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Abstract

A pressure ulcer is an injury of the skin and underlying tissues adjacent to a bony eminence.

Patients who suffer from this disease may have difficulty accessing medical care. Recently,

the COVID-19 pandemic has exacerbated this situation. Automatic diagnosis based on

machine learning (ML) brings promising solutions. Traditional ML requires complicated pre-

processing steps for feature extraction. Its clinical applications are thus limited to particular

datasets. Deep learning (DL), which extracts features from convolution layers, can embrace

larger datasets that might be deliberately excluded in traditional algorithms. However, DL

requires large sets of domain specific labeled data for training. Labeling various tissues of

pressure ulcers is a challenge even for experienced plastic surgeons. We propose a super-

pixel-assisted, region-based method of labeling images for tissue classification. The bound-

ary-based method is applied to create a dataset for wound and re-epithelialization (re-ep)

segmentation. Five popular DL models (U-Net, DeeplabV3, PsPNet, FPN, and Mask R-

CNN) with encoder (ResNet-101) were trained on the two datasets. A total of 2836 images

of pressure ulcers were labeled for tissue classification, while 2893 images were labeled for

wound and re-ep segmentation. All five models had satisfactory results. DeeplabV3 had the

best performance on both tasks with a precision of 0.9915, recall of 0.9915 and accuracy of

0.9957 on the tissue classification; and a precision of 0.9888, recall of 0.9887 and accuracy

of 0.9925 on the wound and re-ep segmentation task. Combining segmentation results with

clinical data, our algorithm can detect the signs of wound healing, monitor the progress of

healing, estimate the wound size, and suggest the need for surgical debridement.

Introduction

A pressure ulcer or pressure sore is a pressure-induced injury of the skin or underlying tissue

adjacent to bony eminences. These injuries appear most commonly on the sacral area, followed
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by the heel and occipital area. The causal mechanism is application of pressure to the skin exceed-

ing end capillary pressure, which is 20–30 mmHg. Since no blood can flow in, the tissues gradually

undergo necrosis. However, simply applying that level of pressure to the skin may not necessarily

result in a pressure ulcer. It was found that pressure must persist for more than 2 hours to cause

irreversible ischemic damage [1]. Etiological factors in the development of pressure ulcers include

medical conditions, such as stroke, spinal cord injury, shock, malnutrition, antidepressant use,

and catheter use [2]. Major surgery or trauma are also contributing factors.

In the United States, pressure ulcers affect around 3 million adults annually [3]. In Europe,

the prevalence rate in hospitals ranges from 8.3% to 23% across different countries [4]. The

prevalence rate is higher in long-term care facilities than in hospitals [2, 5]. Although this tis-

sue had got attention from the public, the prevalence of pressure ulcers has remained

unchanged over the last decade [3, 6]. As the life span of humans increases, the affected popu-

lation is expected to rise. Another problem of growing concern is that patients with pressure

ulcers often have difficulty accessing medical care because of their underlying diseases. This

condition has been exacerbated by the Covid-19 pandemic.

Machine learning (ML) has many applications in the field of medicine, such as in drug

development and disease diagnosis [7–11]. Automatic wound diagnosis based on ML can pro-

vide an objective assessment of wound status, such as wound size and healing stage, thereby

easing the load of medical providers and providing timely suggestions for patients when medi-

cal care is not easily accessed.

Related work

There are two major tasks for which ML can be beneficially employed in the treatment of pres-

sure ulcers. The first is wound segmentation; the other is tissue classification [12–14]. Wound

segmentation is necessary to separate the wound area from the non-wound area. There are

three standard methods to achieve this result: threshold, edge-based and region-based segmen-

tation. Threshold segmentation applies algorithms to separate pixels of the wound in a wound

image from pixels of normal skin, which are more homogeneous in intensity [15–17]. Edge-

based segmentation initializes an approximate shape as a border, such as an ellipse or circle. At

each iteration, the border is adjusted to minimize the energy function so that the final border

fits the edge of the wound [18, 19]. Region-based segmentation selects a small region of the

wound and gradually recruits adjacent pixels with similar color energy [20, 21]. The above

methods can be further combined to acquire better results [22, 23]. After successful wound

segmentation, the size of a wound can be further calculated. Although the size of a wound is

the most direct information about wound healing, it is of less clinical usage than the tissue

composition of a wound. A pressure ulcer usually takes weeks to months to decrease in size.

