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Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via
cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over,
glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other
metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect
metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the
adipose tissue as a key player in metabolic inflammation.

Cell Death & Differentiation; https://doi.org/10.1038/s41418-022-01062-4

FACTS

● Obesity induces cell death and inflammation in the adipose
tissue.

● Cell death within the adipose tissue induces inflammation-
associated metabolic syndromes.

● Cell death machinery and NF-κB-mediated inflammation
regulate energy homeostasis and insulin sensitivity.

● The crosstalk between adipocytes and adipose-tissue macro-
phages initiates systemic metabolic inflammation during
obesity.

OPEN QUESTIONS

● Is cell death required to induce metabolic inflammation?
● Is there a “healthy” and an “unhealthy” way to die during

excessive lipid uptake? And does it depend on the metabolic
organ in which these events happen?

● Does activation of cell death machinery directly modulate
metabolic processes, such as energy expenditure, during
obesity?

INTRODUCTION
Obesity is now considered a global disease as it affects over 1.9
billion people worldwide [1]. Obesity is a state of low-grade chronic
inflammation that causes an array of different metabolic disorders,
including insulin resistance (IR), Type 2 Diabetes, hypertension,
cardiovascular disease, dyslipidemia and even cancer [2]. In recent

years, studies have demonstrated a strong link between over-
nutrition and activation of the innate immune system as the
leading cause of energy imbalance in most organs [1].
The white adipose tissue (WAT) is an endocrine and lipid storage

organ that plays a pivotal role in obesity-associated disorders.
Efficient lipid storage prevents ectopic lipid deposition and toxic lipid
accumulation (lipotoxicity) in non-specialised organs, such as muscle,
liver and heart, and it correlates with preserved metabolic function
[3]. The WAT is mainly composed of preadipocytes or adipocyte
precursors (AP) and adipocytes as well as of different types of
immune cells, including macrophages, dendritic cells, T cells and B
cells. Immune cells in WAT collectively monitor and maintain
adipocyte integrity, metabolic function and hormonal sensitivity
[4, 5]. Macrophages are the most abundant innate immune cells
infiltrating and accumulating into WAT; they constitute up to
40–50% of all WAT cells. During obesity, adipose tissue macrophages
(ATM) are polarized into pro-inflammatory M1-like macrophages and
secrete many pro-inflammatory cytokines, such as TNF, capable of
impairing insulin signalling, therefore, promoting the progression of
IR. Although many factors are involved in the increased recruitment
of macrophages into WAT during obesity, it is mainly attributed to
adipocyte death. Macrophages are generally found surrounding
dead adipocytes forming the typical crown-like structure (CLS), and
the presence of these structures is directly associated with IR in mice
and men [6, 7].
Adipocytes do not only play a role in lipid storage, but also on

metabolism and inflammation through the secretion of cytokines
and adipokines, such as leptin and adiponectin [8]. Leptin is
considered to be the satiety hormone and it has pro-inflammatory
functions [9, 10]. Adiponectin, in contrast, has anti-inflammatory
properties by downregulating cytokines, such as TNF, MCP-1, and
IL-6 [11, 12]. In obese individuals leptin plasma levels raises while
adiponectin tends to decrease [13, 14]. Adipokines regulate
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energy expenditure as well as glucose and lipid metabolism
through the metabolic regulator, AMP-activated protein kinase
(AMPK) [15]. AMPK is an intercellular energy sensor, which is
sensitive to AMP:ATP ratios [16]. AMPK promotes energy
conservation by shutting down anabolism (gluconeogenesis, fatty
acid synthesis) and activating catabolic pathways (β-oxidation,
ATP production) [17] (Fig. 1). Even though this kinase responds to
several stimuli that exhaust ATP levels in cells, it can also be
phosphorylated, and activated, in response to adiponectin and
leptin stimulation in organs such as skeletal muscle [18, 19]. The
only exception to this, is the hypothalamus, where leptin acts by
decreasing AMPK activity, potentially explaining why leptin
specialises in suppressing food intake [19].
In obesity, there is a dynamic remodelling of the WAT in which

adipocytes can either increase in size (hypertrophy) or in number,
following differentiation from AP, or adipogenesis, (hyperplasia).
WAT can be classified in two main compartments, subcutaneous
(SAT) and visceral (VAT). Each of them bearing specific metabolic
functions and characteristics. They present different patterns of
gene expression, including genes involved in adipocyte function
and development [20]. Notably, VAT-APs are more resistant to
differentiation into adipocytes and are more sensitive to cell death
than SAT-APs [21]. This phenomena can also greatly contribute to
inflammation and metabolic syndromes [8]. In general terms,
whereas SAT expands by adipocyte hyperplasia, VAT predomi-

