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Elevated circulating lactate has been associated with obesity and insulin

resistance. The aim of the current study was to determine if lactate-induced

lysine lactylation (kla), a post-translational modification, was present in human

skeletal muscle and related to insulin resistance. Fifteen lean (Body Mass Index:

22.1 ± 0.5 kg/m2) and fourteen obese (40.6 ± 1.4 kg/m2) adults underwent a

muscle biopsy and 2-h oral glucose tolerance test. Skeletal muscle lactylation

was increased in obese compared to lean females (19%, p < 0.05) and associated

with insulin resistance (r = 0.37, p < 0.05) in the whole group. Skeletal muscle

lactylation levels were significantly associated with markers of anaerobic

metabolism (plasma lactate and skeletal muscle lactate dehydrogenase

[LDH], p < 0.05) and negatively associated with markers of oxidative

metabolism (skeletal muscle cytochrome c oxidase subunit 4 and Complex I

[pyruvate] OXPHOS capacity, p < 0.05). Treatment of primary human skeletal

muscle cells (HSkMC) with sodium lactate for 24 h increased protein lactylation

and IRS-1 serine 636 phosphorylation in a similar dose-dependent manner (p <
0.05). Inhibition of glycolysis (with 2-deoxy-D-glucose) or LDH-A (with sodium

oxamate or LDH-A siRNA) for 24 h reduced HSkMC lactylation which paralleled

reductions in culture media lactate accumulation. This study identified the

existence of a lactate-derived post-translational modification in human skeletal

muscle and suggests skeletal muscle lactylation could provide additional insight

into the regulation of skeletal muscle metabolism, including insulin resistance.
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Introduction

Elevated blood lactate has been linked to health conditions including cancer (de la

Cruz-Lopez et al., 2019) and sepsis (Lee and An 2016), and is considered a risk factor for

the development of type 2 diabetes (Juraschek et al., 2013). Fasting lactate levels have been

reported to be increased in obese and type 2 diabetics compared to healthy individuals
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(Reaven et al., 1988; Lovejoy et al., 1992; Crawford et al., 2008),

and associated with insulin resistance (Lovejoy et al., 1992;

Chondronikola et al., 2018). Furthermore, interventional

studies proven to improve insulin sensitivity, including

exercise (Chondronikola et al., 2018; Jones et al., 2019),

bariatric surgery (Jones et al., 2019), and weight loss

(Chondronikola et al., 2018) have reduced blood lactate levels

in obese individuals. Taken together, these studies suggest lactate

may be a biomarker for metabolic dysregulation, including

insulin resistance.

Skeletal muscle, the main source of lactate, plays a vital role in

glucose homeostasis with approximately 70–80% of insulin-

mediated glucose uptake taking place in this tissue (DeFronzo

et al., 1981). Skeletal muscle insulin resistance is considered the

primary defect leading to the development of type 2 diabetes

(DeFronzo and Tripathy 2009) making skeletal muscle the ideal

tissue to identify metabolic defects contributing to insulin

resistance. During carbohydrate metabolism, glucose enters

the muscle cell and undergoes glycolysis to produce pyruvate.

Pyruvate enters the mitochondria to be converted to acetyl-CoA

by pyruvate dehydrogenase (PDH) (oxidative metabolism) (45)

or is converted to lactate via lactate dehydrogenase (LDH;

anaerobic metabolism). Defects in skeletal muscle

mitochondria often precede the development of metabolic

disease (Petersen et al., 2004; Ritov et al., 2005) and likely

contributes to lactate accumulation in obese, insulin resistant

individuals when pyruvate production exceeds oxidative

capabilities (Avogaro et al., 1996). Similarly, we have reported

that older adults with impaired insulin-stimulated skeletal

muscle PDH function have elevated plasma lactate when

normalized to insulin-stimulated glucose uptake (Consitt

et al., 2016). It is speculated that impaired skeletal muscle

PDH activity in the elderly results in the preferential shuttling

of pyruvate to lactate during hyperinsulinemia. Collectively,

these findings suggest that imbalances in pivotal metabolic

enzymes contribute to the buildup of lactate, however it

remains unclear if the accumulation of this metabolite is

simply a consequence of metabolic dysfunction or if it could

act as a signaling molecule in skeletal muscle to further elicit

metabolic disease.