Tissue classification, as another assessment of wound healing, is the second important goal

for ML models. Before performing tissue classification, images of wounds are usually con-

verted from RGB to other color spaces. These three primary colors (RGB) are correlated to

each other. The most common formats of color spaces are HSV, followed by CIELAB and

YCbCr [24]. Usually, the luminance components such as the Y channel or L channel are

excluded to decrease the light effect in various clinical situations. The next step is to calculate

the probability map of pixels of different tissues. ML methods, such as k-means, support vector

machine, random forest or Bayesian are used to learn the threshold and classify tissues.

In the literature simultaneously addressing both wound segmentation and tissue classifica-

tion, although the two tasks seem to be similar, some authors have used different preprocessing

methods to get better results. For example, Garcı́a-Zapirain et al. converted the images to the

HSI color space for wound segmentation and used linear combinations of discrete Gaussians
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for tissue classification [25]. Elmogy et al. suggested YCbCr images for wound segmentation,

while recommending RGB images for tissue classification [26]. Veredas et al. used color histo-

grams for wound segmentation and Bayes rule for tissue classification [16]. Rajathi et al. used

deep learning for tissue classification but a simple gradient descent for wound segmentation

[27]. These studies demonstrate important skills in data preprocessing and features extraction.

The problem in these approaches is, even with good results, they can only be applied to their

own datasets. This diminishes their clinical application. Secondly, most studies of ML in

wound diagnosis have considered chronic wounds in general rather than those focusing specif-

ically on pressure ulcers. Little evidence exists showing that models trained from ulcers of

mixed etiology can equally be used for pressure ulcers.

Although the structures of deep learning (DL) models are capable of handling large quanti-

ties of data with many channels, such datasets are often trimmed down for ML to get better

results. For example, the lumination channels of color spaces (L channel of CIELab and Y

channel of YCbCr) are usually excluded for ML models to decrease the effects under different

light conditions. For DL models, instead, lumination channels are input with other channels

in order to comprehend various light conditions. DL models, on the other hand, require a

large amount of labeled data to achieve good results and prevent overfitting. How to systemati-

cally label the data then becomes a very critical issue.

Very few articles have addressed the details of labeling images, only describing them as

“labeled by medical experts.” In our study, we reveal our step-by-step approach of data labeling

and the revisions we made during labeling. This labeling method is suitable for any images of

pressure ulcers, not just for our datasets. In the second part, we input more than 2,800 images

of pressure ulcers into some of the most popular and influential DL models. We combined the

results from different models to create an automatic pressure ulcer diagnosis system.

Methods

Image acquisition

This study was approved by the research ethics review committee of Far Eastern Hospital (No.

109145-E). We searched the electric medical records of patients from January of 2016 through

December of 2020, with ICD9 codes from 707.00 to 707.10. These codes identify a pressure

ulcer and its location; for instance, 707.03 indicates ulcer, pressure, sacrum, i.e., a pressure

sore located at the sacrum. We collected the images of pressure ulcers from electronic medical

record of progress notes, operation notes, discharge notes, and emergency department charts.

All images were 3600�2700 pixels and saved as jpg files. The images were taken by various

types of devices, and the conditions of taking pictures including illumination, background, dis-

tance, and angle were also diverse. These images were assigned random numbers for de-identi-

fication and presented to plastic surgeons for labeling.

An image was initially excluded if the wound was dressed with ointment, covered with

dressing, actively bleeding, obscured by hematoma; the wound presented with obvious pus;

the image was out of focus or taken under poor light conditions.

Boundary-based labeling

Our initial method of labeling a pressure ulcer is similar to pizza-making (Fig 1). The first step

is to make the round base of dough and the second step is to sequentially add the toppings,

such as sausage, mushroom, and olive. So akin to making a pizza, the border of the whole pres-

sure ulcer was first drawn as ulceration. Then the boundaries of the different tissues, such as

granulation, eschar, slough inside ulceration, were labeled in order. A pressure ulcer can be

described by the different tissue types constituting it, such as by the following relation:
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Ulceration = (Granulation \ Eschar \ Slough \ Undefined). A pressure ulcer may not have all

types of tissues (Table 1).

