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Abstract: Interactions between keratinocytes and fibroblasts in the skin layers are crucial in normal
tissue development, wound healing, and scarring. This study has investigated the role of keloid
keratinocytes in regulating collagen production by primary fibroblasts in vitro. Keloid cells were
obtained from removed patients’ tissue whereas normal skin cells were discarded tissue obtained from
elective surgery procedures. Fibroblasts and keratinocytes were isolated, cultured, and a transwell
co-culture system were used to investigate the effect of keratinocytes on collagen production using
a ‘scar-in-a-jar’ model. Keloid fibroblasts produced significantly more collagen than normal skin
fibroblasts in monoculture at the RNA, secreted protein, and stable fibrillar protein level. When
keloid keratinocytes were added to normal skin fibroblasts, expression of collagen was significantly
upregulated in most samples, but when added to keloid fibroblasts, collagen I production was
significantly reduced. Interestingly, keloid keratinocytes appear to decrease collagen production by
keloid fibroblasts. This suggests that signaling in both keratinocytes and fibroblasts is disrupted in
keloid pathology.
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1. Introduction

Keloid scarring is an abnormal fibroproliferative process that can occur as a result of skin
trauma. Keloid scar is characterized by progressive and excessive accumulation of disordered
collagen types I and III during wound repair [1,2]. The molecular mechanisms that regulate fibroblast
proliferation and collagen metabolism in keloids are poorly understood. A significant increase
in type I procollagen-specific mRNA levels and type I/III procollagen mRNA ratio is observed in
keloid fibroblasts (KFs) compared with normal skin fibroblasts (NFs) [3,4]. Others have found higher
levels of collagen type I and III (protein and mRNA) produced by KFs isolated from the growing
margin compared with extralesional and intralesional sites [5], suggesting an association between the
continuous growth at the wound boundary and collagen production.

Communication between keratinocytes and fibroblasts is crucial in wound healing. It has
been shown that normal keratinocytes (NKs) tend to have enhanced proliferation, migration, and
morphology in the presence of NFs, favoring co-cultured in direct contact with NFs than in the
transwell [6,7]. In keloids, NFs proliferate more when co-cultured with NKs or keloid keratinocytes
(KKs) compared to culturing in the absence of keratinocytes, significantly higher in the presence of
KKs rather than NKs [8]. Interestingly, KFs was of a significant proliferation when co-cultured with
KKs compared to NKs co-culture [8–10].

The critical role of epithelial-mesenchymal interactions has been linked to skin regeneration,
wound healing, and scarring [6,7,9,11–17]. Several experimental models have been employed to study
epithelial-mesenchymal interaction in keloid scars. These include organotypic skin constructs, the use
of conditioned media, and indirect contact using transwell membrane inserts [12,16–18]. A significant
contraction has been shown in murine type I collagen gels populated with NFs upon keratinocytes
adding to the gel compared to the control group (no keratinocytes) [19]. Moreover, a greater contraction
was observed in collagen lattice populated with KFs compared to NFs populated lattices. Similarly, an
organotypic skin construct cultured with KFs/NKs showed increased contracture with more organized
α-smooth muscle actin in the dermal layer compared to the NFs/NKs construct [17].

Indeed, epithelial-mesenchymal interaction may have a regulatory role in collagen synthesis
with the presence of keratinocytes influencing collagen production by dermal fibroblasts [16–18]. A
reduction in type I collagen mRNA (COL1A1) level was observed in the treatment of NFs with NKs
conditioned medium which is not seen with the fibroblast conditioned medium [12]. Another study
found no significant effect on COL1A production when NKs added to NFs [9]. In contrast, an increased
level of [H3] proline incorporation in the media collected from co-culturing NFs with KKs and NKs
has been observed compared to control (NFs without keratinocytes) [18] suggesting increased collagen
production. Another study found an increase in soluble collagen I and III productions by NFs and KFs
when co-cultured with keratinocytes, especially KKs [16].

