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Recurrence of disease due to chemotherapy drug resistance remains a major obstacle to a more successful sur-
vival outcome of multiple myeloma (MM). Overcoming drug resistance and salvaging patients with relapsed
and/or refractory (R/R)MM is an urgent and unmetmedical need. Several new personalized treatment strategies
have been developed against molecular targets to overcome this drug resistance. There are several targeted ther-
apeutics with anti-MM activity in clinical pipeline, including inhibitors of anti-apoptotic proteins, monoclonal
antibodies, antibody-drug conjugates, bispecific antibodies, fusion proteins, and various cell therapy platforms.
For example, B-cell maturation antigen (BCMA)-specific CAR-T cell platforms showed promising activity in
heavily pretreated R/R MM patients. Therefore, there is renewed hope for high-risk as well as R/R MM patients
in the era of personalized medicine.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multiple myeloma (MM) represents the second most common he-
matologic malignancy after non-Hodgkin lymphoma with ~30,000
new cases per year [1]. MM is a molecularly, biologically and clinically
heterogeneous group of diseases with some high risk cytogenetic sub-
sets having a very poor prognosis [2–4]. The survival of MM patients
has significantly improved due in part to the application of autologous
hematopoietic stem cell transplantation (ASCT) and the introduction
of immunomodulatory drugs (IMIDs) lenalidomide and pomalidomide
as well as the proteasome inhibitors (PI) bortezomib and carfilzomib
as initial induction treatment and as maintenance therapy [5–7].
These improved outcomes have caused a paradigm shift in treatment
of MM, from a palliative approach towardmore active management, in-
cluding the use of sequential therapies, with the goal of prolonging
progression-free survival (PFS) and OS as well as further therapy at
relapse. There are several other new promising drugs/biologics
with anti-MM activity in clinical pipeline, including tyrosine kinase
inhibitors, inhibitors of anti-apoptotic proteins, monoclonal antibodies
(MoAb), antibody-drug conjugates (ADC), bispecific antibodies
(bsAbs), fusion proteins, and various cell therapy platforms, including
BCMA-directed CAR-T cells [8–19].

2. Role of autologous stem cell transplantation (ASCT) in high-risk
and R/R MM

Autologous stem cell transplantation (ASCT) offers the best chance
of achieving a minimal residual disease (MRD)-negative deep complete
response (CR), which is associated with better survival outcomes of
newly diagnosed patients with high-risk MM, as defined by staging,
chromosomal abnormalities, disease biology, and gene expression [9]
and can also be performed upon first relapse [5,20–25]. The role of
ASCT may evolve as new strategies are developed including
biotherapeutic agents such as bispecific T-cell engagers (BiTEs) and
CAR-T cells, which are showing promising results as salvage treatment
in patients with R/R MM [26]. Table S1 lists ongoing Phase 2 and
Phase 3 clinical trials evaluating multi-modality treatment strategies
for high-risk or R/R MM in the context of ASCT.

3. Therapeutic landscape of high risk and relapsed/refractory multi-
ple myeloma in the era of personalized medicine

Intrinsic as well as acquired drug resistance of cancer cells to stan-
dard drugs is a major obstacle for a more successful survival outcome
of MM patients being treated on contemporary clinical protocols
[5–9,19,26,27]. Almost all patients with MM who survive initial treat-
ment will eventually relapse and require further therapy. Treatment
in R/R MM is often complicated by increased frailty and additional co-
morbidities, more aggressive disease refractory to commonly used mo-
dalities and unresolved toxicity from previous treatments. The main
treatment options for R/R MM patients include ASCT, PIs (bortezomib,
carfilzomib, ixazomib), IMiDs (e.g., lenalidomide, pomalidomide,
MoAb (e.g. daratumumab [DARA], elotuzumab), alkylating chemother-
apy drugs, anthracyclines, panobinostat, and corticosteroids, adminis-
tered alone, or more commonly as part of two- or three-drug
combinations [19,26–35]. The combination of daratumumab DARA,
lenalidomide, and dexamethasone (Dex) has been proposed as the
most effective regimen in the population of R/RMMpatients. According
to the clinicaltrials.gov data repository, interventional trials in R/R MM
patients are playing an increasingly important role in the clinical
development path of oncology drugs that are being developed to over-
come chemotherapy drug resistance in MM (Fig. S1).
3.1. Immunomodulatory drugs (IMiDs)

IMiDs are thalidomide analogueswith pleiotropic anti-MMactivities
including immune modulation (enhanced T-cell mediated and NK me-
diated immunity), pro-apoptotic activity as well as anti-angiogenic,
anti-inflammatory (e.g. blocking of the proinflammatory cytokines
TNF and IL6) and anti-proliferative effects. Lenalidomide (Revlimid;
Celgene) has remarkable activity in patients with newly diagnosed
MM and R/R MM and it has contributed to significantly improved sur-
vival of MM patients. Pomalidomide (Pomalyst; Celgene) is a 2nd gen-
eration IMiD that showed excellent activity alone as well as when
combined with low dose Dex in R/R MM patients and appears to have
stronger immune modulatory effects compared to lenalidomide [36].
FDA also approved the use of Pom in combination with DARA
(Darzalex) andDex for the treatment of patients withMMwhohave re-
ceived at least two prior therapies including lenalidomide (Revlimid)
and a PI based on an overall response rate (ORR) of 59% with a median
time to response of only one month and a median duration of response
of 13.6 months [36].
3.2. Proteasome inhibitors (PIs)