Peri-wound tissue, re-epithelialization, was labeled. Re-epithelialization (re-ep) is a term to

describe the resurfacing of a wound with new epithelium [28]. It is the essential sign of wound

healing starts 24 hours after injury and continues until the healing process covers the entire

wound surface. The labeling was done using Labelme in Python 3.6 with a mouse or pen tablet.

All images were co-labeled by two of four plastic surgeons who yielded a single, agreed upon

label. Any image was excluded when the two surgeons could not reach consensus on the label.

Evaluation metrics

Before describing our method of data preprocessing, we need to define the evaluation metrics

we used. Five metrics were employed: Dice’s coefficient (F1 score), intersection over union

Fig 1. Pizza-making labeling method. The border of the ulceration is first drawn, followed by borders of the different tissues

inside the ulceration. Re-ep (c) is drawn where the wound image indicates its existence.

https://doi.org/10.1371/journal.pone.0264139.g001

Table 1. Tissues of pressure ulcer inside and peri-wound.

Type Color Description

Granulation (Inside) Beefy red to pink 1. Healthy tissue in wounds

2. Collagen, fibroblast, capillary

3. Indication of wound healing

Eschar (Inside) Black to brown 1. Desiccate, nonviable tissues from skin, fat,

tendon, or muscle

2. Usually clear margin if stable

Slough (Inside) Mostly yellow, could be white, tan,

grey or green

1. Most varied appearance

2. Partially dead or complete necrotic

3. Mix with fibrin, biofilm or bacteria

Re-epithelialization (Peri-

wound)

Light pink to purple 1. Formation of wound bed matrix

2. Migration of keratinocytes

3. Indication of wound healing

https://doi.org/10.1371/journal.pone.0264139.t001
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(IoU), precision, recall and accuracy. Dice’s coefficient (DC) and IoU are two common metrics

to assess segmentation performance, whereas precision, recall and accuracy are the metrics of

assessing classification results. These metrics are defined using true positive (TP), false positive

(FP), true negative (TN) and false negative (FN) predictions for any input image considered,

as follows:

DC (F1 score) is twice the area of the intersection of the ground truth and prediction

divided by the sum of their areas. It is given by:

DC ¼
2jAreaðPredictÞ \ AreaðGround truthÞj
jAreaðpredictÞj þ jAreaðGround truthÞj

or
2TP

2TPþ FP þ FN
:

The intersection over union (IoU) denotes the area of the intersection of the ground truth

and prediction divided by the area of their union. It is given by:

IoU ¼
jAreaðPredictÞ \ AreaðGround truthÞj
jAreaðpredictÞ [ AreaðGround truthÞj

or
TP

TP þ FPþ FN
:

Precision is defined as the ratio of the actual wound pixels that the model correctly classi-

fied to all predicted wound pixels. It is also called the positive predicted value (PPV) and

given by:

Precision ¼
TP

TP þ FP
:

Recall is defined as the ratio of the actual wound pixels that are correctly classified to all

actual wound pixels. It is also called sensitivity and given by:

Recall ¼
TP

TP þ FN
:

Accuracy denotes the percentage of correctly classified pixels. It is given by:

Accuracy ¼
TP þ TN

TP þ FPþ TN þ FN
:

Different combinations of classes

The above labeling methods created a detailed annotation with different types of tissues inside

and outside of the ulceration. However, the informative label data generated a challenge of

repeat annotation on the same pixels. Different classes needed to be trained together, and at

least two modes were required. There were multiple possible combinations of different classes

into two groups. To decide which combination of groups to select not only depends on final

segmentation results, but which tissue is more important for diagnosis. Granulation and re-ep

are the two most important tissues for detecting wound healing. However, re-ep had fewer

total numbers of pixels than other tissues (S1 Fig) and, the shape of re-ep is usually a ring or

crescent, making it difficult to predict accurately.

We tried two practical class combinations to test which models had better segmentation

performance for re-ep. Re-ep was trained with ulceration in model 1 whereas re-ep was trained

with granulation, slough and eschar in model 2. The test dataset contained 755 labeled images

of pressure ulcers and was split at a ratio of 7:2:1 for training, validation and testing. The data

was input into U-Net with ResNet101 for training.

In S2 and S3 Figs, they showed that model 1 (recall: 0.6291, DC: 0.7716) had better sensitiv-

ity and DC for re-ep than model 2 (recall: 0.5685, DC: 0.7244). Based on this result, re-ep and
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ulceration were trained in one model, and tissues inside ulceration were trained in the other

model.