These studies used different experimental models to study epithelial-mesenchymal interaction in
keloid scars in relation to collagen production. The contradictory results reported in previous studies
can be explained in one hand by the variation in experimental models used and on the other hand
by the quantitative method used for collagen detection which may require for example destroying
of cell layers when counting cell numbers or measuring proteins [16,18]. In contrast to these other
models, the “scar-in-a-jar” model addresses many of these limitations by allowing quantitation of
collagen without destroying cell layers, visualization of collagen structure, quantitation of cell numbers,
the use of co-factors such as ascorbic acid, a short culture time and direct quantification of specific
proteins in a single-well format [20]. In this study, we have used a ‘scar-in-a-jar’ model, together with
transwell co-culture, to measure the fibrillar COL1A deposition by NFs and KFs in the presence of
normal/keloid keratinocytes.
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2. Materials and Methods

2.1. Subjects

Keloid tissue and normal skin were used following ethical approval from the University of
Western Australia and Royal Perth Hospital, Perth, WA, Australia in accordance with the Declaration
of Helsinki 1975, as revised in 2013 with written informed consent obtained from all participants.
Surgically excised keloid scars were collected from six patients (Table 1). Samples were collected,
isolated, and frozen in 2013 until being used in this study between 2015–2016. Patients had received no
previous treatment of the keloid scar before surgical excision. A full history was taken prior to excision
and clinical examination was performed by a plastic surgeon to confirm the diagnosis. Clinical criteria
used to differentiate keloid from normotrophic scar include a history of continuous growth outside the
boundaries of the wound and symptoms such as pain and itch. KFs and KKs were isolated from all
keloid samples (KF n = 6; KK n = 6). Control fibroblasts and keratinocytes were isolated from normal
skin tissue obtained from discarded tissue after elective surgery. NF1 and NK1 were isolated from the
inner upper arm skin of a subject who underwent a skin reduction surgical procedure secondary to
major weight loss. NF2 were also isolated from the forearm skin of an additional healthy individual.

Table 1. Participated subjects’ data.

Patient ID. Age Gender 1

Phenotype
Site of Excision or

Biopsy
Ethnicity(Scare

Age/Year)

Patient 1 53 M Keloid (25) Sterunm Northwest European
Patient 2 42 M Keloid (5) Ear Northwest European
Patient 3 30 M Keloid (15) Sterunm East Asian
Patient 4 27 F Keloid (10) Shoulders East Asian
Patient 5 47 F Keloid (3) Sterunm Northwest European
Patient 6 29 M Keloid (6) Sterunm East Asian

Control subject 1 35 F Normal Inner upper arm Unknown
Control subject 2 25 M Normal Forearm European

1 Male (M), Female (F).

2.2. Isolation and Culture of Fibroblasts

The surgically excised keloid tissues were collected in Dulbecco’s Modified Eagle’s Medium
(DMEM): Nutrient Mixture F-12 (DMEM/F12, GIBCO®, Carlsbad, CA, USA) and processed within 4
h. Fibroblasts were isolated from the center of fresh keloid tissue by explant method, as described
previously by Keira et al. and Tucci-Viegas et al. with slight modification [21,22]. Briefly, the isolated
dermis was fragmented into 5–10 mm2 in size fragments that transferred to petri dish containing
DMEM with 10% fetal bovine serum (FBS, Invitro technologies, Noble Park North, Australia) and 1%
Penicillin/Streptomycin (P/S) and incubated at 37 ◦C in 5% carbon dioxide (CO2) atmosphere. When
cells reached 80% confluence, the media and the fragments were discarded, and cells were washed
with PBS, trypsinized with 0.05% Trypsin-EDTA (GIBCO®, Life Technologies, Grand Island, NY, USA).
After all, cells were placed in a media containing 10% FBS to inactivate the trypsin to be seeded into
a T75 flask. Cells growth was maintained until the second passage when cells were resuspended in
freezing medium of DMEM containing 10% dimethylsulfoxide (DMSO) and kept in liquid nitrogen for
further use.

