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ABSTRACT We report the assembly and annotation of a high-quality genome sequence
for Myxococcus xanthus strain DZ2 (GenBank accession number CP080538), created using
a combination of short reads generated using DNBSEQ technology (BGI Genomics) and
long high-fidelity (HiFi) reads generated using Pacific Biosciences (PacBio) technology.

The Myxococcus xanthus isolate (GenBank accession number CP080538) reported here
was originally acquired by David Zusman from the Roger Stanier collection at UC Berkeley

and named DZ2 (1). While this work was in progress, Jain et al. (2) reported the assembly of a
Myxococcus xanthus DZ2 isolate of similar origin (CP070500). While the assembly submitted
under GenBank accession number CP070500 represents a big improvement over the previ-
ously reported draft DZ2 assembly (3), the assembly reported here (CP080538) is both larger
in size and different in gene content (Table 1).

Cells ofMyxococcus xanthus strain DZ2, derived from frozen stock from the Roger Stanier
collection at UC Berkeley, were grown in liquid CYE medium (10 g/L Casitone and 5 g/L yeast
extract), 8 mM MgSO4, and 10 mM 3-(N-morpholino)propanesulfonic acid (MOPS), pH 7.6, at
32°C, harvested by centrifugation, and frozen in liquid nitrogen. The pellet was ground into a
fine powder, and DNA was extracted by lysing the cells with cetyltrimethylammonium bro-
mide (CTAB) at 65°C. The DNAwas purified using phenol/chloroform/isoamyl alcohol, followed
by ethanol precipitation. DNA sequencing was performed by BGI Genomics using two differ-
ent technologies: DNBSEQ and high-fidelity (HiFi) PacBio sequencing. Construction of the DNA
libraries, DNA sequencing, and quality control (QC) of the long HiFi reads and the short reads
derived from PCR-free rolling circle replication of the DNA nanoballs were all performed by
BGI Genomics using their standard operating procedures (SOP) (4).

Sequencing generated a total of 436,127 HiFi PacBio subreads with an average length of
9,018 bp, totaling 3,933.4 Mbp (representing 420-fold genome coverage), and;10.2 million
100-bp paired-end DNBSEQ reads, totaling 2,042.54 Mbp (representing 218-fold coverage).
Small reads that passed our standard quality control (QC) protocol (5) and large reads with a
quality value (QV) of .20 or .99% accuracy were used for assembly. Genome assembly
was performed using HiCanu version 2.1.1-Java-1.8 (6), Unicycler version 0.4.8 (7), and Velvet
version 1.2.10 (8, 9). We performed a total of 48 assemblies (36 HiCanu, 11 Unicycler, and 1
Velvet). The parameters used and the associated resulting data are described in a supple-
mental Zenodo repository (10). The largest circular contig of the HiCanu assemblies (contig
tig00000005 of Assembly 33), was;23.8 kbp larger than the largest Unicycler assembly and
was thus selected for analysis. We then used PSI-CD-HIT version 4.8.1/blastn version 2.12.01
(11–14) to verify that the smaller homologous contigs generated by the other assemblies
were contained within this largest HiCanu assembly (10). Given that all the smaller homolo-
gous contigs were indeed contained within the largest HiCanu contig (tig00000005), this
contig was then declared as our genome assembly and submitted to the NCBI databases
(10). Genome annotation was performed using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) version 5.2 (15). The CP080538 assembly presented here differs from the
CP070500 assembly in many ways. The CP080538 assembly is 6.4 kbp larger than the
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CP070500 assembly, and while it has five more genes and 11 more pseudogenes, it
also has six fewer coding sequences (CDSs). Both assemblies have the same number
of rRNAs, tRNAs, ncRNAs, and CRISPR arrays (Table 1).

Data availability. The raw data associated with this publication have been deposited
at NCBI under BioProject accession number PRJNA748417 and SRA accession numbers
SRX11508707 (PacBio reads) and SRX11508706 (Illumina reads). The complete genome
sequence has been deposited in GenBank under accession number CP080538.1. The differ-
ent genome assembly commands and resulting assembly files generated throughout this
work have all been deposited at Zenodo (10).
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