Region-based labeling

Pizza-making is a straight-forward, boundary-based labeling method. Nevertheless, we found

it challenging for plastic surgeons to acquire consensus when they labeled tissues (granulation,

slough, eschar) inside the ulceration. The composition of tissues on the wound bed is a subtle

transition. It is sometimes hard to draw boundaries between different tissues. It was also diffi-

cult for two plastic surgeons to reach consensus on these borders.

We introduced superpixel segmentation to define meaningful regions among tissues. We

tried to reduce inconsistency of the borders drawn by different labelers. There are different

algorithms to achieve this goal. Simple linear iterative clustering (SLIC) is the most popular

method [29]. It groups pixels in a five dimensional space (l,a,b,x,y), where (l,a,b) are the color

vectors in the CIELAB color space and (x,y) are the pixel positions. The desired number of

equally-sized superpixels K are defined, and the grid interval is S. Compactness (m) is a vari-

able that controls the weight of the spatial term. The center of K superpixel Ck is (lk,ak,bk,xk,

yk). Each pixel Ii is be represented as (li,ai,bi,xi,yi). The Euclidean distances D are defined as fol-

lows:

Dcolor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðli � lkÞ
2
þ ðai � akÞ

2
þ ðbi � bkÞ

2

q

Dxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xkÞ
2
þ ðyi � ykÞ

2

q

D ¼ Dcolor þ
m
S
Dxy

The process of associating pixels with the nearest cluster center computed the boundary

repeatedly until converge.

To test whether the dataset preprocessed by SLIC had a positive effect on the models to seg-

ment different tissues (granulation, slough and eschar), the 755 images previously labeled with

labelme were used. All images were reduced in size to 1000�750 pixels but filled with black

background to 1000�1000 pixels for model training. The smaller images can be processed with

SLIC in laptops without powerful GPUs. Images were processed by SLIC with K ranging from

800 to 1000, and m = 10, to form superpixels (regions). Fig 2 shows an illustrative example of

results with different settings of the number of superpixels (K). After preprocessing with SLIC,

images were presented to the same two plastic surgeons who sorted the regions into their

classes.

The dataset labeled with labelme and the dataset labeled with SLIC preprocessing were both

input into U-Net with the same fine-tune parameters to yield model 3 and model 4.

The performance of tissue classification of the two models is shown in Table 2. The model 4

trained on the reduced images with SLIC preprocessing had better results on all evaluation

metrics. The results do not necessarily mean that model 4 has better segmentation perfor-

mance in real-wound images since the ground truth of the two datasets are different. We used

75 new testing images of pressure ulcers to make a direct comparison. model 4 still had more

satisfactory segmentation results and predicted fewer undefined pixels than model 3, as illus-

trated in Fig 3.

Based on the above results, we revised the boundary-based labeling for all classes (pizza-

making method) to boundary-based labeling for re-ep and ulceration; region-based labeling
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(SLIC preprocessing) for granulation, slough and eschar. One dataset (boundary-based) was

used to train models for wound segmentation. The other dataset (region-based) was applied to

trained models for tissue classification (Fig 4). Images of the boundary-based dataset are their

original sizes, and the images of the region-based dataset are reduced in size as described

above. The two datasets were also split at a ratio of 7:2:1 for training, validation and testing.

Training and validation images were used to execute three-fold cross validation and the testing

set was preserved.

Fig 2. Different number of superpixels (K). (a) Resize image. (b) K = 500. (c) K = 1000. (d) K = 2000.

https://doi.org/10.1371/journal.pone.0264139.g002

Table 2. Tissue classification from models with different labeling methods.

Model 3 (Labelme) Model 4 (SLIC)

IoU score 0.3921 0.4635

F1 score 0.4336 0.5129

Precision 0.5036 0.5622

Recall 0.7979 0.8233

Accuracy 0.9897 0.9927

Loss 0.5664 0.4870

https://doi.org/10.1371/journal.pone.0264139.t002
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Deep learning models

The two datasets were input into five well-developed DL models to compare their performance

on the two tasks. All models were combined with ResNet101 as their encoder. ResNet101 is a

powerful encoder that can be compatible with any deep learning models, and easy to optimize.