PIs act through multiple mechanisms to suppress tumor survival
pathways and to arrest tumor growth, tumor spread and angiogenesis.
Two prospective, Phase 2 trials and two randomized Phase 3 trials
have evaluated the efficacy of the PI bortezomib in the treatment of pa-
tients with R/R MM. ORRs for single agent bortezomib are approxi-
mately 30%. Bortezomib has also been evaluated in combination
therapywith ORRs of approximately 65%. Carfilzomib is a second gener-
ation selective PI that has demonstrated excellent activity in patients
with R/R MM [37]. Carfilzomib is FDA-approved for R/R MM patients
who have received at least two prior therapies, including bortezomib
and an IMiD. Carfilzomib is also approved for use in combination with
lenalidomide and Dex (KRd) for the treatment of patients with relapsed
MM who have received one to three prior lines of therapy. Ixazomib
(Ninlaro) is the first oral PI that has demonstrated activity in patients
with MM when given with Dex or in combination with lenalidomide
and Dex (IRd) [31]. Ixazomib in combination with lenalidomide and
Dex (IRd) is FDA-approved for the treatment of R/R MM patients who
have received at least one prior therapy [31]. In a randomized Phase 2
study in newly diagnosedMMpatients not eligible for ASCT, the combi-
nation of Ixazomib plus thalidomide and Dex for induction followed by
maintenance therapy with Ixazomib was highly effective with a high
ORR of 81% [31].
3.3. Biotherapy with monoclonal antibodies (MoAb), antibody-drug conju-
gates (ADCs), bispecific antibodies (bsAb), bispecific T-cell engagers (BiTE),
Chimeric Antigen Receptor (CAR) T-cells (Fig. 1; Fig. S2)

The ideal antigen for effective biotherapy of MM would be protein
receptors highly expressed on tumor cell membrane during all stages
of MM development. In MM, BCMA, CS1, CD19, CD33, CD38, CD138,
and CD56 among others are being evaluated as target antigens for
biotherapy.

http://clinicaltrials.gov


Fig. 1. Effective Biotherapy Targets on the Surface of Multiple Myeloma Cells. Abbreviations: MoAb: monoclonal antibody; BiTE: bispecific T-cell engager; ADC: antibody-drug conjugate;
bsAb: bispecific antibody; CAR-T: chimeric antigen receptor carrying T-cell. There are 2 ADCs targeting BCMA in clinical development, namelyGSK2857916 andMEDI2228. GSK2857916 is
a humanized anti-BCMAMoAb conjugated to the cytotoxic agentmonomethyl auristatin-F, via thenon-cleavable linkermaleimidocaproyl. GSK2857916monotherapyhas demonstrated a
60% ORR and a median PFS of 7.9months in a group of hard to treat and heavily pretreated R/R MM [18]. It has recently received Breakthrough Therapy designation from FDA and also
received PRIME designation from the European Medicines Agency (EMA). MEDI2228, a fully human MoAb that is conjugated to pyrrolobenzodiazepine dimer via a protease-cleavable
linker is being evaluated in the Phase 1 study NCT03489525 for the treatment of MM. BiTEs are composed of two single-chain variable fragments (scFvs) connected by a flexible linker.
One scFv fragment binds to a T cell-specific antigen (typically CD3), whereas the other scFv fragment binds to a tumor-specific antigen. This bispecificity allows BiTEs to juxtapose T-cells
and tumor cells physically and promotes the formation of immunological synapses by the simultaneous binding of multiple BiTEs, leading to T-cell activation, cytokine production and
cytotoxicity of the tumor cells. BI 836909 (AMG 420) is a BiTE targeting BCMA and CD3ɛ. BsAbs are a class of engineered antibody and antibody-like proteins that, in contrast to ‘regular’
monospecific antibodies, combine two or more different specific antigen binding elements in a single construct. Since bsAbs do not typically occur in nature, they are constructed either
chemically or biologically, using techniques such as cell fusion or recombinant DNA technologies. There are 3 clinical stage anti-CD3xBCMA bsAbs, namely Johnson and Johnson's
JNJ64007957 (NCT03145181), Pfizer's PF-06863135 (NCT03269136), and Celgene's CC-93269/EM901 (NCT03486067) that have entered Phase 1 testing. See the text for a detailed dis-
cussion of the CAR-T cell platforms.
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3.3.1. Targeting CD38 with MoAb
CD38-targeting MoAb such as DARA have single agent activity in

heavily pretreated MM patients [38–40] (Fig. 1). DARA is a first-in-
class human anti-CD38 MoAb. DARA mediates complement-
dependent cytotoxicity (CDC), induces antibody-dependent cellular cy-
totoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP),
and tumor cell apoptosis [38–40]. In the randomized, open-label, multi-
center Phase 3 ALCYONE trial (NCT02195479), DARA (Darzalex) in
combination with bortezomib (Velcade), melphalan, and prednisone
(DVMP) reduced the risk of disease progression or death by 50%,
Table 1
Randomized Phase 3 Clinical Trials Evaluating Anti-CD38 Monoclonal Antibodies in High-Risk

Study NCT# Reference URL Study title

NCT02541383 https://ClinicalTrials.
gov/show/NCT02541383

Study of Daratumumab in Combination W
First Line Treatment of Transplant Eligible

