marrow, and spleen of mouse 1 and its

nd spleen of mouse 1 and its recipients. Different colors represent

s
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DISCUSSION

In early tumor models, malignant cells were thought to

descend from a single common ancestor whose offspring

sequentially acquired multiple mutations or other genetic

abnormalities in time (Knudson, 1971; Nordling, 1953;

Nowell, 1976). This implied that all cells in a full-blown tu-

mor were genetically and functionally homogenous. How-

ever, emerging evidence suggests that leukemias (and other

tumors for that matter) are comprised of a multitude of

different subclones resulting in heterogeneity (Anderson

et al., 2011; Landau et al., 2013; Magrangeas et al., 2013;

Mullighan et al., 2008; Notta et al., 2011; Sanders and

Valk, 2013; Schuh et al., 2012; Welch et al., 2012). This

concept has thus far only been partially confirmed since

previous experiments did not uniquely mark individual

cells to allow prospective identification of leukemic clones.

In the current study, we used a barcoding tool combined

with overexpression of Cbx7, an epigenetic modifier that

we recently found to regulate self-renewal of HSCs (Klauke

et al., 2013), to discern patterns of clonality in highly vari-

able leukemic subtypes.We delineate leukemic heterogene-

ity with high resolution and document the coexistence of

(sometimes quiescent) LSCs with different leukemic prop-

erties in a single tumor.

Our analysis revealed three general patterns of clonal

evolution. First, some leukemic clones are highly stable

and dominant. These clones rapidly and strongly dominate

the hematopoietic system of the primary donormouse and

upon serial transplantation cause a similar type of leukemia

in secondary recipients. A second pattern consists of minor

clones in primary donors that become activated and highly

dominant only after serial transplantation. Leukemias in

these recipient mice are thus of different clonal origin

than the disease-causing dominant clone in the original

donor mouse. As a consequence, the leukemia in the recip-

ients can be either similar or different as the one observed

in the primary donor. Third, we observed evolution (or dif-

ferentiation) of leukemic clones. In these cases, the leuke-
Figure 5. Activation of a Dormant LCS Clone Result in the Appear
(A) Experimental setup. Serial transplantation of bone marrow cells fr
Recipients developed either a T cell leukemia (4-1 and 4-2) or a leuke
(B) Cell counts in blood, bone marrow, and spleen and spleen weight
leukemic mice are indicated by the gray box (dashed line refers to th
(C) Percentage of different donor-derived GFP+ hematopoietic cell typ
(D) The contribution of different clones to the blood, bone marrow an
spleen of recipients in sorted hematopoietic populations (GR1+ granul
size of the pies reflects the percentage of cells in the indicated tissu
different numbers.
(E) Heat map summary and hierarchical clustering of gene express
fractionated spleen cells from mouse 4-3 (with an undifferentiated leu
leukemias (also see Figure S5A).
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mias in the donor and the recipients are of the same clonal

origin, but in the recipients, the leukemia manifests as a

different clinical subtype. In all three cases we show that

clonal dominance is not a prerequisite for end-stage leuke-

mia. Some diseased mice displayed an oligoclonal leuke-

mia, but in addition, minor clones can be present in the

bone marrow of a leukemic mouse and progress to leuke-

mia only after serial transplantation.

Additional genetic or epigenetic abnormalities that occur

after the first leukemia-predisposing event (high Cbx7 ex-

pression in primitive cells) within a subset of cells from

one leukemic clone (cells that carry the same barcode) are

likely to be the driving force behind the leukemia dynamics

that we observed in our study. Since CBX7 is an epigenetic

modifier, it is tempting to speculate that overexpression

of Cbx7 generates an altered chromatin structure that is

susceptible to stochastic epigenetic or genetic secondary

hits, which ultimately shape the disease phenotype. Iden-

tification of secondary genetic abnormalities would require

additional assessment of the mutational status of sub-

clones, which is beyond the scope of the present study.