We also initialized them with pre-trained model weights derived from large-scale object detec-

tion, segmentation and captioning datasets, such as ImageNet and COCO. The standard

image augmentations of images we used were rotating, shifting, scaling, gaussian blurring, and

contrast normalization. All the models were trained in the Taiwan Computing Cloud, using

their container service, on a server configured with four NVIDIA TESLA V100 GPU cards, a

16 core Intel XEON Gold 61 CPU and 360 GB RAM.

U-Net. U-Net proposed by Ronneberger et al. is the most popular semantic segmentation

model in the medical field [30]. Its architecture, which involves a series of encodings followed

by a decoding process, resembles the letter U. Many models have been derived from U-Net

structures, such as FCNet, SegNet, DeconNet, V-Net, U-Net++. The standard Dice loss was

chosen as the loss function. The formula is given by:

L TP; FP; FNð Þ ¼ 1 �
2TPþ �

2TPþ FP þ FN þ �
:

wThe � term is used to avoid the issue of dividing by 0 when precision and recall are

empty.

DeeplabV3. DeeplabV3 was proposed by Chen et al [31]. Multiple convolution layers are

a structure designed to capture high dimensional features, but they lose details when layers go

deeper. Atrous convolution is a solution created to solve this problem. Deeplab V3 is com-

posed of multiple scales of atrous convolutions (spatial pyramid pooling) to preserve details

Fig 3. Tissue classification performance on testing images of U-Net with different labeling methods. (a) Original images of

pressure ulcers. (b) Classifications of Model 4 (SLIC). (c) Classifications of Model 3 (Labelme). Granulation: red; Slough: yellow;

Eschar: blue.

https://doi.org/10.1371/journal.pone.0264139.g003
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and acquire high dimensional features. The standard Dice loss was chosen as the loss function

of U-Net.

Pyramid scene parsing (PsPnet). PsPNet was proposed by Zhao et al [32]. After passing

through CNN layers, such as ResNet pretrained with a dilated network for feature extraction,

the model adopts whole and multiple sub-regional features from larger size to smaller size,

which calls a pyramid pooling module. Then, the model up-samples all the sub-regional fea-

tures and then concatenates the original feature map to form a single layer. The standard Dice

loss was chosen as the loss function of U-Net.

Feature Pyramid Network (FPN). FPN, proposed by Lin et al., has a modified convolu-

tion pathway [33]. It not only has the high level of features of convolutional layers but also

combines the features from different levels of up-sampling layers. It works faster than a featur-

ized image pyramid, which has features from different scales of images. It acquires more detail

than a single feature map. FPN is a hybrid and modified model of a featurized image pyramid

and a single feature map. The standard Dice loss was chosen as the loss function of U-Net.

Mask R-CNN. Mask R-CNN was proposed by researchers at Facebook [34]. It is an

advanced model of Faster R-CNN and a tool of instance segmentation. Mask R-CNN uses a

multi-task loss function given by L = Lclass + Lbox +Lmask. The Lclass component contains the

RPN class loss, a penalty for failure of the Region Proposal Network to separate object predic-

tion from background. The Lbox measures failure of object localization or bounding by RPN.

The last component Lmask constitutes the loss from the failure of Mask R-CNN to correctly

predict the object mask.

Fig 4. The workflow of labeling and training. Boundary-based labeling was used for peri-wound tissue and ulceration.

Region-based labeling was applied for inside wound tissues.

https://doi.org/10.1371/journal.pone.0264139.g004
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Results

Wound segmentation & tissue classification

The first dataset contained 2893 images labeled with the boundary-based method and was

used for wound segmentation and re-ep detection. The second dataset included 2836 images

labeled with SLIC preprocessing, the region-based method, and used for tissue classification

inside the ulceration. The first dataset had more labeled images than the second, because it is

challenging to reach consensus when labeling tissues.

The performance of the five models on the wound segmentation and re-ep detection tasks

is shown in Table 3. Although the five models all achieved satisfactory results on this task, Dee-

plabV3 outperformed the other algorithms. As shown in Table 4, DeeplabV3 also did the best

on the tissue classification task. In addition to our testing dataset, images from the Medetec

Wound Database were used to test the performance on wound segmentation, re-ep detection

(Fig 5) and tissue classification inside wounds (S4 Fig). Finally, we chose to use DeeplabV3 for

the two main tasks in our automatic diagnosis algorithm (S5 Fig).