nantly expands by adipocyte hypertrophy in response to excess
food intake [22]. Indeed, VAT is the fat depot that undergoes
major cell death and inflammatory procceses [23]. Hypertrophic
adipocytes secrete inflammatory cytokines such as TNF and IL-6,
causes recruitment and activation of immune cells whilst reducing
adiponectin and anti-inflammatory cytokines production [24, 25].
This state of low-grade chronic inflammation eventually results in
lipotoxicity, systemic inflammation and metabolic syndromes.
Furthermore, activated macrophages during obesity, although at
first essential for healthy tissue expansion and remodelling, when
sustained they can lead to fibrosis and impaired adipogenesis [21].
These events result in a vicious cycle of inflammation, cell death
and metabolic dysbalance that together cause metabolic syn-
dromes. Notably, this condition also promotes a protumorigenic
microenvironment that induces or supports tumour growth in
cancers that are linked to obesity such as breast, liver and colon
carcinomas [26].
Inflammation, cell death and metabolic processes are highly

interlinked processes during obesity and a tight balance between
these processes is crucial to prevent metabolic diseases. Here we
review the literature of the signalling events governed by the
pleiotropic immune mediator, TNF, and a pathogen sensing
system, the inflammasome, during obesity with a focus on the
current knowledge regarding cell death regulation in the WAT and
its impact on metabolic inflammation.

Fig. 1 Crosstalk between NF-κB and metabolic pathways. TNF induces NF-κB activation via the assembly of a complex which includes RIPK1,
the E3 ligases cIAP1/2 and LUBAC which ubiquitinate and stabilise the complex, and the kinase complexes IKKɑ/β/ɣ (NEMO) and TAK1/TAB1/2.
The thereby activated IKKɑ/β/ɣ(NEMO) complex promotes degradation of the inhibitor of kB (IκB) and activation of NF-κB (here exemplified as
p50/RelA/p65) which translocates to the nucleus and activates target genes. Activation of NF-κB then results in the inhibition of AMPK and
Insulin signalling (red arrows and blockers). AMPK is a sensor of low ATP and induces a plethora of catabolic processes to uptake/produce
energy whilst blocking processes that required energy (ATP) (green arrows and blockers). Activation of both Adiponectin Receptor (AdR) and
Leptin Receptor (LepR) induces AMPK phosporylation and glucose uptake. Insulin sensing by Insulin Receptor (IR) is crucial for glucose uptake
by activating Akt and allowing the activity of glucose transporters (GLUT4).
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THE HORROR AT THEIR CRIMES IS LOST IN THE ADMIRATION
AT THEIR SKILLS: CULPRITS TNF AND IL-1β
The key importance of TNF signalling in obesity-induced
inflammation and metabolic complications was vastly demon-
strated in animal models and also in humans. Indeed, although
still a matter of debate, TNF neutralisation improves glucose
homeostasis and reduces diabetes risk in human patients [27].
Likewise, IL-1β is an important regulator of inflammation during
obesity as its neutralisation ameliorates obesity-induced inflam-
mation [28].
The signalling cascade that is unleashed following binding of

TNF to its cognate receptor, TNFR1, results in activation of the
nuclear factor κB (NF-κB) and mitogen-activated protein kinase
(MAPK) via the formation of a receptor signalling complex, also
known as complex I [29] (Figs. 1 and 2). This complex facilitates
the activation of IKKɑ/β/ɣ(NEMO) and TAK1/TAB1/2 complexes.
This leads to the transcriptional activation of genes, amongst
which chemokines and cytokines including TNF itself, IL-6, and
other prosurvival proteins, such as BCL2 and cFLIP. In principle, the
latter prevents induction of cell death via intrinsic or extrinsic
pathways, respectively [30].
TNF, in certain circumstances, can also induce cell death by

recruitment of Caspase-8 and RIPK1 or TRADD to FADD to form
the so called, complex II or cell death complex [31] (Fig. 2). This

platform induces apoptosis via the activation of the effector
caspase, Caspase-3 [32]. Active Caspase-8 can also crosstalk with
the mitochondrial cell death pathway via the cleavage of Bid
which can induce mitochondrial permeabilization [33]. Apoptosis
is not the only cell death modality that can be induced by death
receptors. RIPK1 can further recruit RIPK3 which leads to activation
of the pseudokinase MLKL that oligomerises to form pores in the
membrane ultimately leading to necroptosis [34]. Necroptosis is a
highly inflammatory type of cell death [35, 36] and, importantly, it
results in a secretome that is different from the secretome of
apoptotic cells [37]. Notably, necroptosis is inhibited by Caspase-8
via the cleavage-mediated inactivation of RIPK1. Thus, loss of
Caspase-8 unleashes necroptosis in the developing embryo
resulting in embryonic lethality [38, 39].
Another type of cell death, that was best described to occur in

immune cells, can be triggered as a result of Caspase-8 and -3
activation. Emerging evidence shows that proteins called Gasder-
mins are substrates of these caspases [40–43]. Gasdermin family
members, which include Gasdermin A, B, C, D and DFNA5/
Gasdermin E, are pore-forming proteins that allow the release of
mature IL-1β and induce a type of cell death called pyroptosis
upon cleavage-mediated activation [44]. Under certain pathologi-
cal conditions, Caspase-8 can directly cleave and activate
Gasdermin D or indirectly, via activation of Caspase-3, Gasdermin