In 2019, a novel role for lactate was discovered which

involves lactate-induced addition of lactyl groups to lysine (K)

residues, termed lactylation (Zhang et al., 2019). Early research

investigating this post-translational modification focused on the

lactate induced-lactylation of histones in cell lines and the

subsequent effects on gene transcription. Treatment of MCF-7

cells with conditions to promote lactate via hypoxia or rotenone

resulted in increased histone lactylation, whereas treatment of

cells with glycolytic inhibitors including 2-deoxy-D-glucose (2-

DG) and oxamate, reduced histone lactylation (Zhang et al.,

2019). More recently, global lysine lactylome analysis of the

fungal pathogen, Botrytis cinerea, identified 166 lactylated

proteins of which 27% were located within the mitochondria

(Gao et al., 2020). Similarly, Meng et al. (Meng et al., 2021)

recently reported 342 lactylated proteins in developing rice, with

a high concentration of these proteins located within glycolytic

and TCA cycle metabolic pathways. Collectively, these studies

demonstrate a novel role for lactate as a signaling molecule with

possible downstream consequences on gene regulation and

metabolism. The purpose of the current study was to utilize

both in vivo and in vitro experiments to determine if lactate-

induced lactylation occurred in human skeletal muscle and

whether this post-translational modification was associated

with insulin resistance in humans.

Methodology

Human subjects

Fifteen lean (BMI: 22.1 ± 0.5 kg/m2) and fourteen obese

(40.6 ± 1.4 kg/m2) men and women were recruited to undergo an

oral glucose tolerance test (OGTT) and skeletal muscle biopsies.

Characteristics of the subjects are provided in Table 1. Briefly, all

participants were sedentary (participated in less than one hour of

organized physical activity per week), nonsmokers, and were not

taking medications known to alter carbohydrate or lipid

metabolism. Females participated during the follicular phase

of their menstrual cycle (days 1–6) and all participants had

maintained a constant body mass (±2 kg) in the 6 months

before the experimental session. The protocol was in

accordance with the Declaration of Helsinki and was

approved by Ohio University.

During the study, participants reported to the Clinical

Translational Research Unit (CTRU) at Ohio University on

two separate occasions. During the first session, subjects

provided their informed consent, completed a health

questionnaire, and had body composition measured by dual

X-ray absorptiometry. On the second visit, participants

arrived at the CTRU between 0700 and 0800 after a 12-h

overnight fast for the OGTT and muscle biopsies.

OGTT and muscle biopsies

For the OGTT, a catheter was placed into a peripheral vein

and a baseline blood sample was obtained (-5 min). A 75g glucose

beverage (Trutol 75, Fisher Scientific) was ingested within 2 min,

and blood plasma was obtained every 15 min for a 2-h period and

stored at -80 °C for the subsequent analysis of glucose, insulin and

lactate. Plasma glucose and lactate were analyzed in duplicate

using the YSI 2300 STAT Plus Glucose and Lactate Analyzer (YSI

Inc., Yellow Springs, Ohio). Plasma insulin was measured using a

human insulin ELISA kit (Millipore, Burlington, MA). The

Matsuda Index was calculated from the OGTT and used as a

measure of insulin sensitivity. For the current study, a skeletal
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muscle biopsy was obtained at baseline from the vastus lateralis

using the percutaneous needle biopsy technique and immediately

trimmed of any visible connective or adipose tissue and placed in

either BIOPS buffer (10 mM Ca-EGTA buffer, 0.1 µM free

calcium, 20 mM imidazole, 20 mM taurine, 50 mM K-MES,

0.5 mM DTT, 6.56 mM MgCl2, 5.77 mM ATP, 15 mM

phosphocreatine, [pH 7.1]) for respiration studies

(~10–15 mg) or frozen in liquid nitrogen for subsequent

protein analyses.

Permeabilized muscle fiber respiration

To further investigate the relationship between lactylation

and PDH function, complex I (pyruvate supported) OXPHOS

capacity was analyzed in permeabilized skeletal muscle fibers.

Due to limited tissue availability, this was only completed in a

subset of study participants (lean n = 4, obese n = 4).

Mitochondrial respiration was measured using the Oroboros

Oxygraph-2K (Oroboros Instruments, Innsbruck, Austria) as

previously described (Miotto et al., 2020; Monaco et al., 2021).

