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DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs
are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors
were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. )is
research designed a novel predictor to identify DBPs more accurately. )e features from the sequences are transformed by
F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and
R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet
transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-
DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient
boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has
attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. )e results reveal the
excellent performance of our novel predictor over the past studies. DBP-iDWTwould be fruitful for establishing more operative
therapeutic strategies for fatal disease treatment.

1. Introduction

DNA-binding proteins perform many crucial activities like
DNA translation, repair, translation, and damage [1]. DBPs
are directly encoded into the genome of about 2–5% of the
prokaryotic and 6–7% of eukaryotic [2]. Several DBPs are
responsible for gene transcription and replication, and some
DBPs shape the DNA into a specific structure, called chro-
matin [3]. )e research on DBPs is significant in diverse fatal

disease treatment and production of drugs. For instance,
nuclear receptors are the key components of tamoxifen and
bicalutamide medicines which are used in cancer treatment.
Similarly, glucocorticoid receptors participate in the pro-
duction of dexamethasone, which is utilized in autoimmune
diseases and anti-inflammatory, allergies, and asthma treat-
ment [4–6]. Onward, Inhibitor of DNA-binding (ID) proteins
are closely related to tumor-associated processes including
chemoresistance, tumorigenesis, and angiogenesis. In
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addition, ID proteins are also directly concerned with lung,
cervical, and prostate cancers [7].

Protein sequences are rapidly growing in the online
database. A series of predictors were developed for diverse
biological problems including iRNA-PseTNC [8], iACP-
GAEnsC [9], cACP-2LFS [10], DP-BINDER [11], Deep-
AntiFP [12], cACP [13], iAtbP-Hyb-EnC [14], iAFPs-EnC-
GA [15], and cACP-DeepGram [16]. It is highly demanding
to predict DBPs by computational approaches. Several
predictors were introduced using the primary sequential
information and structural features. Structured-based pre-
dictors produce good prediction results, but structural
features for all proteins are unavailable. Some of the
structure-based protocols are iDBPs [17], DBD-Hunter [18],
and Seq(DNA) [19]. Sequence-based systems have been
developed using sequential information, more convenient
and easy to employ for large datasets. )erefore, many se-
quence-based systems were adopted for DNA-binding
proteins identification. Among these methods: DBP-
DeepCNN [20], DNA-Prot [21], iDNA-Prot [22], iDNA-
Prot|dis [23], Kmer1 +ACC [24], Local-DPP [25],
DBPPred-PDSD [26], DPP-PseAAC [27], and StackDPPred
[28]. Consequently, Li et al. extracted features by a con-
volutional neural network (CNN) and Bi-LSTM [29]. On-
ward, Zhao et al. the features of the proteins are analyzed by
six methods and classification is performed with XGBoost
[30]. Each computational method contributed well to en-
hancing the prediction of DBPs. However, more efforts are
needed to improve prediction of DBPs. Considering this, a
new method (DBP-iDWT) is established to identify DBPs
accurately. )e contribution of our research is as follows:

(i) Designed three new feature descriptors i.e.,
F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-
DWT

(ii) LiXGB is applied for model training and prediction
(iii) Constructed a new computational model (DBP-

iDWT) for improving DBPs identification

In addition to LiXGB, the features set is fed into three
classification algorithms, namely ERT, XGB, and Adaboost.
)e efficacy of each classifier was assessed with ten-fold test,
while the generalization capability was assessed by a testing
set. LiXGB using R-PSSM-DWT secured the highest pre-
diction outcomes than past methods. )e flowchart of the
DBP-iDWT is depicted in Figure 1.

)e rest portion of the manuscript comprises three parts.
Section 2 comprises details regarding datasets and meth-
odologies; in Section 3, the performance of classifiers has
illustrated; and Section 4 summarizes the conclusion.