Fig. 2 Different ways to die upon activation of death receptors of the TNFR1 family. Under pathological conditions, TNF can induce the
formation of cell death complexes. Apoptosis is induced by formation of a RIPK1/FADD/Caspase-8 (Casp-8) complex. This results in cleavage
and activation Casp-3 and apoptosis or, in certain conditions, Gasdermin D (GsmdD) and pyroptosis. Necroptosis is induced by recruitment of
RIPK1 and RIPK3 which are activated by autophosphorylation. This leads to phosphorylation of MLKL which subsequently forms pores in the
membrane. Canonical pyroptosis requires a priming event to upregulate the expression of inflammasome components, NRLP3, ASC and
Caspase-1, such as TLR4 activation by Lipopolysaccharides (LPS). Pyroptosis is induced upon activation of NLPR3 by DAMPs such as ATP.
Inflammasome formation consists of oligomerised NRLP3/ASC/pro-Caspase-1 (Casp-1). This platform leads to activation of Casp-1 which
cleaves GsdmD that forms pores in the membrane and induces pyroptosis. Casp-1 also processes pro-IL-1β maturation which is then released
by GsdmD pores. Pyroptosis can also be induced by a GsdmE, which can be cleaved and activated by Casp-3. GsdmE can amplify cell death
responses by forming pores not only in cellular membranes but also in the mitochondrial membrane. The cell death programs, other than
requiring the expression and activation of different proteins, are characterised by their specific secretomes. P: Phosphorylated protein. NF-κB
activation prevents cell death complex formation. Apoptotic and Necroptotic machineries negatively regulate each other.
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E. Gasdermin E is currently described as a bona-fide Caspase-
3 substrate that mediates secondary necrosis/pyroptosis down-
stream of mitochondrial cell death activation [40–43]. This may in
part explain the inflammatory character of mitochondrial cell
death activation which was long thought to be immunologically
silent. Notwithstanding, the main source of mature IL-1β is
produced and secreted by the canonical inflammasome activation
following a priming signal, such as activation of Toll-like receptor
(TLR4) by lipopolysaccharides (LPS) derived from bacteria leaking
from gut or by free fatty acids (FFA) in the context of obesity. This
priming event is required to induce the expression of NF-κB-
driven NLRP3, pro-Caspase-1 and pro-IL1β [45]. NLRP3 together
with ASC and pro-Caspase-1 assemble in a platform called
cannonical inflammasome following NLRP3 activation by damage
associated molecular patterns (DAMPs) such as ATP. There are,
however, other sensors that can form a variety of inflammasome
platforms. Whereas the NLPR3 senses DAMPs, the NLRP1 sense
viral particles and dsRNA, NLRC4 senses pathogen associated
molecular patterns (PAMPs) and AIM2 senses dsDNA [46].
Inflammasome formation results in the activation of Caspase-1
that cleaves pro-IL1β and Gasdermin D. Activated Gasdermin D
oligomerises in the membrane and forms pores from which
mature IL1β, among other cytokines, is released (Fig. 2) [45].

IT IS A MISTAKE TO CONFOUND MYSTERY WITH
MISUNDERSTANDING: THE NF-κB CONUNDRUM
Obesity is associated with inflammatory changes in WAT that lead
to IR, which is the inability to sense insulin and uptake blood
glucose and other nutrients. This is the primary cause of several
metabolic syndromes such as Type 2 Diabetes [8]. During obesity,
the NF-κB signalling pathway is activated in metabolic tissues and
has important implications in obesity-induced IR [47–49]. In
response to overnutrition, NF-κB signalling does not only
contribute to systemic inflammation by promoting the generation
of inflammatory cytokines and chemokines, but also to insulin
resistance by directly interfering with the insulin signalling
pathway [47] (Fig. 1). For example, IKKβ directly phosphorylates
and inhibits the insulin receptor substrate (IRS), an essential
adaptor of the activated insulin receptor (IR) (Fig. 1) [47]. The latter
resulting in a weak or null response to insulin.
Our understanding of how inflammatory signalling is affected in