However, it is worth noting that although Mask R-CNN is a powerful model, it performed

worse than all other models on the tissue classification task. Mask R-CNN outputs instance

segmentation by first defining the bounding box for objects and then proposing segmentation

masks. If the bounding box is not defined correctly, the mask will not be segmented correctly.

In many ulcerations, granulation tissue encases or intermingles with the slough tissue or vice

versa, which presents the wrong range of bounding boxes as well as masks, as shown in Fig 6.

The actual wound pixels are then underestimated, and recall is affected the most. This will not

cause much of an issue for models that perform semantic segmentation.

Automatic diagnosis

Combining segmentation results and clinical data, the set of algorithms in our automatic diag-

nostic system provides output concerning four aspects of wound status useful for making

treatment decisions: the detection of re-ep signals the initiation of wound healing; the ratio of

granulation to ulceration area and the trend of the ratio indicate the stage of wound healing,

the estimated size of the wound, and whether surgical debridement is required (S5 Fig). The

detection of re-ep relies on the wound segmentation and the segmentation of the area of re-ep

Table 3. Performance of the five models on wound segmentation and re-ep detection task.

IoU score F1 score Precision Recall Accuracy Loss

U-Net 0.9745 0.9867 0.9868 0.9867 0.9911 0.0132

DeepLabV3 0.9782 0.9887 0.9888 0.9887 0.9925 0.0112

PsPnet 0.9211 0.9404 0.9317 0.9494 0.9780 0.0595

FPN 0.8196 0.8939 0.8556 0.9492 0.9346 0.1061

Mask R-CNN 0.8597 0.8456 0.8345 0.8542 0.8533 0.3742

https://doi.org/10.1371/journal.pone.0264139.t003

Table 4. Performance of the five models on tissue classification inside ulcerations.

IoU score F1 score Precision Recall Accuracy Loss

U-Net 0.9830 0.9905 0.9913 0.9897 0.9899 0.0094

DeepLabV3 0.9834 0.9915 0.9915 0.9915 0.9957 0.0084

PsPnet 0.9390 0.9753 0.9614 0.9897 0.9899 0.0094

FPN 0.8252 0.9014 0.8615 0.9507 0.9508 0.0986

Mask R-CNN 0.7886 0.8480 0.9191 0.7871 0.8903 0.2032

https://doi.org/10.1371/journal.pone.0264139.t004
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adjacent to ulceration, both executed using DeeplabV3. Calculating the ratio of granulation to

ulceration area requires the results from the wound segmentation and tissue classification per-

formed using DeeplabV3. The coverage rate of granulation tissue provides the strength of

wound contraction and indicates the wound is healing. Estimation of the wound size combines

the wound segmentation results with parameters extracted from the input images. Assuming

that the image was taken at distance D and the projection area of the whole image is A, which

can be calculated by:

A ¼ Length � width ¼ Length2 � ratio

Length ¼ D � Sensor size=Focal distance

If the distance is Dx, the pixel of image is Pimage and the wound segmentation is Pwound, the

projection of area of the whole image Ax and the wound Awound could be calculated as:

Ax¼ ADx=D ; Awound ¼ Pwound=Pimage

� �
� Ax

As the fourth output, whether the pressure ulcer requires surgical debridement depends on

the presentation of infection and necrotic tissues [35]. The decision tree consists of three

checkboxes in Fig 7. The necrotic tissue can be assessed from the segmentation results (blue

box). The infection (gray box) and potential infection of necrotic tissue (orange box) need the

input of clinical data with regression and other wound conditions. We deployed all algorithms

Fig 5. Collage of results of wound segmentation and re-ep detection from the Medetec Wound Database.

https://doi.org/10.1371/journal.pone.0264139.g005
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and models in the Taiwan Computing Cloud, a virtual computing service, on a dedicated

server configured with 4 Inter XEON GOLD CPUs and 32 GB ram, to provide a website ser-

vice. Medical staff and caregivers can upload the images of pressure ulcers and input clinical

information from their cellphones or laptops to obtain the results of the automatic diagnosis

in Fig 8.

Discussion

DL relies on large, labeled, and domain-specific datasets to extract features. Determining how

to label images of wounds in a manner that achieves diagnostic accuracy is the key. The most

challenging task is to label the various tissues of the ulceration. Aside from the boundary hand

drawing method, the painting method is commonly used. But the problem remains unsolved;

there are no pre-defined regions or boundaries. The inter-rater variability and even the intra-

rater variability are still considerable [36]. Algorithms to define meaningful wound areas, such

as superpixel segmentation, are required before labeling.