Briefly, muscle fibers were separated and permeabilized in BIOPS

buffer supplemented with saponin (30 µg/mL) and washed in

respiration buffer (MiR05; pH 7.0) containing EGTA (0.5 mM),

MgCl2·6H2O (3 mM), K-lactobionate (60 mM), KH2PO4

(10 mM), HEPES (20 mM), sucrose (110 mM), and fatty acid-

free BSA (1 g/L). Permeabilized fibers were added to

MiR05 buffer in the oroboros chambers followed by the

addition of 2 mM malate (Sigma-Aldrich, St. Louis, MO),

5 mM pyruvate (Sigma-Aldrich) and 5 mM ADP (Sigma-

Aldrich) to determine pyruvate-supported complex I

OXPHOS capacity. Respiration rates were normalized by the

initial muscle wet weight.

Primary cultures of human skeletal muscle
cells (HSkMCs)

Muscle biopsies (50–100 mg) were obtained from the vastus

lateralis of eight women (n = 8) using the percutaneous needle

biopsy technique. Satellite cells were isolated, cultured and

cryopreserved for subsequent HSkMC experiments, as

previously described (Bell et al., 2010; Consitt et al., 2010).

For experiments, HSkMCs were thawed on passage 2 or 3 and

subcultured onto 6-well type I collagen-coated plates. After

reaching approximately 80% confluency, myoblasts were

differentiated into myotubes by switching growth media to

differentiation media (Dulbecco’s Modified Eagle’s Medium

supplemented with 2% horse serum, 0.5 mg/ml BSA, 0.5 mg/

ml fetuin, and 50 U/ml penicillin/streptomycin). Data are

presented as biological replicates (HSkMC from different

individuals).

Primary human skeletal muscle cell
experiments

To determine the effects of lactate on HSkMC insulin

resistance, myotubes on Day 5 of differentiation were treated

with 20 mM sodium chloride (control) or different

concentrations of sodium lactate (0 mM, 10 mM, 20 mM)

for 24 h and phosphorylation of IRS-1 on serine residue

636, a marker of insulin resistance (Bouzakri et al., 2003;

Vlavcheski and Tsiani 2018; Den et al., 2020; Vlavcheskih

et al., 2020), was measured by western blot procedures

(described below). Additionally, IRS-1 serine

phosphorylation was measured in response to HSkMC

LDH-A siRNA treatment (described below).

To determine the effects of lactate on myotube lactylation, a

series of experiments were initiated on Day 5 of myotube

differentiation. To investigate the direct effects of exogenous

lactate on protein lactylation, myotubes were incubated with

20 mM sodium chloride (control) or different concentrations of

sodium lactate (0 mM, 1 mM, 10 mM, 20 mM, or 40 mM) for

24 h. To determine the effects of hyperglycemia on HSkMC

lactylation and lactate accumulation, myotubes were exposed

to media containing low glucose (5.6 mmol/L) or high glucose

(25 mmol/L) for 24 h. To determine the effects of glycolysis

inhibition on HSkMC protein lactylation and lactate

accumulation, myotubes were incubated with 2-DG (0 mM,

5mM, or 10 mM) for 24 h. To investigate the effects of

inhibiting the conversion of pyruvate to lactate, myotubes

TABLE 1 Participant characteristics.

Lean
individuals (n = 15)

Obese
individuals (n = 14)

Sex (M/F) 8/7 7/7

Age (years) 19.9 ± 0.7 22.3 ± 1.2

Body Mass Index (BMI) 22.1 ± 0.5 40.6 ± 1.4*

Body Fat (%) 25.7 ± 1.6 43.0 ± 1.0*

Insulin Sensitivity (Matsuda Index) 7.7 ± 1.2 2.4 ± 0.5*

Data are presented mean ± SEM. *p < 0.05 vs lean individuals.
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were treated with sodium oxamate (0 mM vs 20 mM), a specific

chemical inhibitor of LDH-A.

For all experiments, HSkMC were washed twice with ice-

cold PBS on Day 6 and harvested in lysis buffer (50 mmol/L

HEPES [pH 7.4], 1% Triton X-100, 10 mmol/L EDTA,

100 mmol/L NaFl, and 12 mmol/L Na pyrophosphate)

supplemented with protease and phosphatase inhibitors

(Sigma-Aldrich). Cell lysates were stored at -80°C for later

protein analysis.