NCT02136134 https://ClinicalTrials.
gov/show/NCT02136134

Phase 3 Study Comparing Daratumumab,
(Vd) in Subjects With Relapsed or Refract

NCT02076009 https://ClinicalTrials.
gov/show/NCT02076009

Phase 3 Study Comparing Daratumumab,
Dexamethasone (Rd) in Subjects With Re

NCT03234972 https://ClinicalTrials.
gov/show/NCT03234972

A Randomized, Multicenter, Open-label, P
(DVd) vs Bortezomib and Dexamethason

NCT03180736 https://ClinicalTrials.
gov/show/NCT03180736

A Phase 3 Study Comparing Pomalidomid
Relapsed or Refractory Multiple Myeloma
Lenalidomide and a Proteasome Inhibitor

NCT03158688 https://ClinicalTrials.
gov/show/NCT03158688

A Randomized, Open-label, Phase 3 Study
and Dexamethasone for the Treatment of
Carfilzomib and Daratumumab for Relaps

NCT03277105 https://ClinicalTrials.
gov/show/NCT03277105

A Phase 3 Randomized, Multicenter Study
Subjects With Relapsed or Refractory Mu

NCT02195479 https://ClinicalTrials.
gov/show/NCT02195479

A Phase 3, Randomized, Controlled, Open
Compared to Daratumumab in Combinati
Myeloma Who Are Ineligible for High-do

NCT03275285 https://ClinicalTrials.
gov/show/NCT03275285

Randomized, Open Label, Multicenter Stu
(Kyprolis®) And Dexamethasone Versus
Refractory Multiple Myeloma Previously

NCT02990338 https://ClinicalTrials.
gov/show/NCT02990338

A Phase 3 Randomized, Open-label, Multi
Pomalidomide and Low-Dose Dexametha
Refractory or Relapsed and Refractory Mu
compared to treatment with VMP alone, in patients with newly diag-
nosed MM who were not eligible for ASCT [39], and FDA approved
DARA for this indication.

DARA received initial approval as monotherapy in patients with
heavily pretreated R/R MM who were refractory to PIs and IMiDs. In 2
randomized Phase 3 trials of R/RMMpatients, addition of DARA to stan-
dard of care regimens improved outcomes regardless of cytogenetic risk
status (NCT02136134 and NCT02076009). DARA in combination with
lenalidomide and Dex (DaraRD regimen) and DARA in combination
with bortezomib and Dex (DaraVD regimen) [40] are approved by the
or R/R Multiple Myeloma.

Phase
of
trial

ith Bortezomib (VELCADE), Thalidomide, and Dexamethasone (VTD) in the
Subjects With Newly Diagnosed Multiple Myeloma

3

Bortezomib and Dexamethasone (DVd) vs Bortezomib and Dexamethasone
ory Multiple Myeloma

3

Lenalidomide, and Dexamethasone (DRd) vs Lenalidomide and
lapsed or Refractory Multiple Myeloma

3

hase 3 Study to Compare Daratumumab, Bortezomib, and Dexamethasone
e (Vd) in Chinese Subjects With Relapsed or Refractory Multiple Myeloma

3

e and Dexamethasone With or Without Daratumumab in Subjects With
Who Have Received at Least One Prior Line of Therapy With Both
.

3

Comparing Carfilzomib, Dexamethasone, and Daratumumab to Carfilzomib
Patients With Relapsed or Refractory Multiple Myeloma CANDOR Study of
ed Myeloma

3

of Subcutaneous vs. Intravenous Administration of Daratumumab in
ltiple Myeloma

3

-label Study of VELCADE (Bortezomib) Melphalan-Prednisone (VMP)
on With VMP (D-VMP), in Subjects With Previously Untreated Multiple
se Therapy

3

dy Assessing The Clinical Benefit Of Isatuximab Combined With Carfilzomib
Carfilzomib With Dexamethasone In Patients With Relapsed And/Or
Treated With 1 to 3 Prior Lines

3

center Study Comparing Isatuximab (SAR650984) in Combination With
sone Versus Pomalidomide and Low-Dose Dexamethasone in Patients With
ltiple Myeloma