The concept of superpixel segmentation was first proposed by Ren at al [37] to group adja-

cent pixels with similar features, such as intensities, colors and textures. After processing by

algorithms, an image is segmented into many small regions called superpixels. In the last

decade, different superpixel algorithms have been proposed, such as Felzenszwalb’s efficient

graph in 2004, Quickshift in 2008, and simple linear iterative clustering (SLIC) in 2012. SLIC,

Fig 6. The wrong range of bounding boxes as well as masks. (a) The granulation tissues intermingled with slough

and eschar. (b) Some eschar was encased by slough and some slough was encased by granulation. (c) and (d) showed

poor segmentation results due to the above phenomenon.

https://doi.org/10.1371/journal.pone.0264139.g006
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a k-means clustering algorithm, has become the most popular superpixel algorithm [29]. Sev-

eral modified versions of SLIC have been proposed. For example, linear spectral clustering

(LSC) uses a ten-dimensional space to get a better boundary [38]. The superpixel based edge

detection algorithm (SBED) is a centroid updating approach to decrease the effect from noise

[39]. These versions all demand a higher level of computer calculation. We have adopted the

original SLIC to draw boundaries for tissues, because it has three crucial properties: it is fast

and simple [40]; it uses a regular shape and similar size; it delivers good adhesion to the object

border.

To perform superpixel segmentation before labeling, we reduced the images to 1000�750

pixels. The total number of labeled pixels of each class in the superpixel datasets was far less

than the number of pixels labeled with labelme (S6 Fig). Despite having less data to work with,

the model performs better on the testing images of reduced size (Fig 3). Zhang et al. published

an interesting study which helps explain this outcome [41]. When they input randomly labeled

objects or random pixels, after 10 thousand steps, neural network models still converged to fit

the training set perfectly. The neural networks were rich enough to memorize this highly

flawed training data, but their results on testing datasets were poor. This finding indicates that

if a model is trained from a dataset with large inter- or intra-rater variability, the segmentation

results might be good on the training set but poor on real-world images. Superpixel segmenta-

tion improves the inter- and intra-rater by defining the meaningful borders between different

tissues.

Before the era of machine learning, radiation oncologists had already faced this challenge.

Radiation therapy had been applied to almost every cancer in the human body. A successful

treatment relied on a precise hand-drawn tumor contour in a CT or MRI image. The targeted

Fig 7. Decision tree of surgical debridement. Combining the DL segmentation result (blue) with clinical data (grey) and other

wound conditions (grey and orange). aAbnormal WBC": white blood cell count>> 12,000 / mm^3. bG/U: Granulation /

Ulceration Area. cCD: Change dressing.

https://doi.org/10.1371/journal.pone.0264139.g007
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tumor contour came from the agreement of multiple experts (relative ground truth). However,

the inter-rater agreement of such experts ranges from 50 to 90% depending on the tasks and

image modalities [42]. To increase agreement, algorithms or models are used to define mean-

ingful regions for medical experts. Radiation experts need only to fine-tune computer-gener-

ated borders rather than to hand-draw them on their own. The models are usually trained

from a small, but highly reliable labeled dataset consisting of textbook-like medical images

Fig 8. The print-screen images of our automatic diagnosis server. Our medical staffs can upload images and clinical data via cellphones.

https://doi.org/10.1371/journal.pone.0264139.g008
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[43]. Otherwise, algorithms are needed that can properly segment images related to ground

truth, such as SLIC [44].

It is obvious that increasing the number of superpixels (K) can segment images more accu-

rately (boundary recall) [45, 46]. However, when superpixel segmentation is combined with

other ML models, increasing K is not always positively correlated with performance [47]. If the

number is too high, the texture information of each superpixel diminishes. In our datasets, the

average wound area is around 41.8% of the entire image, and we resized all images to 1000�750

pixels. Our experienced plastic surgeons could easily label all types of tissues when K reached

800 to 1000 without compromising the details (Fig 2). As the number of superpixels was

increased beyond 1000, the consensus of labeling became as hard to achieve as it was using the

boundary labeling method.