LDH-A siRNA transfection

On Day 3, primary human myotubes were transfected with

12.5 nM of either validated silencer select siRNA to target LDH-

A or Silencer Select negative control (ThermoFisher Scientific,

Waltham, MA). Transfections were performed with

Lipofectamine RNAiMAX transfection reagent (Invitrogen,

Carlsbad, CA) in Opti-MEM reduced serum media

(ThermoFisher Scientific), according to manufacturer’s

guidelines. After 24 h (Day 4), the medium was removed and

replaced with fresh differentiation media. On Day 5 of

differentiation, the medium was removed and replaced with

fresh differentiation medium (5.6 mM glucose) or

differentiation medium with 20 mM glucose for 24 h. On Day

6, cells were harvested as described above.

To provide further evidence that glycolysis and LDH-A were

inhibited during the above experiments, culture medium was

collected prior to harvesting cells and lactate concentrations

determined. Briefly, media was spun at 12,000 x g for 10 min

at 4°C, and L-lactate measured with a YSI 2300 STAT Plus

Glucose and Lactate Analyzer (YSI Inc., Yellow Springs,

Ohio). Lactate concentrations were normalized to myotube

total protein per well.

Western blot (immunoblot) procedures

Skeletal muscle was homogenized in lysis buffer and

protein content was determined for both tissue and

HSkMC. Western procedures were performed as previously

described (Consitt et al., 2008; Consitt et al., 2013; Consitt

et al., 2017; Consitt et al., 2018). Briefly, 20 μg of cell lysate

were separated by SDS-PAGE, electrotransferred onto

polyvinylidene difluoride membranes (Millipore, Billerica,

MA) and probed overnight with l-lactyllysine (PTM

Biolabs, Chicago, IL), LDH-A (Santa Cruz Biotechnology,

Santa Cruz, CA), COXIV (Cell Signaling, Danvers, MA),

phosphorylation of IRS-1 (Ser636, Cell Signaling), or

Histone H3 (Cell Signaling). Samples were normalized to a

control sample on each gel. IRS-1 phosphorylation levels were

additionally normalized to IRS-1 total protein (Cell

Technology) after membranes were stripped, as previously

reported (Consitt, Koves et al., 2016). Non-phosphorylated

protein was normalized to tubulin (Cell Signaling).

Membranes probed with l-lactyllysine were later stained

with Coomassie Blue (Biorad, Hercules, CA).

Statistics

Analyses were performed using SPSS version 28.0 software

(SPSS Inc., Chicago, IL). Pearson correlation coefficients were

used to measure the strength of associations between skeletal

muscle lactylation and metabolic variables. An unpaired t-test

was used to compare skeletal muscle lactylation levels between

lean and obese individuals. A paired t-test was used to

determine the effects of sodium oxamate treatment. One-way

ANOVA was used to determine the effects of sodium lactate

and 2-DG doses on HSkMC lactylation and phosphorylation of

IRS-1 on serine 636. A two-way ANOVA was used to determine

the effects of LDH siRNA under different glucose doses on

HSkMC lactylation and IRS-1 phosphorylation on serine 636.

Data are presented as means ± SEM. Statistical significance was

defined as p < 0.05.

Results

Human Skeletal Muscle Lactylation,
obesity and insulin sensitivity

There was a tendency for obese individuals to have higher

(13%, p = 0.09) skeletal muscle lactylation levels than lean

individuals. When lactylation levels were further analyzed by

sex, obese females had higher levels than lean females (19%, p <
0.05, Figure 1A). Fasting skeletal muscle lactylation was

positively associated with fasting plasma lactate levels in all

individuals (r = 0.47, p < 0.05, Figure 1C). Insulin sensitivity,

as measured by theMatsuda Index was negatively associated with

muscle lactylation levels (r = -0.37, p < 0.05, Figure 1D) in the

whole group.