different metabolic tissues derives from animal models and grew
exponentially with the availability of conditional transgenic mice
(Table 1). A pioneer study found that reduced IKKβ signalling, either
by salicylate inhibition or decreased IKKβ expression (Ikkβ+/−), is
accompanied by decreased FFA and improved insulin sensitivity in
genetically obese db/db mice and Zuckerfa/fa rats [50]. Salicylate
treatment was able to overcome the inhibition of insulin signalling
by TNF stimulation, implying that the IKKβ pathway may contribute
to IR in Type 2 Diabetes and obesity by impinging on insulin
signalling [50]. Another seminal study showed that deficiency of
IKKβ in hepatocytes improves glucose tolerance and insulin
sensitivity upon high fat diet (HFD). The authors show that IKKβ
negatively regulates insulin signalling in hepatocytes since IKK
deficiency in these cells led to an improved insulin signalling in mice
under HFD or in genetically obese ob/ob mice [51]. IKKβ deficiency
in hepatocytes did not affect insulin sensitivity in other metabolic
organs such as muscle and WAT. Likewise, mice bearing loss of IKKβ
in myeloid cells retain global insulin sensitivity and were protected
from IR during HFD or in ob/ob mice [51]. This implies that NF-κB
signalling in myeloid cells plays a crucial role in systemic obesity-
induced inflammation, whereas the role of NF-κB signalling in the
liver is restricted to this tissue. In line with this, inhibition of NF-κB by
siRNA against p65 subunit protects HFD-fed mice from hepatic
steatosis and insulin resistance without affecting body weight gain.
Notably, p65 siRNA predominantly affected NF-κB transcriptional
activity in the liver but, importantly, not in the WAT [52].

Interestingly, the authors highlighted a crosstalk between NF-κB
signalling pathway and liver AMPK/mTOR/autophagy pathway since
p65 siRNA enhanced the activity of AMPK and activated genes
involved in autophagy such as beclin1 in the liver (Fig. 1). This
finding links NF-κB with metabolic pathways and energy home-
ostasis [52]. A different report suggests that expression of NF-κB in
ATM prevented ATM death by induction of anti-apoptotic gene
expression during obesity [53]. The latter is supported by the recent
report showing that A20 deficiency in myeloid cells results in
increased NF-κB activation and, although this was associated with
increased inflammation, the typical CLS surrounding dead adipo-
cytes were absent upon HFD [54]. Notably, loss of A20 in myeloid
cells results in a protection against HFD-induced IR and increased
energy expenditure due to elevated ATM metabolism [54] (Table 1).
Other studies support a crosstalk between NF-κB signalling and

metabolic pathways (Fig. 1), and how its activation amplifies the
pro-inflammatory state associated with obesity [47]. Increased NF-
κB activation in ATMs during HFD, correlates with an increased
expression of IKKε, a known NF-κB target gene. IKKε-deficient mice
gain less weight upon HFD and are protected against insulin
resistance. These mice have reduced inflammation in the liver and
WAT with reduced expression of proinflammatory genes in
adipocytes and ATM. IKKε-deficient mice also display increased
thermogenesis and enhanced expression of Uncoupling proteins
(UCP) 1 an important enzyme in oxidative phosphorylation and
downstream target of AMPK. Hence, the reduced inflammation
could be associated with an overall amelioration of the metabolic
status of the animals which results in decreased inflammation [55].
In line with this, a small molecule inhibitor of TBK1/IKKε axis,
amlexanox, showed increased thermogenesis accompanied by
elevated energy expenditure. Likely as a consequence of this, it
resulted in weight loss, improved insulin sensitivity and decreased
steatosis in obese mice fed with HFD [56] (Table 1).
The impact of NF-κB activation on metabolic syndromes

appears to be highly cell type and tissue specific [47]. Whereas
NF-κB activation in liver and ATMs is associated with increased
inflammation and hindered energy expenditure, in adipocytes this
association is less clear. Two studies show that overexpression of
p65 specifically in adipocytes [57] or the constitutive activation of
IKKβ in adipocytes [58] both lead to increased energy expenditure
in basal conditions. These mice display, in addition, increased
insulin sensitivity and are protected from excess body weight gain
upon HFD despite suffering from exaggerated local and systemic
inflammation. In stark contrast, two studies show that targeted
deletion of IKKβ in adipocytes, whilst it does not affect body
weight, food intake, and energy expenditure, it results in an
exaggerated diabetic phenotype with systemic inflammation
when challenged with HFD [59, 60]. Mice lacking IKKβ in
adipocytes present dystrophic adipose tissue (lipodystrophy) and
ectopic lipid deposition upon HDF, unveiling a role of IKKβ in
adipocyte survival and adipose tissue remodelling during obesity
[59]. This may indicate that although increased NF-κB during
obesity regulates energy homeostasis, the complete loss of IKKβ in
adipocytes, may results in excessive cell death since it has
important implications in cell death regulation independently of
its function in NF-κB activation [61] (Fig. 2). Of note, this similar
observation was made with NEMO deficiency in the liver [62–64].
The body of literature highlighted here demonstrates that NF-

κB signalling not only regulates inflammation during obesity but it
is directly linked to energy expenditure by regulation of AMPK and
glucose uptake/proliferation by regulation of insulin signalling
(Fig. 1). In addition, it remains clear that NF-κB signalling and/or
the IKK kinase complex can regulate cell death, inflammation and
other metabolic signalling events in a tissue specific manner,
which merely depends on the nature and function of the tissue. In
an expanding WAT, a certain amount of NF-κB-mediated
inflammation is advantageous to prepare the tissue to uptake
lipids on demand and prevent FFA spillage by inhibiting AMPK
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Table 1. Role of NF-κB activation in obesity-induced inflammation.