2. Materials and Methods

2.1. Selection of Datasets. We selected two datasets from the
previous work [31]. One dataset (PDB14189) is employed
model training and the other dataset is deployed as a testing
dataset. PDB14189 was collected from the UniProt database
[32]. To design a standard dataset, they removed more than
25% of similar sequences by CD-HIT toolkit. )e final

training dataset comprises 7129 DBPs and 7060 non-DBPs.
)e independent set was retrieved by a procedure explained
in reference [33]. )e similar sequences with a cutoff value
25% are removed. )e final testing dataset contains 1153
DBPs and 1119 non-DBPs.

2.2. Feature Descriptors. In this work, the patterns are
discovered with PSSM-DPC-DWT, F-PSSM-DWT, and
R-PSSM-DWT. )ese approaches are elaborated in the
following parts.

2.2.1. Position-specific Scoring Matrix (PSSM). Recently,
evolutionary features are successfully implemented and
improve the prediction results of many predictors [1, 20].
We also implemented PSSM for the formulation of evolu-
tionary patterns. Each sequence is searched against the NCBI
database applying the PSI-BLASTprogram for the alignment
of homologous features [34].

)e PSSM can be denoted as follows:

PSSM � P1, P2, . . . , Pj, . . . , P20 
T

,

Pi,j � P1,j, P2,j, . . . , PL,j , (i � 1, 2, . . . , L),
(1)

where Tand Pi,j indicate the transpose operator and score of
j type of amino acid in the ith position of query sequence.

2.2.2. Filtered Position-specific Scoring Matrix (F-PSSM).
PSSM transforms the evolutionary patterns into numerical
forms. It may comprise some negative scores which can lead
to generating similar feature vectors despite different se-
quences. To cope with this hurdle, F-PSSM filters all the
negative scores in the preprocessing step. )e detail of di-
mension formulation is provided in [35].

2.2.3. Position-specific Scoring Matrix-Dipeptide Composi-
tion (PSSM-DPC). )e local sequence-order patterns con-
tains informative feature which are explored by
incorporating DPC into PSSM. DPC calculates the fre-
quency of continuous amino acids and produces a dimen-
sion of 400 [36]. DPC is calculated as follows:

PSSM − DPC � G1,1, . . . , G1,20, G2,1, . . . , G2,20, . . . , G20,1, . . . , G20,20 
T
,

(2)

where

Pi,j �
1
L



L−1

k�1
Gk,i × Gk+1,j(1≤ i, j≤ 20). (3)

2.2.4. Reduced Position Specific Scoring Matrix (R-PSSM).
It is believed that there exist several similarities among 20
unique amino acids. Based on these similarities, researchers
categorized these residues into groups. Li et al. [37] sug-
gested that according to some specific residue the following
groups can be formed:

2 Computational Intelligence and Neuroscience



G(i) �

Y, ifi � F, Y, W;

L, ifi � M, L;

V, ifi � I, V;

S, ifi � A, T, S;

N, ifi � N, H;

E, ifi � Q, E, D;

K, ifi � R, K;

i, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Using the Li et al. rule, the L× 20 PSSM is converted to
L× 10 matrix by the following equations:

G1 �
F + Y + W

3
,

G2 �
M + L

2
,

G3 �
I + V

2
,

G4 �
A + T + S

3
,

G5 �
N + H

2
,

G6 �
Q + E + D

3
,

G7 �
R + K

2
,

G8 � C,

G9 � G,

G10 � P.

(5)

If r1r2r3 . . . . . . .rL is a given protein sequence, then its
reduced PSSM (R-PSSM) is indicated as follows:

RP �

1 2 3 4 5 6 7 8 9 10

r1 R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 R1,8 R1,9 R1,10

r2 R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 R2,8 R2,9 R2,10

. . . . . . . . .

rL RL,1 RL,2 RL,3 RL,4 RL,5 RL,6 RL,7 RL,8 RL,9 RL,10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

We obtain 110 feature vector from RP.