The dynamic clonal behavior and conversion of

leukemic phenotype that we observed in our mouse model

show resemblance with patients presenting with leukemic

relapse after treatment. First, if remissions in relapsed pa-

tients are treated similarly as the original leukemia, the

response is often different (Leung et al., 2013; Patel et al.,

2013; Verma et al., 2010). It seems likely that distinct

leukemic clones exhibit a distinct response to therapeutic

interventions, reinforcing the relevance to assess the func-

tional consequences of clonal heterogeneity within leuke-

mia. Second, lineage conversions in relapsed leukemia

patients have been reported recurrently. A conversion

fromALL to AML ismost common, particularly in pediatric

patients (Gagnon et al., 1989; Grammatico et al., 2013; Im-

ataki et al., 2010; Rossi et al., 2012; Shivarov et al., 2009;

Stass et al., 1984; van den Ancker et al., 2009). Conversions

from AML to ALL occur less frequently, but have been re-

ported for both children and adults (Bernstein et al.,
ance of an Undifferentiated Leukemia Subtype
om mouse 4 with a T cell leukemia into three secondary recipients.
mia with an undifferentiated (lineage-negative) phenotype (4-3).
of all mice are indicated. Reference blood counts of control non-
e mean values).
es in blood, bone marrow, and spleen of mouse 4 and its recipients.
d spleen of donor mouse 4 and the clonal composition of blood and
ocytes, CD3ε+ T cells, or immature LIN� cells) of indicated mice. The
e. Different colors represent different clones and are indicated by

ion analyses, illustrating differential expression of genes in un-
kemia) compared with spleen cells from mice 4-1 and 4-2 with T cell

s
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Figure 6. Activation of LCS Clones after Serial Transplantation
(A) Overview of the serial transplantation experiment in which bone marrow cells from mouse 5 with an oligoclonal T cell leukemia were
serially transplanted into five secondary recipients. The majority of the recipients developed T cell leukemias (mice 5-1, 5-2, 5-3, 5-4).
Recipient mouse 5-5 developed an erythroid leukemia.
(B) Cell counts in blood, bone marrow, and spleen and spleen weight of all mice are indicated. Reference blood counts of control non-
leukemic mice are indicated by the gray box (dashed line refers to the mean values).
(C) Percentage of different donor-derived GFP+ hematopoietic cell types in blood, bone marrow, and spleen of donor mouse 5 and its
recipients.
(D) The contribution of different clones to the blood, bone marrow, and spleen of mouse 5 and its five recipients. Different colors represent
different clones and are indicated by different numbers.

(legend continued on next page)
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Figure 7. Differentiation of Immature LSC Clones
(A) Experimental setup. Bone marrow cells from a mouse with an immature, lineage-negative, leukemia (mouse 15) were serially trans-
planted into three recipients (mice 15-1, 15-2, and 15-3). All recipients developed T cell leukemia.
(B) Cell counts in blood, bone marrow, and spleen and spleen weight of all mice are indicated. Reference blood counts of control non-
leukemic mice are indicated by the gray box (dashed line refers to the mean values).
(C) Percentage of different donor-derived GFP+ hematopoietic cell types in blood, bone marrow, and spleen of donor and its secondary and
tertiary recipients.
(D) The contribution of different clones to the blood, bone marrow, and spleen of donor mouse 15 and its recipients. Different colors
represent different clones and are indicated by different numbers.
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1986; Boeckx et al., 2004; Dorantes-Acosta et al., 2009;