Tissue Target Model Major Findings Reference

Protein

Full body NF-κB HFD or Lepob/ob ↑Antiapoptotic proteins in WAT [53]

↑NF-κB in ATMs

↓cleaved Casp3 in WAT and ATMs cell death.

p65 inhibition by siRNA in HFD ↑pAMPK in liver but not in WAT. [52]

= Body weight gain.

↓NF-κB and mTOR.

Ø Hepatic steatosis and insulin resistance.

p50−/− in HFD ↑NF-κB, inflammation, ATMs, food intake and energy
expenditure.

[57]

↓Body weight and differentiation capacity.

↓Leptin and PPARγ in WAT.

IKKβ IKK-β inhibition Zuckerfa/fa rats and Lepob/ob mice: [50, 99]

↑Glucose tolerance.

= Body weight and food intake.

↓Insulin resistance, Normal and fasting glucose, FFA,
triglycerides [50]

HFD:

↓Insulin resistance [99]

Ikk-β+/− in HFD or Lepob/ob mice Ø insulin resistance [50]

IKKε HFD ↑IKKε expression in WAT, liver, and macrophages. [55]

Ikkε−/−:

↓WAT inflammation, hepatic steatosis and insulin resistance.

TBK1 / IKKε HFD ↑IKKε and TBK1 in WAT and liver during obesity. [56]

TBK1/IKKε inhibition:

↑energy expenditure, thermogenesis, and insulin sensitivity.

↓Body weight and hepatic steatosis.

Adipose tissue NF-κB p65OE in HFD Lean: ↑NF-κB, inflammation, ATMs and energy expenditure. [57]

= food intake and insulin sensitivity.

↓Body weight.

Obese: ↑NF-κB, inflammation, ATMs food intake, energy
expenditure and insulin response.

↓Body weight.

IKKβ Over expression of Ikkβ in
adipose tissue in HFD

Lean: ↑glucose tolerance, insulin tolerance, and energy
expenditure.

[58]

↓Blood glucose levels.

Obese: ↑systemic and tissue inflammation.

↓Weight and triglycerides of WAT

↓Triglycerides in liver and muscle.

HFD ↑IL-13 in WAT [60] [59, 60]

IkkβA-KO :

↑WAT inflammation, ATMs infiltration glucose intolerance and
insulin-resistance [59, 60]

↑lipolysis, FFA circulation, hepatic cholesterol and primary
adipocytes cell death [59]

= Body weight, food intake and energy expenditure [59, 60]

↓Epididymal fat mass [59] and IL-13 (anti-inflammatory
protective role in adipocytes) [60]

TBK1 HFD ↑TBK1 in adipocytes, lipid storage [100]

↓AMPK

Tbk1A-KO:

↑p-AMPK, pAKT, energy expenditure, WAT inflammation, ATMs
infiltration, insulin resistance and glucose intolerance.

= Body weight.
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(anabolic profile). However, in the liver, the contrary needs to
happen in order to increase energy expenditure (catabolic profile)
and avoid ectopic lipid deposition. For instance, excessive
inflammation by NF-κB impairs AMPK-mediated energy expendi-
ture resulting in major lipid deposition, feeding the inflammatory
loop and inducing IR.
In conclusion, it is clear that NF-κB plays a unique role in

metabolic inflammation depending on the cell type/organ. Yet, it
is still uncertain what is the threshold of NF-κB activity that is
either required for WAT remodelling or detrimental for energy and
metabolic homeostasis. Most importantly, to what extent and how
NF-κB signalling regulates cell death processes during obesity is
currently not entirely understood.

EXAMINATION OF A CRIME SCENE: APOPTOSIS AND/OR
NECROPTOSIS IN WAT
It is currently accepted that adipocyte death is a key initial event
that contributes to macrophage infiltration into adipose tissue and
IR associated with obesity in both mice and humans [65]. Indeed,
90% of macrophages infiltrating the adipose tissue of obese
animals and humans are arranged around dead adipocytes,
forming characteristic CLS [6, 7]. Surprisingly, even though
adipocyte death is such a common feature in WAT upon obesity,
little is known about the impact of different types of cell death, in
particular those induced by ligands of the TNF family.
The Fat Apoptosis Through Targeted Activation of Caspase-8

(FAT-ATTAC) model demonstrated the impact of Caspase-8-

Table 1. continued

Tissue Target Model Major Findings Reference

Protein

↓Fat mass, adipocyte size.

Liver NEMO / IKKα/β Nemohep-KO Spontaneous steatohepatitis, and tumorigenesis [62–64] [62–64]

HFD:

↑↑↑steatosis, inflammation, apoptosis and tumorigenesis in
liver [62]

↓PPRƔ [62]

Nemohep-KONF-κBhep-KO or Nemohep-KOIkkα/βhep-KO:

↑Apoptosis, spontaneous steatohepatitis and hepatocarcinoma
[63, 64]

NEMO deletion rescues IKKα/βhep-KO from cholestasis by Ø liver
necrotic foci (↓RIPK3 ↑cleaved Caspase-3 levels) but mice
develop hepatocarcinoma) [64]

Nemohep-KOIkkβca-hep:
↑IKK-β /NF-κB Ø liver damage, hepatocarcinogenesis and
hepatocyte apoptosis by ØRIPK1 activity.