2.3. Isolation and Culture of Keratinocytes

Keloid tissues were surgically excised, collected and processed in DMEM within 4 h. Keratinocytes
were isolated from fresh keloid tissue by the digestion method using a modified version of the
previously published protocol [23,24]. Briefly, samples were placed in keratinocytes growth media
(KGM, EpigrowTM, human epidermal keratinocyte complete culture media kit, Merck, Millipore, MA,
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USA) where the tissue was cut into strips of 3–4 mm2 to allow dispase to infiltrate the tissue. Tissue
strips were incubated overnight at 4 ◦C in 5 mL KGM containing 0.0127 g of dispase powder, 20 µL
Fungizone, and 100 µL kanamycin. The next day, the separated epidermis was spread out flat on the
surface of the TrypLE drop with the basal layer downward and incubated for 20 to 30 min at room
temperature. The epidermis was rubbed to generate a single cell suspension that washed with KGM to
concentrate the cells down to the bottom of the dish. After centrifuging single cells suspension, the
cell pellet was resuspended in KGM with 1% P/S and seeded in a T25 flask (25 cm2, Greiner Bio-One,
Germany). Cell growth was maintained until the second passage, and cells were kept frozen in liquid
nitrogen until being used.

2.4. qPCR for COL1A

RNA and cDNA were prepared from lysed cells cultured for 24 h, using Qiagen RNeasy Mini Kit
and QuantiTect Reverse Transcriptase Kit (QIAGEN, Valencia, CA, USA), following manufacturer’s
instructions. Quantitative PCR was then performed using QuantiTect SYBR Green PCR kit and
QuantiTect primers COL1A1 (QIAGEN, Valencia, CA, USA), housekeeping primers GAPDH and
ACTB or PGK. qPCR was performed on Step One System machine from ThermoFisher following
optimal thermal cycles as recommended by Qiagen for SYBR Green products. Relative expression of
Col1 was calculated following the Pfaffl method with multiple reference genes, taking into consideration
primer efficiency differences of no more than 6%. Each sample was compared to the mean Ct value of
all normal (non-keloid) cell lines at each respective time point. Results are expressed as a fold change.

2.5. Fluorescent Resonance Energy Transfer (FRET) Assay to Quantitate Procollagen I

A Fluorescence Resonance Energy Transfer (FRET) assay was carried out to measure procollagen
concentration in cell media using the human pro-collagen type 1 kit from Cisbio (Cisbio Inc., Bedford,
MA), according to manufacturer’s instructions. Then 16 µL of cell media was added to a single well
of the 384 well plate, (Greiner 384 low volume white plates, high base 4–25 µL working volume), to
which 2 µL of the anti-human procollagen cryptate antibody and 2 µL of the anti-human procollagen
d2 antibody was also added. A standard curve was made up the same way, with the procollagen
standards ranging from 0.78–100 ng/mL, as well as a negative control and a cryptate control. Each
sample was run in triplicate. The plate was incubated at room temperature overnight, then read on a
BMG Clariostar microplate reader. Microplate reader settings were as follows: excitation filter—330
nm, emission filters—620 nm and 665 nm, integration delay (lag time) 60 µs, integration time 400 µs,
number of flashes—200, gain—2400. For each well, the ratio of the 665 nm/620 nm was calculated,
then the mean ratio calculated using the triplicate wells for each sample and standard. The delta F%
was then calculated by using the following equation—(ratio of the standard or sample—ratio negative
control)/ratio negative control × 100. The delta F% values for the standard curve were then plotted, the
equation of the line worked out and the procollagen concentration of each sample calculated.

2.6. Fibroblast and Keratinocyte Co-Culture

A total of six KFs, six KKs, two NFs, and one NK were used in this study (Figure 1). The co-culture
experiments were carried out as outlined earlier with some modifications [25]. KFs and NFs were
seeded at a density of 5 × 104 cells/well in 24-well plate in DMEM with 10% FBS and 1% P/S. KKs
and NKs were seeded at a density of 1 × 105 cells on transwell membrane inserts in a 24-well plate
(Corning incorporated, Costar, USA) in KGM with 1% P/S or in DMEM with 10% FBS and 1% P/S (as
control experiment). After 24 h incubation at 37 ◦C in 5% CO2, KFs and NFs media were removed and
replaced by un-stimulated media (DMEM with 1% P/S, 0.5% FBS and 1% of 100 mM L-ascorbic acid
2-phosphate (Sigma Aldrich, Saint Louis, MO, USA)). The cultured KKs and NKs on the transwell
membrane inserts were washed with PBS and transferred onto the cultured KFs and NFs in a 24-well
plate containing un-stimulated media. Each co-culture condition was performed in duplicate with the
experiment maintained at 37 ◦C in 5% CO2 for 6 days before staining.
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Figure 1. Flowchart of the experimental design. Normal fibroblast (NF), normal keratinocyte (NK),
keloid fibroblast (KF), keloid keratinocyte (KK).