Human Skeletal Muscle Lactylation is
negatively associated with markers of
skeletal muscle oxidative metabolism

Skeletal muscle lactylation levels were positively

associated with skeletal muscle LDH (r = 0.46, p < 0.05,

Figure 2A) and negatively associated with the

mitochondrial marker, COXIV (r = -0.45, p < 0.05,

Figure 2B). Complex I (supported by pyruvate) OXPHOS

capacity in permeabilized muscle fibers was negatively

associated with skeletal muscle lactylation in a subset of

study individuals (r = -0.71, p < 0.05, n = 8, Figure 2D).
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Lactate-induced IRS-1 serine
phosphorylation in primary human
skeletal muscle cells

Treatment of primary HSKMC with lactate for 24 h resulted

in an increase in IRS-1 phosphorylation on serine 636 in a dose-

dependent manner (p < 0.05, Figure 3A). In response to

decreased LDH-A expression (~-55%, p < 0.05), HSkMC IRS-

1 serine 636 phosphorylation was reduced (~-48%, p < 0.01,

Figure 3B), despite elevations in IRS-1 total protein (~50%, p <
0.05, Figure 3B) under both low (5.6 mM) and high glucose

(20 mM) culture media concentrations.

Lactate-induced lactylation in primary
human skeletal muscle cells

Treatment of primary HSkMC with lactate for 24 h resulted

in an increase in protein lactylation in a dose-dependent manner

(p < 0.005, Figure 4). To determine the effects of endogenous

lactate production on skeletal muscle lactylation, HSkMC were

exposed to increased concentrations of glucose, chemical

inhibitors of glycolysis and LDH siRNA technology

(Figure 5A). Myotubes exposed to increased (20 vs. 5.6 mM)

glucose concentrations for 24 h resulted in increased lactate

accumulation (p < 0.05, Figures 5B,D) and increased HSkMC

FIGURE 1
Skeletal Muscle Lactylation in Lean and Obese Individuals. Quantification of skeletal muscle lactylation in lean (male = 8, female = 7) and obese
(male = 7, female = 7) individuals (A). Skeletal muscle lactylation levels were normalized to Coomassie Blue (total protein) and presented relative to
total protein. *p < 0.05 vs lean females. Human skeletal muscle representative blot for pan-kla and Coomassie blue (B). Relationship of fasting plasma
lactate and skeletal muscle lactylation in the whole group (n = 29) (C). Relationship of insulin sensitivity (Matsuda Index) and skeletal muscle
lactylation in the whole group (n = 29) (D). In all instances skeletal muscle lactylation levels were normalized to Coomassie Blue (total protein) and
presented in arbitrary units (AU). Data is expressed asmean ± SEM. Light blue circles represent data points for leanmales; light pink squares represent
data for lean females; dark blue triangles represent data points for obese males; dark pink diamonds represent data from obese females.
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lactylation ~20% (p < 0.05, Figures 6A,C). Twenty-four-hour

treatment of HSkMC with 2-DG, a glucose analogue that acts to

competitively inhibit the production of glucose-6-phosphate,

reduced lactate in the culture supernatant (p < 0.05,

Figure 5B) and reduced skeletal muscle lactylation in a dose-

dependent manner (p < 0.01, Figure 6A). Treatment of HSkMC

with the sodium oxamate, an LDH-A chemical inhibitor, for 24 h

decreased both the concentrations of lactate in culture (-44%, p <
0.05, Figure 5C) and HSkMC lactylation (-18%, p < 0.05,

Figure 6B). Additionally, treatment of HSkMC with LDH

siRNA (decreased LDH-A protein content ~ -55%, p < 0.05),

decreased media culture lactate concentrations (~-36%, p < 0.05,

Figure 5D) and HSkMC lactylation (~-15%, p < 0.05, Figure 6C)

under both low (5.6 mM) and high glucose (20 mM) culture

media concentrations.