NEMO’s protective role is partially dependent of NF-κB [63]

IKKβ HFD Ikk-βhep-KO [51, 99]

↑Insulin resistance in muscle and WAT [51]

= Liver insulin response [51]

Ikkβhep-OE :

↑NF-κB, proinflammatory cytokines (IL-6, IL-1β and TNF-α), lipid
accumulation and insulin resistance [99]

Ikkβhep-OEIκBαSR:

↓IκBα ↓Inflammation on Ikkβhep-OE and WT [99]

Myeloid cells IKKβ Ikk-βmye-KO in HFD = Global insulin sensitivity. [51]

Ø Insulin resistance.

MVP (NF-κB
inhibitor)

HFD ↑MVP in ATMs. [101]

Mvpmye-KO:

↑NF-κB in macrophages, Insulin resistance, hepatic steatosis,
atherosclerosis, macrophages infiltration and activation.

A20/RIPK3 HFD A20mye-KO: [54]

↑NF-κB, inflammation in WAT, palmitate oxidation, ATMs, food
and oxygen consumption.

↓CLS, FFA, Triglycerides, Cholesterol, blood glucose, insulin,
leptin.

ØGain weight, glucose intolerance, insulin resistance.

A20mye-KORipk3−/−: same phenotype as A20mye-KO

↑ increase, promote; = equals, not modification; ↓ decrease; Ø blocks.
A-OE Adipocytes over expression, KO knock-out, A-KO adipocytes KO, ATMs adipose tissue macrophages, ca-hep constitutively active in hepatocytes, CLS
Crown-like structures, FFA free fatty acids, hep-OE hepatocytes overexpression, hep-KO hepatocytes KO, HFD high fat diet, HSD high sucrose diet, mye-KO
myeloid cells (macrophages) KO, OE over expression, siRNA small interfering RNA, SR super repressor.
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mediated apoptosis in the WAT. Induced expression and
activation by dimerisation of Caspase-8 in this model resulted in
local inflammation and adipocyte death which was accompanied
by marked glucose intolerance [66]. This damage was totally
reversible and the WAT from animals in which forced Caspase-8
activation does not persist can fully recover. Yet, glucose
intolerance is not fully reversible. This suggests that, although
endogenous preadipocytes can successfully differentiate and
regenerate the adipose tissue, a transient stress in the WAT can
have long-lasting or even permanent effects on systemic
inflammation and metabolism. Despite displaying elevated food
intake, FAT-ATTAC mice fail to gain weight when crossed with ob/
ob mice. This indicates that the adipocytes from these mice have
an impaired ability to uptake lipids independently of leptin
signalling or food intake, and that this failure causes lipotoxicity in
peripheral organs. FAT-ATTAC mice presented increased ATM
infiltration and, curiously, the majority of these ATMs were
alternatively activated anti-inflammatory M2-like macrophage
upon Caspase-8 activation [67]. Hence, whilst apoptosis of
adipocytes is sufficient to initiate a large influx of macrophages
into WAT, they are of anti-inflammatory character, at least upon
forced activation of Caspase-8 [67] (Table 2).
The FAT-ATTAC model clearly shows that apoptosis causes

metabolic syndromes. Yet it is a rather acute model. Other models,
however, also support the role of WAT apoptosis in metabolic
inflammation. Mice deficient for FADD specifically in adipocytes
are protected from glucose intolerance and IR in WAT, liver and
muscle upon HFD feeding or when in a ob/ob background [68]. In
addition, these mice display reduced WAT inflammation and
increased energy expenditure. The authors attribute this pheno-
type to a role of FADD in suppressing PPARɣ-mediated gene
expression since a mutation in FADD that abolishes PPARɣ-
inhibition increased mitochondria, energy expenditure, and
lipolysis in WAT by increasing cAMP levels [68] (Table 2). This
suggests that FADD may interfere with adipogenesis and healthy
expansion of the WAT during obesity. It is puzzling that FADD
deficiency does not unleash necroptosis in adipocytes as it does in
many other cells [40, 69, 70]. Yet, the authors did not focus on cell
death in this study. Instead, this work provides robust evidence of
a crosstalk between apoptosis and energy homeostasis.
In line with apoptosis playing a key role in obesity-induced

inflammation, an interesting report shows that genetic deletion of
Bid, which links the death receptor- with the mitochondrial- cell
death pathways, significantly reduces caspase activation and
adipocyte apoptosis in response to HFD. Thereby, BID-deficient
mice displayed decreased to null ATM infiltration and were
protected against the development of IR and hepatic steatosis.
Interestingly, this protection was independent of body weight
gain [65]. In the liver, cFLIP-hepatocyte-specific deletion protected
mice and primates from HFD-induced steohepatitis [71] (Table 2).
Another study reports that RIPK3-deficient mice fed with HFD