3

ctgov:NCT03287804
ctgov:NCT03287804
https://ClinicalTrials.gov/show/NCT03287804
ctgov:NCT03322735
ctgov:NCT03322735
https://ClinicalTrials.gov/show/NCT03322735
https://ClinicalTrials.gov/show/NCT03322735
ctgov:NCT03661554
ctgov:NCT03661554
https://ClinicalTrials.gov/show/NCT03661554
https://ClinicalTrials.gov/show/NCT03661554
ctgov:NCT03664661
ctgov:NCT03664661
https://ClinicalTrials.gov/show/NCT03664661
https://ClinicalTrials.gov/show/NCT03664661
ctgov:NCT02546167
ctgov:NCT02546167
https://ClinicalTrials.gov/show/NCT02546167
https://ClinicalTrials.gov/show/NCT02546167
ctgov:NCT03548207
ctgov:NCT03548207
https://ClinicalTrials.gov/show/NCT03548207
https://ClinicalTrials.gov/show/NCT03548207
ctgov:NCT03448978
ctgov:NCT03448978
https://ClinicalTrials.gov/show/NCT03448978
https://ClinicalTrials.gov/show/NCT03448978
ctgov:NCT03318861
ctgov:NCT03318861
https://ClinicalTrials.gov/show/NCT03318861
https://ClinicalTrials.gov/show/NCT03318861
ctgov:NCT03274219
ctgov:NCT03274219
https://ClinicalTrials.gov/show/NCT03274219
https://ClinicalTrials.gov/show/NCT03274219
ctgov:NCT03361748
ctgov:NCT03361748
https://ClinicalTrials.gov/show/NCT03361748
https://ClinicalTrials.gov/show/NCT03361748
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US FDA for use in patientswithMMwhohave received at least one prior
therapy. In a prospective trial of DARA, Pom, and Dex in multiply re-
lapsed MM (NCT01998971), the ORR was 60% and the median PFS
was 8.8 months [36]. FDA has approved this regimen for patients with
MM who have received at least two prior therapies including
lenalidomide and a PI. In the ongoing Phase 2 and Phase 3 clinical stud-
ies, DARA is being evaluated in novel combinations with other treat-
ment modalities, including PI's, IMiDs and Dex (Table 1). Notably, a
recent observational study indicated that the immunomodulatory ef-
fects of DARAmay contribute to a high objective response rate of previ-
ously IMiD-refractory or PI-refractory MM patients who are treated
with DARA monotherapy to retreatment with IMiD/PI-based salvage
regimens [29]. Likewise, other anti-CD38 MoAb, including Isatuximab
(ISA) [41] and MOR202 [42], have shown promising activity in clinical
trials of R/R MM patients.
3.3.2. Targeting SLAMF7 with MoAb
Elotuzumab (Empliciti) is a first-in-class humanizedMoAb targeting

SLAMF7 [18,43,44] (Fig. 1). The mechanisms of the antitumor effects of
elotuzumab include disrupting MM cell adhesion to bone marrow stro-
mal cells, enhancing NK cell cytotoxicity, and mediating ADCC but not
CDC. Elotuzumab is FDA-approved for use in combination with
lenalidomide and Dex for the treatment of patients with MM who
have received one to three prior therapies. In an open-label, multicen-
ter, Phase 3 trial (ELOQUENT-2, NCT01239797), 646 patients with MM
relapsed after one to three prior lines of therapy were randomly
assigned to receive standard dose oral lenalidomide plus Dex (Ld)
with or without elotuzumab [44]. After a median follow-up of
24months, Ld plus elotuzumab (ELd) resulted in higher ORR (79 versus
66%) and better PFS when compared with Ld alone. Elotuzumab in
combination with Pom-Dex is being examined for relapsed MM in an
ongoing Phase 2 randomized trial (NCT02654132). Elotuzumab is
being studied in combination with lenalidomide as maintenance after
high-dose therapy as well (NCT02420860) (Table 2).
Table 2
Phase 2 and Phase 3 Clinical Trials Evaluating Elotuzumab in High-Risk or R/R Multiple Myelom

Study NCT# Reference URL Study title

NCT02718833 https://ClinicalTrials.
gov/show/NCT02718833

A Phase 2 Study of Elotuzumab in Combin
Refractory Multiple Myeloma

NCT03155100 https://ClinicalTrials.
gov/show/NCT03155100

Phase 2 Study of Carfilzomib + Elotuzum
1–3 Prior Treatment Lines

NCT03030261 https://ClinicalTrials.
gov/show/NCT03030261

A Phase 2 Study of Elotuzumab, Pomalido
Transplantation for Relapsed Multiple My

NCT02654132 https://ClinicalTrials.
gov/show/NCT02654132

An Open Label, Randomized Phase 2 Trial
and Refractory Multiple Myeloma (ELOQU

NCT02612779 https://ClinicalTrials.
gov/show/NCT02612779

A Phase 2, Multiple Cohort Study of Elotu
(EPd), and in Combination With Nivolum
Treatment With Lenalidomide.

NCT03361306 https://ClinicalTrials.
gov/show/NCT03361306

LCI-HEM-MYE-CRD-002: A Phase 2 Study
Relapsed/Refractory Multiple Myeloma

NCT02843074 https://ClinicalTrials.
gov/show/NCT02843074

Phase 2 Study to Assess the Feasibility an
Dexamethasone (ERd) in the Induction, C
Newly Diagnosed With Multiple Myelom

NCT03411031 https://ClinicalTrials.
gov/show/NCT03411031

A Randomized Parallel Phase 2 Study of E
Relapse/Progression While on Lenalidom

NCT01891643 https://ClinicalTrials.
gov/show/NCT01891643

A Phase 3, Randomized, Open Label Trial
With Previously Untreated Multiple Myel

NCT03104270 https://ClinicalTrials.
gov/show/NCT03104270

A Phase 2 Trial of the Efficacy and Safety o
Dexamethasone Among High Risk Relaps

NCT02420860 https://ClinicalTrials.
gov/show/NCT02420860

Phase 2 Study of the Combination of Elotu
Cell Transplant in Patients With Multiple

NCT02495922 https://ClinicalTrials.
gov/show/NCT02495922

A Randomized Phase 3 Trial on the Effect
Maintenance in Patients With Newly Diag

NCT02726581 https://ClinicalTrials.
gov/show/NCT02726581

An Open-Label, Randomized Phase 3 Tria
Relapsed and Refractory Multiple Myelom
3.3.3. Targeting B-cell maturation antigen (BCMA) with BsAbs, BiTEs, and
Chimeric Antigen Receptor (CAR) T-cells (Fig. 1, Fig. S2)