Discussion

In the current study we demonstrate for the first time that the

post-translational modification, lactylation, is present in human

skeletal muscle. Lactylation levels were associated with both

circulating lactate and insulin resistance in humans, and

tended to be higher with obesity, especially in females

(Figure 1). To our knowledge, this is the first study to

demonstrate lactate-induced lactylation in human skeletal

FIGURE 2
Relationship Between Human Skeletal Muscle Lactylation and Markers of Skeletal Muscle Anaerobic/Oxidative Metabolism. Relationship of
skeletal muscle LDH-A protein expression and skeletal muscle lactylation in the whole group (n = 29) (A). Relationship of skeletal muscle COXIV
protein expression and skeletal muscle lactylation in thewhole group (n = 29) (B). LDH-A andCOXIVwere normalized to tubulin and lactylation levels
were normalized to Coomassie Blue. Representative blots for skeletal muscle COXIV and LDH-A in lean and obese males and females (C).
Relationship between skeletal muscle complex I (pyruvate supported) OXPHOS capacity in permeabilized skeletal muscle fibers and skeletal muscle
lactylation in subset of study individuals (n = 4 lean, n = 4 obese) (D). All skeletal muscle protein values are presented in arbitrary units (AU). Data is
expressed as mean ± SEM. Light blue circles represent data points for lean males; light pink squares represent data for lean females; dark blue
triangles represent data points for obese males; dark pink diamonds represent data from obese females.
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muscle and provides additional insight into the relationship

between lactate and insulin resistance. Previous research has

reported that fasting lactate levels were associated with reduced

glucose disposal rates during a hyperinsulinemic-euglycemic

clamp in obese individuals (Chondronikola et al., 2018) and

type 2 diabetics (Crawford et al., 2010). Furthermore,

interventional studies that improve insulin sensitivity,

including exercise training (Chondronikola et al., 2018; Jones

et al., 2019) and bariatric surgery (Jones et al., 2019) have been

found to effectively reduce blood lactate levels. Despite this

knowledge, it has remained unclear if lactate accumulation

was simply a byproduct of metabolic dysfunction or could act

as a signaling molecule to regulate protein changes in skeletal

muscle.

The present study provides new evidence for a role of lactate

in regulating lactylation in human skeletal muscle. Utilizing

clinical samples from lean and obese individuals, we observed

a strong, positive relationship between fasting plasma lactate

levels and skeletal muscle lactylation (Figure 1C). Chu et al. (Chu

et al., 2021) previously reported that circulating lactate was

associated with histone lactylation in the peripheral blood

mononuclear cell (PBMC) of healthy and septic individuals

(Chu et al., 2021). Despite in vivo results providing critical

physiological relevance, they unfortunately do not prove

insight into causation. To address whether lactate has a direct

role in lactylation, we cultured primary HSkMC from human

donors and observed a dose-dependent increase in myotube

lactylation in response to exogenous lactate (Figure 4), similar

to that reported in other cell types (Zhang et al., 2019). While our

current findings do not provide a causal role of lactylation on

skeletal muscle insulin resistance, it is significant to note that we

also observed a lactate-induced increase in IRS-1 serine

FIGURE 3
Lactate-Induced IRS-1 Serine Phosphorylation on Site 636 in Primary Skeletal Muscle Cells. Quantification of IRS-1 serine 363 phosphorylation
in human primary skeletal muscle cells in response to increasing sodium lactate concentrations (n = 3 for NaLa dose response, n = 2 for NaCl control)
with representative blot (A). Quantification of phosphorylation on serine site 636 in HSkMC in response to negative control (Silencer Select) and LDH
siRNA under low glucose (LG, 5.6 mmol/L) and high glucose (HG, 20 mmol/L) treatment (n = 3) and representative blot (B). Data is expressed as
mean ± SEM. *p < 0.05 main effect for inhibitory treatment; †p < 0.05 low glucose vs high glucose. Sample size (n) represents biological replicates
from HSkMC derived from different individuals.
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636 phosphorylation (Figure 3A) which paralleled lactylation

levels. Hyperphosphorylation of IRS-1 serine 636 has been

previously reported in insulin resistant conditions

(Bouzakri et al., 2003; Vlavcheski and Tsiani 2018; Den

et al., 2020; Vlavcheski et al., 2020), including the HSkMC

derived from type 2 diabetic donors (Bouzakri et al., 2003).

Given the vital role that skeletal muscle has in regulating

insulin sensitivity and the fact that previously identified post-

translational modifications including phosphorylation,

acetylation and malonylation have been associated with

metabolic dysfunction (Tanti and Jager 2009; Du et al.,

2015; He et al., 2020), the current study establishes the

framework for future research to investigate the direct

effects of lactylation on skeletal muscle metabolism,

including insulin sensitivity.

Lactate accumulation is the net balance between lactate

production and clearance. Like in vivo models, human skeletal

muscle cells exposed to hyperglycemic conditions increase

glycolytic flux and lactate production (Lund et al., 2019).