2.2.5. Discrete Wavelet Transform. To achieve only salient
information, some compression approaches like DWT is
applied in research areas. DWT is used for compression of
signals and denoising [38, 39]. DWT divides a signal into
low-frequency and high-frequency components [40]. Low
frequencies are more important than high-frequencies [41].
)e Low frequencies are onward split into low and high
levels to achieve discriminative patterns. DWT is computed
as follows:

X(m, n) �

��
1
m





y

0

f(y)Ψ
y − n

m
 dy, (7)

where mrepresents the scale variable and n shows the
translation variable.X(m, n) is the transform coefficient.)e
low and high frequencies of a signal f(t) is computed as
follows:

Data collection

Uniprot

Training set Testing set

DBPs = 7129 DBPs = 1153

Non-DBPs = 7060 Non-DBPs = 1119

Feature Extraction

PSSM

F-PSSM R-PSSM

DWTDWT

F-PSSM-DWT R-PSSM-DWT

Classification

LiXGB XGB ERT Adaboost

PSSM-DPC-DWT

DWT

PSSM-DPC

Figure 1: Architecture of the proposed model.
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Ci,low[a] � 
N

k�1
s[k]L[2a − k],

Ci,high[a] � 
N

k�1
s[k]H[2a − k],

(8)

where Ci,high[a] and Ci,low[a] are the high and low fre-
quencies of the signal. H, s[k], and L, represent the high pass
filter, discrete signal, and low pass filter, respectively.

To obtain only important features and eliminate the less
informative and noisy patterns, DWT is extended into
F-PSSM, PSSM-DPC, and R-PSSM to split into low and high
frequencies up to two levels. Finally, PSSM-DPC-DWT,
R-PSSM-DWT, and F-PSSM-DWTnovel feature descriptors
are constructed. )e dimension of each feature set is 512
after applying DWT. Figure 2 depicts the schematic view of
Two-level DWT.

2.3. Light eXtreme Gradient Boosting. During the estab-
lishment of the predictor, the model training is performed by
a classifier. Gradient Boosting Machine (GBM) classifier
uses decision trees for the construction of a model. )e
model performance is improved with loss function [42].
Unlike GBM, eXtreme Gradient Boosting (XGB) employs an
objective function. XGB concatenates loss function and
regularization for regulating the model complexity. It per-
forms parallel computations to optimize the computational
speed. Due to these benefits of XGB, Light eXtreme Gradient
Boosting (LiXGB) was proposed [43]. LiXGB possesses
many additional features like lower memory, higher effi-
ciency, and fast model training speed that improve the
model performance. LiXGB minimizes the model training
time of the large datasets. We utilized the hyperparameters
like max depth, estimator, eta, lambda, and alpha. )e “eta”
maintains the learning rate, “estimator” constructs trees,
“max depth” is used for controlling the tree depth, “alpha”
shrinks the high dimension of the dataset, and “lambda”
avoids the overfitting. Other parameters have been kept as
default. )ese hyperparameters are also summarized in
Table 1.

2.4. Proposed Model Validation Methodologies. )e model
performance is examined by different validation approaches
)e commonly used validation methods are k-fold and
jackknife [44–47]. However, the jackknife is time-con-
suming and costly [48–50]. During 10-fold cross validation,
training set is split into 10-folds. )e 9 folds are used for
model training and 1 fold is used for model validation. )is
process is repeated 10 times so that each fold is used for the
test exactly once. )e final prediction is the average of all
tested folds [51–54]. )e current work performance is
evaluated with 10-fold and five indexes, i.e., specificity (Sp),
F-measure, sensitivity (Sn), accuracy (Acc), and Mathew’s
correlation coefficient (MCC) for evaluating the model
performance [55–58]. )ese parameters are computed as
follows:

Acc � 1 −
H

+
− + H

−
+

H
+

+ H
− ,

Sn � 1 −
H

+
−

H
+ ,

Sp � 1 −
H

−
+

H
− ,

MCC �
1 − H

+
− + H

−
+/H

+
+ H

−
( 

����������������������������������

1 + H
+
− + H

−
+/H

+
( (  1 + H

+
− + H

−
+/H

−
( ( 

 ,

F1 Score �
(2∗ precision∗ recall)

(precision + recall)
,

Precision �
H

+

H
+
− + H

+ ,

Recall �
H

+

H
−
+ + H

+ ,

(9)

where H+ is used to denote the DBPs, H− is the non-DBPs,
H−

+ shows the prediction of non-DBPs which the model
predicted mistakenly as DBPs, and H+

− represents the DBPs
which are classified by the model as non-DBPs.