BCMA is a transmembrane glycoprotein in the TNF receptor super-
family 17 (TNFRSF17) that has a very restricted expression pattern
and is undetectable on normal human tissues except for PCs. Current
BCMA-targeting biotherapeutic agents in clinical development include
ADCs, BiTEs, bsAbs, and CAR-T cell therapy [17,45,46] (Fig. 1). There
are several CAR-T platforms targeting BCMA in development [45–50]
and several have demonstrated activity in MM. In the first-in-human
study of CAR-T cells targeting BCMA, the overall response rate was
81% with 63% very good partial response or complete response for R/R
MM patients who had a median of 9.5 prior lines of MM therapy [36].
In a Phase 1 study (CRB-401), b2121 (Bluebird Bio and Celgene), 2nd
generation autologous T-cells transduced with a lentiviral vector,
showed anORR of 94%with a CR rate of 56% [50]. These CAR-T cells pro-
duced deep and durable responses with 50% of the evaluable patients
having ongoing responses N1 year. Notably, the clinical responses have
continued to improve even after a year [45,48]. A global pivotal Phase
2 KarMMa trial evaluating bb2121 is open for enrollment
(NCT03361748) (Table 3). Likewise, investigators from Jiatong Univer-
sity in China reported at the 2017 ASCO meeting that their BCMA-
“bispecific” CAR-T cells (LCAR-B38M, Nanjing Legend Biotech) binding
to 2 key BCMA epitopes yielded a 100% ORR with 74% stringent CR
rate in R/R MM patients [49].

3.4. Immune-checkpoint inhibitors

Immune-checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis
have recently emerged as promising agents against hematologic malig-
nancies, includingMM [51]. Early clinical trials of IMiDs combined with
PD-1 pathway blocking MoAb have shown promising preliminary re-
sults. For example, the Phase 1 KEYNOTE-023 (NCT02036502) study
of the anti-PD1MoAb pembrolizumab plus lenalidomide and Dex in re-
lapsedMM showed an ORR of 76%. Unfortunately, excessive and unpre-
dictable toxicity has raised serious safety concerns about anti-PD1
a.
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Table 3
Interventional Clinical Trials Evaluating CAR-T Cell Platforms in Relapsed or Refractory Multiple Myeloma.

Study NCT# Reference URL Study title Phase
of
trial

CAR-T platform

NCT03287804 https://ClinicalTrials.
gov/show/NCT03287804

A Single-Arm, Open-Label, Multi-Center, Phase 1/2 Study Evaluating the Safety and Clinical Activity
of AUTO2, a CAR-T Cell Treatment Targeting BCMA and TACI in Patients With Relapsed or Refractory
Multiple Myeloma

1/2 CAR-T BCMA + TACI

NCT03322735 https://ClinicalTrials.
gov/show/NCT03322735

A Study of BCMA CAR-T Cells for Patients With Relapsed and Refractory Multiple Myeloma 1/2 CAR-T BCMA

NCT03661554 https://ClinicalTrials.
gov/show/NCT03661554

BCMA Nano Antibody CAR-T Cells for Patients With Refractory and Relapsed Multiple Myeloma 1 CAR-T
Nanobody/CAR-T
BCMA

NCT03664661 https://ClinicalTrials.
gov/show/NCT03664661

A Single-center, One Arm, Open-Label Clinical Study of BCMA Nanobody CAR-T Cells in
Refractory/Relapsed Myeloma

1 CAR-T BCMA

NCT02546167 https://ClinicalTrials.
gov/show/NCT02546167

Pilot Study of Redirected Autologous T Cells Engineered To Contain an Anti-BCMA scFv Coupled To
TCRζ And 4-1BB Signaling Domains in Patients With Relapsed and/or Refractory Multiple Myeloma

1 CAR-T BCMA

NCT03548207 https://ClinicalTrials.
gov/show/NCT03548207

A Phase 1b-2, Open-Label Study of JNJ-68284528, A Chimeric Antigen Receptor T-Cell (CAR-T)
Therapy Directed Against BCMA in Subjects With Relapsed or Refractory Multiple Myeloma

1/2 JNJ-68284528/CAR-T
BCMA

NCT03448978 https://ClinicalTrials.
gov/show/NCT03448978

Phase 1 Safety and Feasibility Study of Autologous CD8+ T-cells Transiently Expressing a Chimeric
Antigen Receptor Directed to B-Cell Maturation Antigen in Patients With Multiple Myeloma

1 CAR-T BCMA

NCT03318861 https://ClinicalTrials.
gov/show/NCT03318861

A Phase 1 Multicenter Study of KITE-585, an Autologous Anti-BCMA CAR-T Cell Therapy, in Subjects
With Relapsed/Refractory Multiple Myeloma

1 KITE-585/CAR-T
BCMA

NCT03274219 https://ClinicalTrials.
gov/show/NCT03274219

A Phase 1 Study of bb21217, an Anti-BCMA CAR- T Cell Drug Product, in Relapsed and/or Refractory
Multiple Myeloma

1 bb21217/CAR-T
BCMA

NCT03361748 https://ClinicalTrials.
gov/show/NCT03361748

A Phase 2, Multicenter Study to Determine the Efficacy and Safety of bb21217 in Subjects With
Relapsed and Refractory Multiple Myeloma

2 bb21217/CAR-T
BCMA

NCT03430011 https://ClinicalTrials.
gov/show/NCT03430011

Protocol H125001: An Open-Label Phase 1/2 Study of JCARH125, BCMA-targeted Chimeric Antigen
Receptor (CAR)-T Cells, in Subjects With Relapsed or Refractory Multiple Myeloma