become, surprisingly, glucose intolerant and highly insulin
resistant [72]. This was independent of RIPK3-mediated signalling
in ATMs. RIPK3-deficient mice presented massive liver damage
and apoptosis in both WAT and liver. This prompted the authors
to test whether excessive apoptosis in the liver was responsible for
this unexpected phenotype. However, whereas full body Caspase-
8 deficiency protects RIPK3-deficient mice from HFD-induced
inflammation and glucose intolerance, Caspase-8 deficiency in
hepatocytes does not. This suggests that adipocyte apoptosis, but
not hepatocyte apoptosis, may be the triggering event of
metabolic inflammation in the absence of RIPK3.
The fact that RIPK3 loss induces apoptosis and sensitises mice to

inflammation upon HFD is puzzling. RIPK3 is able to regulate
inflammatory signalling independently of its role in cell death
[31, 73, 74]. It is thus, intriguing, to speculate that, in adipocytes,
RIPK3 serves as an inflammatory modulator rather than a killer
protein. Notably, RIPK3 was reported to have a role in

mitochondrial biogenesis and fatty acid oxidation in tumour
associated macrophages [75–77]. Hence, RIPK3 may play a role in
obesity-induced inflammation by mechanisms that go beyond
necroptosis, possibly by preventing apoptosis in WAT or by direct
regulation of inflammation and energy homeostasis (Table 2).
Although, the evidence so far suggests that the necroptosis in

WAT does not occur or does not induce detrimental inflammation,
other recent studies might indicate that the opposite is true.
Necroptosis hallmarks are extremely rare (to detect) in human
pathologies. Yet, obese individuals with or without Type 2
Diabetes showed massive expression of RIPK3 which correlated
with activation of necroptosis as shown by increased phosphory-
lated MLKL [72]. In addition, a study performed on humans and
mice discovered that polymorphisms in RIPK1 found in obese
patients, positively correlate with increased body-mass index (BMI)
[78]. These obesity-associated polymorphisms in the RIPK1 gene
functionally result in elevated RIPK1 expression in adipose tissue
in humans, and elevated RIPK1 expression in mice. Indeed,
attenuation of RIPK1 expression using shRNA prevented body
weight gain upon HFD and the metabolic dysfunctions associated
with it, including inflammation and hepatic steatosis. In line with
this, another study shows that inhibition of the kinase activity of
RIPK1 using Necrostatin 1, ameliorated the metabolic syndromes
associated with HFD such as glucose intolerance and IR, while
having no effect on body weight gain [79] (Table 2).
The last piece of evidence suggesting that necroptosis is

implicated in the inflammatory consequences of obesity comes
from studies using mice deficient for MLKL. Two independent
reports showed that loss of MLKL prevents inflammation,
metabolic dysfunction and hepatic steatosis upon HFD [79, 80].
However, neither of these reports link this phenotype with
necroptosis. Instead, it appears that MLKL has a direct role in
hepatic insulin signalling independently of inflammation [79].
Noteworthy, one of these studies found that MLKL-deficiency
prevented body weight gain indicating a potential contribution of
MLKL to energy metabolism. Unfortunately, there is little focus on
the inflammatory or cell death features in WAT and hence the
understanding of the role of MLKL in obesity-induced inflamma-
tion requires further investigation.
Apoptosis and necroptosis are highly interlinked cell death

pathways. Therefore, in order to understand what is happening at
the physiological level requires the study of both cell death
modalities in parallel. Importantly, because of the crosstalk
between inflammation and energy homeostasis, it is quite crucial
to dissect the cell death versus the non-cell death functions of
these components in order to clearly understand the processes
that regulate obesity-induced inflammation.

THE MANY FAECES OF INFLAMMASOME ACTIVATION DURING
OBESITY
IL-1β is, together with TNF, amongst the most important
proinflammatory cytokines known to interfere with insulin
signalling, which in the case of IL-1β, it is mediated by targeting
IRS-1 [81]. Randomised clinical trials have shown that blockade of
IL-1β with Anakinra leads to a sustained reduction in systemic
inflammation and improvement of Type 2 Diabetes [82, 83]. Obese
and Type 2 Diabetes patients were reported to have elevated
expression of all classical inflammasome components, including
NLRP3, ASC, Caspase-1 and IL-1β in both liver and visceral adipose
tissue. Furthermore, NLRP3 silencing ameliorates LPS-induced
inflammation and fibrosis in human visceral adipocytes [84]. Yet,
the exact molecular pathway and the cellular systems involved in
inflammasome activation and pyroptosis in the context of obesity
are not very clear (Table 2).
The role of Caspase-1 during obesity is controversial since some