Therefore, we initially investigated the effects of excess glucose

availability on myotube lactylation. As expected, myotube

lactylation levels were increased in response to elevations in

culture glucose (Figures 6A,C). In contrast, addition of 2-DG, an

upstream inhibitor of glycolysis, diminished endogenous lactate

accumulation (Figure 5B) and reduced myotube lactylation

(Figure 6A). A minor limitation of the current study was that

we did not investigate the impact of lactate transport on

lactylation levels and that the measurement of culture lactate

was likely the product of changes in both lactate production and

lactate oxidation rates, especially during hyperglycemic

conditions (Lund et al., 2019). Regardless, the focus of the

current study was to investigate lactylation levels in response

to conditions that promoted lactate accumulation. Taken

together, these results demonstrate that skeletal muscle

lactylation levels increase in response to elevated glycolytic

flux and lactate accumulation, similar to that reported in

other cell types (Zhang et al., 2019; Yu et al., 2021).

There is clear evidence that the intracellular fate of glucose

becomes dysregulated during insulin resistance. The preferential

shuttling of glucose to lactate at the expense of oxidation or

glycogen storage have been well documented in insulin resistant

conditions (Shulman et al., 1990; Consitt et al., 2016; Zou et al.,

2019). It is thought that the imbalance of pivotal intracellular

enzymes or pathways may contribute to this favored shuttling of

glucose towards lactate. For example, impaired mitochondrial

TCA flux (Zou, Hinkley et al., 2019) and reduced PDH function

(Consitt et al., 2016) have been suggested as potential

contributors to the enhanced pyruvate to lactate conversion in

insulin resistant conditions. Given this knowledge, it is not

surprising that we found that individuals with lower skeletal

muscle COXIV expression (mitochondrial protein) had higher

levels of skeletal muscle lactylation (Figure 2B). Additionally, we

observed a strong negative relationship between skeletal muscle

lactylation levels and the rate of complex I (pyruvate supported)

OXPHOS capacity in permeabilized muscle fibers from a subset

of subjects (Figure 2D). In contrast, we found that skeletal muscle

lactylation was positively associated with skeletal muscle

expression of LDH-A (Figure 2A), the protein responsible for

the conversion of pyruvate to lactate. The role of LDH-A in

lactylation was further strengthened when we demonstrated that

decreasing LDH-A expression (via siRNA technology) or

inhibiting LDH-A activity (via sodium oxamate) in human

myotubes was sufficient to decrease protein lactylation

(Figures 6C and B, respectively). Together, these results

support the notion that individuals with an enhanced skeletal

muscle anaerobic to oxidative capacity ratio would be at risk for

FIGURE 4
Lactate-Induced Lactylation in Primary Humans Skeletal Muscle Cells. Quantification of lactylation in human primary skeletal muscle cells in
response to increasing sodium lactate concentrations (n = 3 for NaLa dose response, n = 2 for NaCl control) (A). Myotube lactylation levels were
normalized toCoomassie Blue. Representative blot for pan-kla andCoomassie blue (B). Data is expressed asmean± SEM. **p < 0.005main effect for
lactate dose. Sample size (n) represents biological replicates from HSkMC derived from different individuals.
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excess lactate accumulation and potentially enhanced skeletal

muscle lactylation.

The goal of the current study was to determine if lactylation was

present in human skeletal muscle utilizing a pan anti-Kla antibody

commonly used to identify lactylation in other cell types (Zhang

et al., 2019; Chu et al., 2021; Cui et al., 2021; Hagiharai et al., 2021;

Jiang et al., 2021; Meng et al., 2021). The confirmation of lactate-

induced lactylation in human skeletal muscle advocates for future

research to identify the specific proteins that undergo lactylation.