1/2 JCARH125/CAR-T
BCMA

NCT03288493 https://ClinicalTrials.
gov/show/NCT03288493

Open-Label, Multicenter, Single Ascending Dose Study to Assess the Safety of P-BCMA-101 in
Subjects With Relapsed and/or Refractory Multiple Myeloma (MM)

1 P-BCMA-101
CAR-T/CAR-T BCMA

NCT03196414 https://ClinicalTrials.
gov/show/NCT03196414

Study of T Cells Targeting CD138/BCMA (CAR-T CD138/BCMA) for Chemotherapy Refractory and
Relapsed Multiple Myeloma

1/2 CAR-T CD138/BCMA

NCT03464916 https://ClinicalTrials.
gov/show/NCT03464916

A Phase 1, Open-Label, Dose-Escalation, Pharmacokinetic and Pharmacodynamic Study of the Safety
and Efficacy of CAR2 Anti-CD38 A2 CAR-T Cells in Patients With Relapsed or Refractory Multiple
Myeloma

1 CAR-T CD38
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MoAb, as reflected by several advanced clinical trials in R/R MM as well
as newly diagnosed high-risk MM having been suspended by the FDA
(e.g. NCT02579863, NCT02576977, NCT02906332) [52]. Further investi-
gation and randomized trials are needed to further evaluate the safety
and effectiveness of the ICI targeting the PD-1/PD-L1 axis [52,53].