studies reported that its loss results in an increased body weight
gain but without metabolic abnormalities [85, 86]. Further insight
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was provided in a study showing that Caspase-1/11-deficient
mice, which have increased body weight gain and liver steatosis
upon HFD, as previously reported, present a dysregulation of gut
microbiota that modulates liver lipid content leading to steatosis
[87]. Interestingly, gut microbiota was also affected in mice lacking
NLRP3 in response to HFD. Yet, in this case, NLRP3-null mice were
protected from liver steatosis and cardiovascular disease [88].
Whether this is a cell death-mediated phenotype was not
explored in any of these reports. However, it is likely that in the
absence of Caspase-1/11 or NLRP3, pyroptosis is impaired upon
HFD thereby rewiring cell death and inflammatory processes
which could greatly affect the microbiome balance in the gut
(Table 2).
A recent study reports that both Caspase-1 and NLRP3 are

implicated in adipogenesis and insulin sensitivity and, contrary to
previous reports, Caspase-1-deficient mice are protected against
body weight gain as well as from becoming IR upon HFD [89].
Similar observations were made using a Caspase-1 inhibitor [90].
These findings correlate with a similar protection observed in
NLRP3- and IL-1β-deficient mice [89]. Additional studies link
inflammasome activation with thermogenesis since IL-1β treat-
ment impaired cAMP-induced elevation of UCP1 and other
substrates in mouse and human adipocytes [91]. The authors
claim that activation of inflammasome in ATMs during obesity
induces the release of IL-1β which interferes with the metabolic
capacity of bystander adipocytes [91]. Given the importance of
inflammasome activation during obesity due to FFA or production
of oxygen species, it has been proposed that obese patients are
more susceptible to pathogen infection, mainly by viruses, by
mechanisms that depend on pyroptosis of macrophages [92]. This
link was particularly prominent in obese patients infected with
COVID-19 [92] and NLRP3 inhibitors may be beneficial to these
patients.
Contrary to NLRP3 and ASC, which are upregulated in WAT in

obese individuals. Other NLR family members including NLRP1,
NLRC4, and AIM2 showed similar levels of expression in WAT
between lean and obese individuals [93]. In mice, NLRP1 deletion
leads to intrinsic lipid accumulation, spontaneous obesity and
metabolic syndrome. This phenotype was attributed to IL-18
production since IL-18 is increased in WAT of obese NLPR1-null
mice and IL-18-deficient mice also develop metabolic syndrome
[94–96]. Furthermore, NLRP1 activation improves glucose toler-
ance and insulin sensitivity through IL-18-mediated lipolysis
[94–96]. Yet, the relevance of these findings in humans remains
to be evaluated.
In the last years, inflammasome research has slightly shifted

towards understanding the role of Gasdermins, the final executor
of pyroptosis, in different pathological conditions [44, 97]. A very
recent study showed that patients with NASH and NAFLD have a
massive increase in the N-terminal fragment of Gasdermin D,
which is the activated form of this killer protein [98] (Fig. 2). In
addition, they showed that Gasdermin D loss results in protection
from steatohepatitis upon methionine-choline deficient diet or
HFD [98]. Curiously, Gasdermin D is apparently involved in
lipogenesis in hepatocytes possibly via NF-κB-mediated AMPK
regulation as described in previous sections. Whether this is a
consequence of pyroptotic cell death or a direct role of Gasdermin
D in metabolic processes is not yet clear (Table 2).
In sum, although the implication of inflammasome activation in

adipocytes has not been entirely demonstrated, there is no
question that macrophage-inflammasome activation triggers
systemic inflammation during obesity and it is one of the main
culprits of metabolic syndromes. Despite a huge amount of work
on the role of inflammasome activation in metabolic disorders, we
are still lacking an understanding of pyroptotic cell death in WAT
upon obesity and its metabolic implications. Also, the importance
of pyroptosis in different cellular compartments can have distinct

contributions to inflammation and energy homeostasis and this
topic warrants future investigation.

CONCLUDING REMARKS
Obesity is a disease that has a multifactorial origin and is
associated with multiple metabolic syndromes. Understanding
the aetiology of obesity-induced inflammation has, therefore,
caught the attention of many scientists and clinicians alike. After a
huge amount of work during decades of research, we now
understand how the inflammatory signalling cascades that are a
hallmark of obesity are highly interlinked with energy homeostasis
and insulin signalling. The role of cell death in metabolic
syndromes has also received some attention in the last decade
given the importance of cell death in regulating inflammation and
metabolism. Yet, there is still a long way to go to address important
questions, regarding the interplay between inflammation and
obesity as well as the crosstalk between different metabolic tissues.
At present, what type of cell death prevails during obesity is ill-
defined. We also lack a clear picture of whether and how
different cell death types that can be triggered by different factors
(e.g. cytokines, lipids, DAMPs, PAMPs, etc) affect metabolic
inflammation.
In the modern world, the environmental pressure is no longer

determined by the lack of nutrients, but rather by their excessive
availability. Human beings have not yet adapted to these modern
circumstances and hence obesity is a factual clinical issue.
Therefore, understanding and defining molecular processes taking
into consideration the function of each individual organ is
required in order to tackle, either by pharmacological or
behavioural means, metabolic syndromes.
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