3. Results and Discussion

After performing experiments on themodels, In this part, we
will elaborate the obtained results of the learning algorithms
via the extracted feature sets of the training and testing
sequences.

Siganl

Level-1

Level-2

HF = High Frequency
HL = Low Frequency

HL

HL

HF

HF

Figure 2: 2-level structure of DWT.

Table 1: Applied parameters with values.

Parameter Value
Era 0.1
No. of estimator 500
Alpha 1
Lambda 1
Max depth 8
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3.1. Results of Feature Encoders beforeDWT. In this section,
we have reported the outcomes of F-PSSM, PSSM-DPC,
and R-PSSM in Table 2. )e performance of the indi-
vidual descriptor is analyzed by 10-fold test and as-
sessment indices. On F-PSSM, the accuracies secured by
LiXGB, XGB, ERT, and Adaboost are 76.60%, 74.57%,
75.18%, and 71.52%, respectively. Among all classifiers,
LiXGB achieved the best accuracy. On PSSM-DPC, all
classifiers enhanced the prediction results and generated
83.62%, 81.63%, 79.56%, and 80.07% accuracies by
LiXGB, XGB, ERT, and Adaboost, respectively. Similarly,
the classifiers also improved the performance on the
R-PSSM descriptor using all evaluation parameters.
LiXGB attained the highest (83.62%) accuracy. )e
predictions indicate that LiXGB possesses higher
learning power comparatively XGB, ERT, and Adaboost.

3.2. Results of Feature Encoders after DWT. )e features
extracted by representative methods may contain some
noisy, redundant, or less informative features. To avoid such
features, DWT is applied to F-PSSM, PSSM-DPC, and
R-PSSM. DWT considers the informative patterns and
improves the performance of the model. After applying
DWT, we achieve F-PSSM-DWT, PSSM-DPC-DWT, and
R-PSSM-DWT. Each feature is fed into Adaboost, ERT,
XGB, and LiXGB in order to examine the performance over
these feature descriptors and results are summarized in
Table 3. With 10-fold test, Adaboost, ERT, XGB, and LiXGB
produced 73.20%, 77.26%, 75.37%, and 79.40% accuracies
which are 1.68%, 2.08%, 0.80%, and 2.80% than F-PSSM,
PSSM-DPC, and R-PSSM, respectively. Similarly, the clas-
sifiers also boosted the performance on PSSM-DPC-DWT
on all evaluation parameters. Furthermore, with R-PSSM-
DWT, Adaboost, ERT, XGB, and LiXGB have enhanced the
accuracies by 2.16%, 3.49%, 1.98%, and 3.22% than R-PSSM.
)ese results demonstrate that all classifiers show im-
provement in performance after applying DWT. Among all
feature descriptors, the best results are secured by R-PSSM-
DWT.

LiXGB has constantly depicted better achievement than
other classifiers. LiXGB enhanced the performance and
generated 3.23%, 3.79%, and 4.61% higher accuracies than

XGB, ERT, and Adaboost with R-PSSM-DWT. It is con-
cluded that the performance of LiXGB is superior to other
classifiers.

3.3. Comparison with Existing Predictors Using Training Set.
Severalmethods have been implemented for the identification of
DBPs. )e proposed work is compared with past studies in-
cluding iDNA-Prot [22], iDNA-Prot|dis [23], TargetDBP [59],
MsDBP [60], PDBP-CNN [29], and XGBoost [30] and sum-
marized the results in Table 4. Our proposed study improved the
accuracy by 4.82%, sensitivity by 10.58%, andMCC by 0.09 than
the best predictor (PDBP-CNN). Similarly, )e DBP-iDWT
enhanced 5.42% Acc, 2.49% Sn, 8.65% Sp, and 0.11 MCC than
the second best study (XGBoost). In the same fashion, our
predictor performance is superior to past studies using all four
assessment parameters. )e outcomes verified that DBP-iDWT
can discriminate DBPs with high precision.