3.5. Targeted therapeutics and personalized medicine for MM (Fig. 2)

MM is characterized by a heterogeneous mutational landscape
[2–4]. Some of the molecular mutations which are believed to be
among the driver mutations of MM are druggable with available
targeted therapeutics that can bematched to a specific targeted therapy
for that aberration, thereby providing the foundation for a patient-
tailored precisionmedicineprogram forMM [6,13].Mutations involving
CCND1 and CDKN2C are found in 18% of MM patients. Palbociclib
(PD0332991) selectively inhibits CDK4/6, causing a G1 arrest in primary
myeloma cells [54] (Fig. 2). Activated RAS initiates the RAS-RAF-MAPK
signaling cascade by activating the protein kinase activity of the RAF ki-
nase. RAF phosphorylates and activates the serine/tyrosine/threonine
kinase MAP2K (also known as MAPKK or MEK - MEK1 and MEK2).
MEK phosphorylates and activates the serine/threonine-selective
MAPK. RAF kinase inhibitors as well as MEK kinase inhibitors disrupt
the activation of MAPK and therefore serve as functional MAPK inhibi-
tors (MAPKi) [13]. In the NCT02834364 (GMMG-BIRMA) Phase 2
study in R/R MM patients with the BRAF V600E/K mutation are being
treated with the kinase inhibitors Encorafenib (LGX818; RAF kinase in-
hibitor) in combination with the MEK inhibitor Binimetinib (MEK162)
(Fig. 2). Other RAF kinase inhibitors include dabrafenib, encorafenib,
vemurafenib, XL281. Other MEK inhibitors include binimetinib
(MEK162), trametinib (GSK1120212), and cobimetinib [13] (Fig. 2). In
2013/2014 FDA approved trametinib and dabrafenib combination for
treatment of metastatic melanoma patients with BRAF mutations. It
has been reported that MM cases with BRAF V600E mutations can
respond to vemurafenib [55]. However, NRAS mutations have been
shown to confer resistance to vemurafenib in BRAF-mutated MM [56]
and spatial genomic heterogeneity in MM has also been associated
with delayed onset treatment failure in vemurafenib-treated BRAF-
mutated MM patients [57]. Inhibition of BRAF using BRAF V600E inhib-
itors can result in paradoxical activation of the MAPK pathway, a phe-
nomenon that is exaggerated in KRAS-mutated cancers. Inhibition of
MAPKK/MEK has emerged as a viable strategy to treat patients with
BRAF-mutated cancers and to overcome paradoxical activation in the
setting of therapy with BRAF V600E-directed agents. Trametinib is an
oral, allosteric inhibitor of MEK1/2 that has shown early clinical activity
in tumors with activating BRAF mutations (Fig. 2). In the NCI-MATCH
study (NCT02465060), R/RMMpatients with BRAF V600E/R/K/Dmuta-
tion receive in a Phase 2 setting dabrafenib and trametinib, whereas pa-
tients with BRAF fusion or BRAF non-V600mutation receive trametinib
and patients with NRAS mutation in codon 12, 13, or 61 receive
binimetinib. Likewise, dabrafenib plus trametinib, dabrafenib alone, or
trametinib alone are being evaluated in patients with R/R MM and
BRAF/NRAS/KRASmutations (NCT03091257). The t(4;14) translocation
is associatedwith upregulation of the FGFR3. Patientswith t(4;14) dem-
onstrate an overall poor prognosis. There may be additional mutations
by which FGFR3 is dysregulated in MM that are independent of t
(4;14) translocation. There are several FGFR inhibitors (FGFRi), includ-
ing non-selective inhibitors (e.g. Dovitinib, Lenvatinib, Nintedanib,
Ponatinib, Lucitanib, Pazopanib) and selective inhibitors (e.g.
AZD4547, BGJ398, ARQ-087, JNJ 42756493, BAY-1163877) (Fig. 2).
Dovitinib (NCT01058434) has been evaluated in MM patients with
FGFR3 gene alterations. NCT02952573 is an ongoing proof of concept
study of the oral FGFRi JNJ 42756493/Erdafitinib comparing R/RMMpa-
tients with and without FGFR3 mutations. In the NCI-MATCH study
(NCT02465060), R/R MM patients with FGFR pathway alterations are
treated with the selective FGFR3i AZD4547. BTK also emerged as a
promising new molecular target in R/R MM (Fig. 2). In primary
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Fig. 2. Molecular Targets and Targeted Therapeutics in R/R MM and High-Risk MM. [A]
Network of Molecular Targets. The publicly available STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database (http: //string-db.org) provides a
critical assessment and integration of protein–protein interactions, including direct
(physical) as well as indirect (functional) associations. The depicted STRING network
view of the protein-protein interaction network for molecular targets in MM cells was
constructed using STRING10 algorithm and the STRING database. Nodes show the
protein identifiers and lines depict known interactions between the proteins. The lines
represent experimental associations between the proteins, as determined by the STRING
data mining algorithm. Associations were filtered with confidence parameter N90%
(highest confidence from the datamining algorithm) and depicted by the connecting
lines. Clustering algorithm was performed on the association scores to group protein-
protein interaction networks for the most closely networked interactions (“MCL
clustering algorithm” provided by the software). The MCL inflation parameter was set to
a value of 2.5 to distinguish 4 inter-connected cluster groupings. Solid lines represent
connections within clusters and dotted lines depict connections between clusters. [B]
Targeted Therapeutics and Their Targets. Depicted are the molecular targets according
to their functional significance and available targetedmedicines that inhibit their function.
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myeloma-bearing SCID-rab mice, the rationally designed non-covalent
Bruton's tyrosine kinase (BTK) inhibitor LFM-A13 inhibited osteoclast
activity, prevented myeloma-induced bone resorption and moderately
suppressed myeloma growth [58]. Ibrutinib, a first-in-class, once-daily,
oral covalent inhibitor of BTK, exhibited promising clinical activity in
R/R MM patients who had received ≥2 prior lines of therapy, including
an immunomodulatory agent [10]. Spleen tyrosine kinase (SYK) inhibi-
tors also show potential as new therapeutic agents for R/R MM [11,15]
(Fig. 2). While these TKI, especially the FGFRi and BTKi hold clinical
promise based on preliminary clinical trial data, currently, there is insuf-
ficient information regarding the clinical potential of TKI as possible
components of future personalized treatment strategies for R/R MM.
The BCL-2-specific BH3 mimetic Venetoclax (ABT-199) is a selec-
tive, orally bioavailable BCL-2 inhibitor that induces cell death in MM
cells, particularly in those harboring t(11;14), which express high
levels of BCL-2 relative to BCL-XL and MCL-1 [14,59] (Fig. 2). Intrinsic
resistance to Venetoclax treatment observed in MM patient samples
has been attributed to a low BCL-2-to-MCL-1 gene expression ratio,
suggesting a central role for MCL-1 [60]. Livingston et al. reported
that the CDK9 inhibitor Alvocidib suppresses MCL-1 expression via
CDK9-mediated regulation of RNA polymerase II and potentiates the
activity of venetoclax against MM cells, reminiscent of the findings
reported for AML cells [61]. Furthermore, Dexamethasone has been
reported to enhance the sensitivity of MM cells to venetoclax [62].
FDA previously granted accelerated approval to Venetoclax
(Venclexta, AbbVie/Roche) in 2016 for the treatment of patients
with recurrent CLL who have 17p deletion. Kumar et al. reported
that Venetoclax monotherapy exhibited an acceptable safety profile
and evidence of single-agent activity in patients with heavily pre-
treated R/R MM, predominantly in patients with t(11;14) abnormal-
ity (NCT01794520) [14]. Most responses (86%) were reported in pa-
tients with t(11;14). In this group, ORR was 40%, with 27% of
patients achieving very good partial response or better. A Phase 3,
multicenter, randomized, double blind, placebo-controlled study
is active and will evaluate the efficacy and safety of Venetoclax
plus bortezomib and Dex in subjects with R/R MM who are
considered sensitive or naïve to PI and received 1 to 3 prior lines
of therapy for MM (NCT02755597). Other combinations are being ex-
plored in separate clinical trials (e.g. NCT03399539, NCT0331418,
NCT03539744). The pending clinical data from the ongoing clinical
trials of venetoclax in R/R MM patients are anticipated to provide
critical insights regarding the clinical potential of this promising
agent and how to best integrate it into the standard of care for R/R
MM patients.

4. Future directions and outstanding questions

4.1. Detection of MRD

Recently, a EuroFlow-based next generation flow (NGF) approach
was reported for highly sensitive and standardized detection of MRD
in MM, and the results of its validation vs. a conventional 8-color
flow-MRD method and NGS [63]. Such standardized and validated
NGF-MRD methods can be applied to virtually every MM patient for
MRD monitoring in BM after therapy and provide the opportunity for
addingMRDnegativity to criteria for response to treatment assessments
and including it (together with PFS and OS) as an efficacy endpoint
[63–65]. Even in patients who achieve an early CR, the use of MRD de-
tection methodologies would allow clinical researchers to assess the
contribution of additional interventions and time to the quality (i.e.
“depth”) of CR. The use of fused functional and anatomic imaging
using positron emission tomography-computed tomography (18F-FDG
PET/CT) [66–68] combinedwithMRDmonitoring using highly sensitive
new detection methods [63–65] provides a unique opportunity to bet-
ter evaluate clinical activity of innovative treatment platforms and
new combination regimens in R/R MM as well as newly diagnosed
high-risk MM patients.