As for data imbalance, Re-ep is an important class but has small number of pixels with

irregular shape, which makes it difficult to be detected. Among different classes combination,

we found that re-ep training with ulceration had better results than re-ep training with other

tissues (granulation, eschar, and slough). This finding cannot be easily explained by data num-

bers. The total pixels of ulceration were more than the sum of the three types of other tissues

(S1 Fig). When re-ep was trained with ulceration, it was actually more in the minority, increas-

ing the degree of imbalance, which should theoretically result in worse re-ep classification [48,

49]. Class overlapping is another factor that will deteriorate classification results. Neither can it

be explained by class overlapping because re-ep is more likely to overlap with ulceration than

with the other tissues [50].

Another possible factor may be the number of classes. However, studies bearing on this

issue are limited and reach contradictory conclusions. In a study of ImageNet (a large dataset

of images comprising a large number of classes consisting of a small number of individual

objects), Abramovich et al. found that including more classes improves the accuracy of model

classifiers [51]. This is because sorting objects into more classes is an operation of supervised

feature extraction. Other studies have found that merging classes can improve a classifier’s

accuracy because it reduces the inter-class labeling errors of the dataset [52]. For example, if

we sorted Giant pandas as Ursus (bear), it would be wrong because they belong to the genus

Ailuropoda. Whereas, if we merged Ursus and Ailuropoda into the family Ursidae, Giant pan-

das could be classed as Ursidae correctly. However, the status of our datasets does not fit the

circumstances of the above studies completely. First, our dataset has a different composition

from ImageNet, with a small number of classes, each consisting of a large number of individual

pixels. Secondly, Re-ep is not a class that can be merged into other classes. Re-ep tissue was

more likely to be classified as background when training with other tissues because it lies out-

side of the wounds, is distinct from the other tissues and comprises a smaller number of pixels.

Limitations

Pressure ulcer tissue is more complex than our labeling suggests. Pressure ulcers may expose

ligaments, periosteum or bone cortex. Though some studies have considered more tissue types

[53, 54], we used only three primary tissues (granulation, slough, and eschar) for several rea-

sons. More types of tissue increase the difficulty of labeling and augment inter-rater variability.

Classifying more tissues may not affect clinical judgement of wound healing. Granulation is

the most critical tissue of wound healing to be observed. However, detection of only three

types of tissues has limitations if we want the DL model to output more advanced suggestions,

such as the need for reconstructive surgery.

The estimation of wound size is a projection of the 3-dimensional (3D) wound surface onto

the 2-dimensional image. The angle of the camera to the wound bed will affect the result of the
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projection area. We suggest that the camera should be parallel to the wound bed to get accurate

results. Moreover, our segmentation results did not include the depth information of pressure

ulcers. To solve the above problems, 3D wound surface images are needed. Special devices are

required to gather more images and information, such as stereo images, multiview by structure

light guided or light detection and ranging (LIDAR) guided (time of flight (ToF) array).

Conclusion

We have proposed systematic labeling methods to create pressure ulcer datasets for deep learn-

ing. Superpixel preprocessing, a region-based method, was applied for various tissues inside

the ulceration, while a boundary-based method was used for re-epithelialization and ulcera-

tion. Several powerful DL models were trained and tested on the two datasets and had promis-

ing results on the wound segmentation and tissue classification tasks. Combining the

segmentation results and other clinical information, our algorithm can detect the signs of

wound healing, monitor the progress of wound healing, estimate the size of a wound and sug-

gest the need for surgical intervention.

Supporting information

S1 Fig. The number of pixels of each class. The pixels of ulceration are slightly more than the

sum of pixels of granulation, slough, and eschar.

(TIF)

S2 Fig. The confusion matrix of model 1. The matrix showed the results when re-ep was

trained with ulceration.

(TIF)

S3 Fig. The confusion matrix of model 2. The matrix showed the results when re-ep was

trained with granulation, eschar and slough (sum up as others).

(TIF)

S4 Fig. Collage results of tissue classification inside wounds from the Medetec Wound

Database.

(TIF)

S5 Fig. The workflow of automatic diagnosis and the outputs.

(TIF)

S6 Fig. The bar chart of pixel numbers. The total number of pixels of different tissues in the

labelme dataset (orange bar) and superpixel dataset (blue bar).

(TIF)

S1 Dataset. Region-based label method. https://doi.org/10.6084/m9.figshare.17206904.v1.

(RAR)

S2 Dataset. Boundary-based label method. https://doi.org/10.6084/m9.figshare.17206940.v1.

(RAR)
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