3.4. Comparison with Past Predictors Using Independent Set.
A method is considered effective if it has high generality for
the new sequences. We also evaluated the proposed work
using a testing dataset. )e results compared with past
studies like PseDNA-Pro, iDNAPro-PseAAC, iDNAProt-
ES, DPP-PseAAC, TargetDBP, MsDBP, and PDBP-Fusion
as noted in Table 5. It is noted that our predictor (DBP-
iDWT) raised 5.06% Acc, 17.06% Sn, 8.22% Sp, and 0.10
MCC than PDBP-Fusion. Similarly, DBP-iDWT improved
6.14% Acc, 14.02% Sn, and 0.13 MCC than TargetDBP.
Onward, the proposed study also secured higher prediction
results than other past methods in Table 5.

)ese results analysis confirm that the incorporation of
DWT into R-PSSM in conjunction with LiXGB can identify
DBPs more accurately. Past studies have reported that the
selection of the best features can improve the model per-
formance [61–63]. In this study, we also implemented
feature selection approach including mRmR and SVM-RFE,
however, no improvement in the model performance is
observed.

Table 3: Results of feature encoders after DWT.

Model Encoder Acc (%) Sn (%) Sp (%) MCC (%)

Adaboost

F-PSSM-DWT 73.20 82.35 56.67 40.21
PSSM-DPC-

DWT 81.81 80.45 83.19 63.66

R-PSSM-DWT 82.23 77.68 86.81 64.77

ERT

F-PSSM-DWT 77.26 79.91 74.59 54.58
PSSM-DPC-

DWT 81.53 76.15 86.97 63.47

R-PSSM-DWT 83.05 81.30 84.82 66.15

XGB

F-PSSM-DWT 75.37 83.43 60.81 45.31
PSSM-DPC-

DWT 82.45 83.65 81.25 64.91

R-PSSM-DWT 83.61 82.66 84.56 67.23

LiXGB

F-PSSM-DWT 79.40 83.11 75.65 58.94
PSSM-DPC-

DWT 84.74 84.30 85.19 69.49

R-PSSM-DWT 86.84 86.60 87.08 73.69

Table 2: Results of encoders before DWT.

Model Encoder Acc (%) Sn (%) Sp (%) MCC (%)

Adaboost
F-PSSM 71.52 80.42 62.54 43.67

PSSM-DPC 80.05 78.44 81.69 60.15
R-PSSM 80.07 76.15 84.02 60.35

ERT
F-PSSM 75.18 84.74 58.97 44.56

PSSM-DPC 79.22 73.18 85.31 58.42
R-PSSM 79.56 74.99 84.18 59.40

XGB
F-PSSM 74.57 82.17 66.90 49.67

PSSM-DPC 81.53 76.15 86.97 63.47
R-PSSM 81.63 76.48 86.84 63.64

LiXGB
F-PSSM 76.60 82.47 66.01 48.75

PSSM-DPC 83.54 84.61 82.46 67.10
R-PSSM 83.62 82.30 84.96 67.27
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4. Conclusion and Future Vision

DBPs play an active role in many biological functions and
drug designing. We have designed a predictor for improving
DBPs prediction with high precision. )e global informa-
tion, local features, sequence-order patterns, and correlated
factors are explored by PSSM-DPC-DWT, R-PSSM-DWT,
and PSSM-DPC-DWT.

)e models are trained with LiXGB, XGB, ERT, and
Adaboost. It is concluded that R-PSSM-DWT with LiXGB
has effectively attained superlative performance than other
predictors. )e successful outcomes of the proposed study is
due to factors like utilization of effective descriptors, ap-
plication of a compression scheme, and appropriate
classifier.

DBP-iDWT will be effective for the identification of
DBPs due to its promising prediction power than other
predictors and perform an active role in drug development.
DBP-iDWT would be fruitful for establishing more opera-
tive therapeutic strategies for fatal disease treatment. In
addition, we will apply advanced deep learning frameworks
[64–67] in our future work to further improve the DBPs
prediction.
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