2.7. Staining for Collagen Type I

The staining for COL1A was carried out using the ‘scar-in-a-jar’ model developed by Chen et al.
with some modifications [20]. The cultured fibroblasts were blocked with 3% bovine serum albumin
(BSA, Sigma-Aldrich, St. Louis, MO, USA) in FluoroBrite DMEM (GIBCO®, Life Technologies, Grand
Island, New York, NY, USA) for 30 min at room temperature. Primary antibody (10AB, monoclonal
mouse anti-human collagen type I, Santa Cruz Biotechnology, Dallas, TX, USA) was added to the
cells and incubated at 37 ◦C in 5% CO2 for 90 min followed by one time washing with FluoroBrite
DMEM. A 4% paraformaldehyde (Sigma Aldrich, Saint Louis, MO, USA) in PBS was added to the
cells and incubated for 10 min at room temperature and washed two times with FluoroBrite DMEM.
Secondary antibodies (AlexaFluor 488 goat anti-mouse IgG, Life Technologies, Eugene, Oregon, OR,
USA) was added and incubated for 30 min followed by a one-time wash with FluoroBrite DMEM. The
nucleus was stained for 10 min at room temperature with Hoechst (Cat. No. H3570, Life Technologies,
Carlsbad, CA, USA) and washed two times with PBS, leaving the last wash in the wells for imaging.

2.8. Blind Assessment

The image assessor was blinded to the identity of all experimental conditions to exclude any
potential bias when assessing the collagen quantitation. After analysis completion, the experimental
images were unblinded.

2.9. Whole Well Imaging for Collagen Quantitation

Imaging of the co-culture was undertaken using Nikon inverted research microscope (TE 300) and
Nikon NIS-Elements software, Version: Ver.30.01 DU1, (Nikon, Japan). The entire well was imaged by
a tile scan using a 4X objective, B2-A (488 nm) and DAPI (358 nm) filter blocks. The same imaging
alignments were used for both the collagen and nuclear staining (Figure 2). The exposure time was set
at 300 ms for the Hoechst stain and 1 s for the collagen staining (488 nm excitation). For each well,
a number of ‘regions of interest’ (ROIs) (~3–6 squares) were used. Each square area had a binary
threshold applied to mark either the cell nuclei or the collagen fibers. Once the threshold was adjusted,
the object counts, and binary area covered were measured (Figure 2). For each well, the sum of binary
areas obtained from measuring the collagen staining was divided by the sum of its corresponding
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object count obtained from measuring the nuclear staining to give an estimation of the amount of
collagen secreted by each cell.
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Figure 2. Whole well imaging and collagen quantification process. The left column shows the process
of counting cell nuclei (whole well imaging (A), regions of interest (ROI) selection (C), and nuclei count
(F)). The right column shows the process of measuring the collagen binary area (whole well imaging
(B), ROI selection (D), and collagen threshold (G)). (E) collagens and nuclei merged.



Biomedicines 2020, 8, 200 7 of 14

2.10. Statistical Analysis

Statistical comparison was carried out using the obtained ROI from collagen quantitation. Statistical
significance between selected groups was calculated using the Mann-Whitney U-test (nonparametric)
with p-value < 0.05 was considered significant. All statistical analyses were done using Prism software
v.6.0 (GraphPad, La Jolla, CA, USA).