4.2. Optimizing risk mitigation to maximize patient safety and quality of life

Protocols of targeted therapeutics should consider incorporating
specific monitoring and management guidelines for specific toxicities
for risk mitigation based on the most recent and up to date integrated
safety analysis of the particular drug that will be used [69–71]. The
higher mortality rate for early toxicity in patients ≥80 years emphasizes
the need for a careful frailty assessment and more effective risk-
mitigation measures for elderly.

http://string-db.org
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4.3. Proof-of-concept studies with specific cellular PD/PK endpoints

Secondary plasma cell leukemia (PCL) is observed in advanced MM
with a frequency of 1–4% [72]. The circulating PCL cells in blood can
be easily collected before, during and after treatment with the different
single agent as well as combination modalities for (i) cellular PK analy-
ses, (ii) evaluation of on-target and off-target effects at the cellular level
using phosphoproteomics; (iii) evaluation of the kinetics of cytotoxic
activity against MCL cells using multi-color flow cytometry in a quanti-
tative apoptosis assay.Well-designedmechanismof action (MOA) stud-
ies that leverage PCL cells can provide clinically meaningful new
insights that inform the design of future MM studies. In view of the
oligoclonality of MM, it is likely to be helpful to characterize the dynam-
ics of the mutational profile of persistent/outgrowingMM clones, eluci-
date the clonal diversity, persistence or disappearance ofmulti-mutated
clones, acquisition of additional mutations. Rashid et al. National Uni-
versity of Singapore recently reported an artificial intelligence (AI) tech-
nology based experimental platform labeled as the Quadratic
Phenotypic Optimization Platform (QPOP) to rapidly identify patient-
tailored novel drug combinations for R/R MM [73] Notably, Lagana
et al. reported an integratedmultiomics approach for personalized ther-
apy of MM and its application in a pilot precision medicine clinical trial
in R/R MM patients. Their data appeared to demonstrate the feasibility
of NGS-guided personalized therapy [27].

4.4. Real-world data (RWD) and real-world evidence (RWE) to evaluate
the relative effectiveness, safety and utility of new anti-MM treatment
strategies

The 21st Century Cures Act (“Cures Act”) encourages the Food and
Drug Administration to consider RWE of the safety and comparative ef-
fectiveness of drugs in its approval process [74]. Additional RWDwill be
essential to an improved understanding of the current clinical practice
patterns, so that new agents can be effectively incorporated into
existing treatment strategies for MM or used instead of less effective
treatments to ensure that patients receive the best possible care. Ran-
domized adaptive clinical trials aimed at comparing the efficacy of dif-
ferent treatment strategies with respect to their achieved rate of
sustained deep responseswithMRDnegativity aswell as their tolerabil-
ity as well as randomized hybrid interventional x observational studies
that collect real-world data regarding their real-world effectiveness/
treatment burden ratio and relative tolerability are needed to reach a
consensus regarding the “best” treatment strategies for high-risk and
R/R MM.

5. Conclusion

The therapeutic landscape for MM is rapidly evolving in the era of
personalized medicine. New treatment strategies have markedly im-
proved the survival of MMpatients and caused a paradigm shift in ther-
apy in treatment of MM, from a palliative approach for an incurable
hematologic malignancy to a more patient-tailored active management
strategy of a potentially curable disease, including the use of sequential
therapies, with the goal of prolonging PFS and OS as well as further sal-
vage therapy at relapse. The observation that some of the innovative
treatment platforms have resulted in durable MRD-negative deep CRs
even in heavily pretreated R/R MM patients has renewed the hope for
development of potentially curative therapies for MM as predicted by
Barlogie et al. [75]. There is a growing list of promising targeted thera-
peutics with anti-MM activity in clinical pipeline, including TKI, inhibi-
tors of anti-apoptotic proteins, MoAbs, ADC, bsAbs, fusion proteins,
and various cell therapy platforms.Which of these treatmentmodalities
will ultimately evolve into components of a new standard of care regi-
men for R/R or high-riskMMpatients remains to bedetermined. Several
challenges remain and require a multi-stake holder collaboration for
successful integration of new technology platforms as well as clinical
management guidelines into the contemporary MM treatment
programs.

Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE, Cur-
rent Contents, PubMed, and references from relevant articles using the
search terms “multiple myeloma”, “clinical trial”, and “therapy”. Ab-
stracts and reports from meetings were included only when they re-
lated directly to previously published work. Only articles published in
English between 2010 and 2018 were included. We also interrogated
the clinicaltrials.gov data repository (https://clinicaltrials.gov/) to de-
termine the number of interventional trials in R/R MM patients that
were initiated from 1993 to 2018. Search terms to identify the trials
were “Relapse OR Refractory”, “Interventional studies”, and “Multiple
Myeloma”. The following search terms were used for the Tables 1–3:
Recruiting, Active not recruiting, completed; Interventional Studies;
Multiple Myeloma; CD38; Start date from 09/01/2013 to 09/01/2018.
Additional terms were: CD38 (Table 1), Elotuzumab (Table 2), CAR-T
(Table 3).
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