Emami et al., 1983; Krawczuk-Rybak et al., 2003; Lounici

et al., 2000; Marcus et al., 1985; Rossi et al., 2012). Case re-

ports of other types of leukemic conversions, such as

erythroid leukemia into ALL, have also been published

(Park et al., 2011). In leukemic patients showing a relapse
(E) Heat map summary and hierarchical clustering of gene express
fractionated spleen cells from mouse 4-3 (with an undifferentiated leu
leukemias (also see Figure S5A).
(F) Integration site analysis by iPCR using the restriction enzyme Mlu
confirmed by conventional PCR (data not shown). Gel electrophoresis
in bone marrow cells of mouse 5, dominance of clone 3 in mouse 5-1
clone 2 as being dominant in mouse 5-4 and mouse 5-5, although th
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of a different lineage (so-called lineage switch), leukemic

clones often have a differentmorphology, cell size, amount

of cytoplasm, presence of Auer rods, and new phenotypic

lineage markers (Park et al., 2011; van den Ancker et al.,

2009). These clinical data are highly reminiscent of our cur-

rent findings.
ion analyses, illustrating differential expression of genes in un-
kemia) compared with spleen cells from mice 4-1 and 4-2 with T cell

I. Colored triangles identify the corresponding barcodes and were
of amplified integration sites showed signs of dominance of clone 2
bone marrow cells and clones 1 and 3 in mouse 5-2. iPCR validated
ese mice show different leukemia subtypes.
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Overall, we conclude that the clonal makeup of leuke-

mias can be more complex than often anticipated.

Although the exact role of CBX7 in human leukemias is

currently unknown, we provide direct evidence for the

quiescent nature of some LSCs and show lineage conver-

sion at the clonal level. Leukemias can be oligoclonal,

with clone-dependent variability in multiple biological

traits. As not all clones are equal, therapies should focus

on eliminating all clones with variable behaviors, in-

cluding quiescent LSCs. As such, the finding of clonal

heterogeneity at diagnosis argues in favor of adopting com-

bination rather than single-agent sequential therapies with

the goal to eradicate dominant as well as minor clones that

may emerge at relapse. The barcoding approach that we

advocate in the current study has been shown to be very

powerful in delineating the behavior of normal HSCs (Ger-

rits et al., 2010; Verovskaya et al., 2013) and will also be of

benefit to the study of preclinical tumor clonality models.
EXPERIMENTAL PROCEDURES

Primary post-5FU bone marrow cells were isolated from C57BL/

6.SJL (CD45.1) mice and transduced with a control or Cbx7 bar-

code vector library as described previously (Gerrits et al., 2010);

4.5–7.5 3 106 were transplanted into lethally irradiated (9.0 Gy)

CD45.2 mice without prior GFP sorting. Analysis of the contribu-

tion to blood was performed at indicated time point, as described

previously (Klauke et al., 2013). For secondary transplantations,

5 million whole bone marrow cells were transplanted into lethally

irradiated recipients. Barcodes were recovered by extraction of

genomic DNA (Gerrits et al., 2010), and individual samples for

each deep sequencing runwere amplifiedwith assignedmultiplex-

ing primers as previously described (Verovskaya et al., 2013). In

some cases, barcode data were validated by sanger sequencing

and/or by inverse (iPCR).

For gene expression analysis, total RNA was isolated from bone

marrow cells from selected mice using the RNeasy Mini Kit

(QIAGEN). ss cDNA was generated and hybridized onto the Illu-

mina MouseRef8 v.2 BeadChips according to the protocol from Il-

lumina (ServiceXS). Primary expression analysis was performed

using Illumina’s Genomestudio v.2011.1 software with default

settings. Data were normalized, and a differentially expressed

analysis between erythroid and T cell leukemic samples was per-

formed using limma eBayes. Two publically available data sets

were used to compare between gene expression profiles of our

leukemic cells and normal gene expression profiles (GSE6506

[Chambers et al., 2007]: LTHSCs, monocytes, B cells, natural killer

cells, granulocytes, erythroid cells, naive CD4+ T cells, naive

CD8+ T cells; GSE18669 [Weishaupt et al., 2010]: HSCs, MPPs,

PreMegE, CD4+ T cells). We extracted genes that are specifically

highest expressed in normal hematopoietic cell subsets, and these

lists were then compared with our data sets (Python SciPy, hyper-

geometric test).

See Supplemental Experimental Procedures for a more detailed

description of methods used in this study.
Stem
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Normalized and raw gene expression data is available at the Gene

Expression Omnibus (GEO) under GSE56820.
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