3. Results

3.1. Collagen Production of Keloid Fibroblasts Is Significantly Higher Than Normal Skin Fibroblasts
in Monoculture

Collagen I production was compared in the keloid patient and normal skin fibroblast samples in
monoculture. Twenty-four hours after plating RNA was isolated and COL1A levels were assessed by
qPCR. Keloid fibroblasts expressed significantly higher levels of COL1A than normal skin fibroblasts
(Figure 3A, p = 0.04). QPCR at later timepoints showed no sustained difference in COLIA1 RNA
levels (data not shown). Secreted protein levels were measured using a Fluorescent Resonance Energy
Transfer (FRET) assay and showed significantly higher levels of collagen I in KFs compared to control
(Figure 3B). Finally, immunohistochemistry of deposited collagen I showed significantly higher fibrillar
collagen I in keloid fibroblasts (Figure 3C) when measured at 6 d using the ‘scar-in-a-jar’ model.
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Figure 3. Collagen production of keloid fibroblasts is significantly higher than normal skin fibroblasts
in monoculture. qPCR for COIA1 shows higher levels in keloid fibroblasts compared to normal skin
fibroblasts at 24 h after plating in culture (A). Fluorescent Resonance Energy Transfer (FRET) assay
shows increased levels of procollagen peptide in cell media over a period of 11 d from keloid fibroblasts
(KF) compared to normal skin fibroblasts (NF) (B). Immunohistochemistry for COLIA1 using the
‘scar-in-a-jar’ model shows significantly higher collagen I deposited by keloid fibroblasts compared to
normal skin fibroblasts (C).

3.2. Keloid Keratinocytes Significantly Increase Collagen Production by Normal Skin Fibroblasts

COL1 production was significantly increased by normal fibroblasts from patient 1 (NF1) when
co-cultured with patients 1, 2, 3, and 6 KK (p < 0.001) compared with NF1 cultured alone (Figures 4
and 5). The addition of KKs from patients 4 and 5 led to a significant decrease in COL1 production by
NF1 (p < 0.001). When NF1 was cocultured with NK1 there was also a significant increase in COLI (p <

0.001) (Figure 5). No significant difference between the effects of NK1 and KK co-culture was observed.
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Figure 4. Keloid keratinocytes significantly increase collagen production by normal skin fibroblasts.
Keloid keratinocytes and normal skin keratinocytes were co-cultured with normal fibroblasts from
patient 1 (NF1). Both normal keratinocytes and 4/6 keloid keratinocyte samples significantly increased
COLI produced by NF1. *** = p-value < 0.001.
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Figure 5. Comparison of the COL1A production evaluated by immunohistochemistry staining of
normal fibroblasts culture from patient 1 (NF1) (A), when co-cultured with normal keratinocytes (NK1)
(B), or keloid keratinocytes (Patient 1 keloid keratinocytes (KK)) (C).

In normal fibroblasts from patient 2 (NF2) the addition of NK1, did not increase collagen production
(p = 0.31). The amount of collagen produced by NF2 increased significantly by variable amounts when
treated with KKs from patients 1, 2, 3, 5, and 6 (p = 0.002) compared to being cultured alone (Figures 6
and 7). KKs from patient 4 did not increase collagen production by NF2 (p = 0.24) (Figure 6).
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3.3. Collagen Production by Keloid Fibroblasts Is Reduced in the Presence of Keloid Keratinocytes

A significant reduction in COL1A by KFs was found when they were co-cultured with matched
KKs in patients 4 and 5 (p < 0.001) and patient 6 (p = 0.015) (Figure 8A–C). A reduction in COL1A
production by KFs was also observed when non-matched NK1 were added; however, this was only
significant in patient 4 (p < 0.001) (Figure 9). In patient 6 only the amount of collagen was significantly
less after adding KKs compared with NK1 co-culture (p = 0.015) (Figure 8C). For patients no. 1, 2, and
3, there were not enough KFs cells to co-culture with their corresponding KKs cells.
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keloid fibroblasts culture from patient 4 (KF) (A), when co-cultured with normal keratinocytes (NK1)
(B), or keloid keratinocytes (Patient 4 keloid keratinocytes (KK)) (C).

4. Discussion

This study used the “scar-in-a-jar” model to investigate the role of keratinocytes in controlling
collagen production by fibroblasts. In monoculture keloid fibroblasts produced significantly more
collagen than normal skin fibroblasts. Keloid keratinocyte co-culture was shown to increase normal
skin fibroblast collagen deposition whilst reducing keloid fibroblast collagen deposition. However, not
all keloid keratinocyte samples had this effect, wherein four out of the six keloid keratinocytes increased
collagen synthesis and deposition by normal fibroblasts, but the other two keloid keratinocytes had the
opposite effect. Furthermore, they significantly decreased collagen synthesis and deposition by normal
fibroblasts, suggesting significant intraindividual variability. Interestingly, the addition of normal skin
keratinocytes also appeared to reduce collagen produced by keloid fibroblasts, although not to the
same extent as keloid keratinocytes.