Lactate-induced lactylation was first discovered on the histones of

M1 macrophages (Zhang et al., 2019) with subsequent studies

continuing to focus on these nuclear proteins (Chu et al., 2021;

Cui et al., 2021; Jiang et al., 2021; Pan et al., 2022). Histones consist of

a central histone fold and lysine-rich tails that undergo various post-

translational modifications that affect chromatin structure and

transcription (Li and Delaney 2019). While the current study did

not directly measure histone lactylation, it is reasonable to assume

that the lactate-induced lactylation of the 17 kDa molecular weight

protein (Figure 4) was a histone protein. To help validate this

assumption, we stripped membranes and reprobed with a Histone

H3 antibody and produced a band of similar molecular weight

(17 kDa). Conditions that stimulate glucose uptake including

exercise and insulin stimulation have been proven to affect other

post-translational modifications of histones in skeletal muscle

(Kabra et al., 2009; McGee et al., 2009; Pandorf et al., 2009;

Zheng et al., 2012; Lim et al., 2020) and skeletal muscle histone

acetylation and methylation have been reported in diabetic animal

models (Yonamine, et al., 2019), highlighting the susceptibility of

histones to these modifications in skeletal muscle.

More recently, lactylation of non-histone proteins been reported

in both the plant fungus Botrytis cinerea (Gao et al., 2020) and

developing rice (Meng et al., 2021). Global profiling of the lysine

lactylome in developing rice identified a total of 638 lactylation sites

on 342 proteins and that approximately 33% and 10% of these

FIGURE 5
Culture Media Lactate Accumulation in Response to Glycolytic Intervention. Model of pharmacological and siRNAmethodology to manipulate
lactate accumulation (A). Culture media lactate concentrations in response to 24 h low glucose (LG, 5.6 mmol/L) and high glucose (HG, 20 mmol/L)
treatment and in response to 24 h 2-DG treatment (n = 3) (B). Culture media lactate concentrations in response to 24 h sodium oxamate treatment
(n = 3) (C). Culture media lactate concentrations in response to negative control (Silencer Select) and LDH siRNA under low glucose (LG,
5.6 mmol/L) and high glucose (HG, 20 mmol/L) treatment (n = 8) (D). Lactate concentrations were presented relative to myotube protein
concentrations per well. Data is expressed as mean ± SEM. *p < 0.05 main effect for inhibitory treatment; †p < 0.05 low glucose vs high glucose.
Sample size (n) represents biological replicates from HSkMC derived from different individuals.
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FIGURE 6
Human Primary Skeletal Muscle Cell Lactylation in Response to Glycolytic Intervention. Quantification of primary human skeletal muscle cell
(HSkMC) lactylation in response to 24 h low glucose (LG, 5.6 mmol/L) and high glucose (HG, 20 mmol/L) treatment and in response to 24 h 2-DG
treatment (n = 3) and representative blot for pan-kla (A). Quantification of HSkMC lactylation in response to 24 h sodium oxamate treatment (n = 3)
and representative blot for pan-kla (B). Quantification of HSkMC lactylation in response to negative control (Silencer Select) and LDH siRNA
under low glucose (LG, 5.6 mmol/L) and high glucose (HG, 20 mmol/L) treatment (n = 8) and representative blot for pan-kla (C). Myotube lactylation
levels were normalized to Coomassie Blue. Data is expressed as mean ± SEM. *p < 0.05main effect for inhibitory treatment; †p < 0.05 low glucose vs
high glucose. Sample size (n) represents biological replicates from HSkMC derived from different individuals.
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lactylated protein were located in the cytoplasm and mitochondria,

respectively. Furthermore, a large portion of enzymes located within

the glycolytic and TCA cycle pathway contained lactylated sites,

including PDH, citrate synthase, and malate dehydrogenase (Meng

et al., 2021). While it remains unknown what role, if any, lactylation

may have on the function of these proteins, it is intriguing that

several proteins associated with insulin resistance also contain

lactylation sites, at least in rice. These global lactylome findings

combined with our present findings warrant future research to

identify the lactylated proteins in skeletal muscle and determine the

physiological significance of this post-translational modification.

In summary, the findings from the current study

demonstrate for the first time that lactylation is present in

human skeletal muscle and is associated with circulating

lactate and insulin resistance in humans. Supporting our in

vivo findings, we observed lactate-induced lactylation in

primary HSkMC which paralleled increases in IRS-1 serine

phosphorylation. Furthermore, inhibiting the glycolytic

pathway, which is often upregulated in insulin resistant

conditions, decreased human myotube lactylation levels. The

current study provides the framework for future studies to

identify the specific proteins that undergo lactylation in

skeletal muscle and determine the metabolic consequences of

this new post-translational modification in skeletal muscle.
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