The overall increase in collagen production by NFs when co-cultured with keloid keratinocytes
observed in this study correlates with several previous studies [16,18]. In contrast, a reduction in
COLIA1 synthesis has been reported in the co-culture of NFs with NKs using culture plate inserts
or by adding keratinocyte conditioned media [11,12]. Bellemare et al. found that the addition of
NKs to dermal sheets (reconstructed using NFs isolated from normal human skin) had no significant
effect on the production of collagen type I [9]. However, in this study the addition of NK1 increased
collagen production in NF1 but not NF2. One explanation for this may be that NK1 and NF1 were
isolated from the same skin, and the variable response observed may reflect the variations reported in
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previous studies [9,11,12]. KKs from two patients decreased the production of COL1A significantly
by NF1 but not NF2. The ability of normal fibroblasts to respond to the addition of KKs can be
affected by several elements such as differences between keloid samples (e.g., severity of the disease),
differences between normal skin samples, body site, and age of individuals. For example, the level of
collagen deposition has shown to be reduced as the age of tissues and cells advanced [26]. In terms
of body site, NF1 was isolated from the upper arm which is a region known to develop keloid scar
while NF2 was isolated from the forearm, a less prone area to keloid formation [2]. Broadly, these
results are important to consider in therapeutic interventions since it appears not all patient cells are
expressing the same signaling molecules or have the same phenotype, despite all being from keloid
scars. Understanding the molecular basis for the heterogeneity of the responses identified here will
be an important consideration for future intervention into keloid scars. Further work examining the
profile of secreted molecules, potentially using a proteomic approach, may help identify key signaling
components for future study.

Our findings showed that the treatment of KFs with KKs led to a marked reduction in collagen
production in all of the three patient samples tested. There was a similar trend observed when NKs
were added but was only significant in one patient. The contradictory results reported in the current
study compared to previous studies may result from several issues including sample demographic
data and methodology. There are several technical differences between studies, including lower cell
density in this study and the use of the ‘scar-in-a-jar’ method, both of which can impact on collagen
production [27,28]. In this study, samples were also collected from different anatomical body sites (e.g.,
chest, neck, shoulder, and sternum) while control samples were from the upper arm which is an area
known to develop keloid scars. Lim et al. and Phan et al. used samples collected only from the earlobe
and for their control used samples from foreskin [16,18]. The use of primary adult cells and multiple
samples from different patients supports that the current findings likely reflect the diversity and nature
of the response. Another difference that may contribute is the quantitative method used. This study
quantifies collagen production via direct staining of deposited collagen without the need of destroying
ECM or cells. In contrast, previous studies have used RNA and protein lysates to perform western blot
and northern blot which requires destruction of cell layers in order to quantify collagen [16,18].

Altered collagen production by fibroblasts in coculture with keloid keratinocytes may be linked
to signals required for wound closure [29]. The effects may be mediated by cytokines such as
IL-1 and IL6 [29,30], or to secreted microvesicles or exosomes that are increasingly being identified
as important in epithelial-mesenchymal communication [31,32]. Overall, the results of this study
suggest that the synthesis of COL1A in fibroblasts is at least partly regulated by soluble factors
released by keratinocytes and that these pathways are altered in keloid disease. This suggests that
keratinocyte:fibroblast cross-talk may be a potential avenue for future therapies. Further exploration is
needed to clarify the role of epithelial:mesenchymal signaling in keloid pathogenesis. Moreover, the
significant variation observed likely reflects true biological variation observed clinically and may be a
reason for previous conflicting reports. Here, the use of primary cells from multiple adult patients and
body sites provides additional insight above that of many models previously used into the nature of
the keratinocyte–fibroblast interaction in keloid disease. The main limitation of this study is the use of
keloid tissue with differences in severity of disease, body sites, age, and ethnicity of individual. Future
work taking these factors into consideration is needed to better understand the changes in biology
associated with keloid scarring. Another limitation in this study includes the use of small sample size.

5. Conclusions

Our findings revealed that keloid keratinocyte modulation of collagen production by both keloid
and normal fibroblasts suggests important signaling between these cells in keloid disease. The
difference in response between normal and keloid fibroblasts also suggests significant dysregulation of
normal signaling pathways. Further work to identify the key factors and dysregulated pathways may
provide an opportunity for future therapeutic amelioration of keloid scars.
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