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LETTER TO THE EDITOR

In the February 2009 issue of the Journal of General Physi-
ology, we published a paper in which we presented 
(among several other results) a novel, single-channel–
based approach to estimating the fractional Ca2+ currents 
through neurotransmitter-gated ion channels (Elenes 
et al., 2009). We applied the method to a variety of mutant 
and wild-type muscle nicotinic acetylcholine receptors 
(AChRs) and to the NMDA receptor composed of NR1 
and NR2A subunits, all heterologously expressed in 
HEK-293 cells. Our goal was to estimate the impact of 
a panel of naturally occurring mutations on the Ca2+-
permeation properties of the AChR.

Our methodology is based on the observation that (in 
the presence of saturating concentrations of, say, Na+ in 
the pipette solution of cell-attached patches) increasing 
concentrations of Ca2+ in the pipette reduce the inward 
single-channel conductance, eventually reaching a non-
zero value that coincides with the single-channel con-
ductance measured in the presence of Ca2+ alone (at 
saturating concentrations) in the pipette. Furthermore, 
this phenomenon turned out to be quantitatively con-
sistent with Na+ and Ca2+ competing for a single site in 
the channel’s pore, and hence, only three parameters 
are needed to characterize it: (1) the single-channel 
conductance in the absence of Ca2+; (2) the single-chan-
nel conductance in the limit of infinite Ca2+ concentra-
tion; and (3) an apparent Ca2+-dissociation equilibrium 
constant that is a measure of how much Ca2+ is needed 
to displace the other ion (in this example, Na+) from 
the pore. If the values of these three parameters are 
known, the fraction of the total current that is carried 
by Ca2+ at any desired extracellular Ca2+ concentration 
can be estimated using very simple expressions (Eqs. 2–5 
in Elenes et al., 2009).

For most constructs, our estimates of the fractional 
Ca2+ currents using this approach (Table II in Elenes 
et al., 2009) are in remarkable agreement with the values 
obtained by some groups using other methods, most 
notably, the fluorometry/patch clamp approach (Zhou 
and Neher, 1993). For example, our estimate of 12.8% 
for the fractional Ca2+ current through the NR1-NR2A 
NMDAR compares very well with the estimate of 11% 
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from Burnashev et al. (1995), 13.5% from Jatzke et al. 
(2002), and 14% from Egan and Khakh (2004), all ap-
plying the fluorometry/patch clamp approach to the 
same channel expressed in the same cell line, and using 
nearly the same ion and voltage conditions as we have. 
Another example of close agreement between these two 
approaches is the human adult-type muscle AChR; our 
value is 9.3%, whereas that from Fucile et al. (2006) was 
7.2% and that from Di Castro et al. (2007) was 7.8%. Yet 
another example is the AChR containing the congeni-
tal myasthenic syndrome mutation T264P in the  sub-
unit; our number is 15.0%, whereas that from Di Castro 
et al. (2007) was 11.8%. Interestingly, the value of 15.4% 
estimated by Di Castro et al. (2007) for the AChR con-
taining the V259F congenital myasthenic syndrome 
mutation is also very close to the average value estimated 
by us for wild-type and mutant adult-type AChRs (13%; 
we have not estimated the fractional Ca2+ current through 
this particular mutant using our method). This finding 
seems most sensible, considering that a V-to-F mutation 
at the 7 position of the M2 pore-lining segment, a posi-
tion that is not expected to be exposed to the channel’s 
lumen in the open conformation (Cymes et al., 2005), 
is unlikely to have a major effect on the Ca2+ perme-
ation properties of the AChR.

For a few constructs, however (specifically, the adult 
and fetal wild-type AChRs from mouse muscle), our es-
timates of the fractional Ca2+ currents are higher than 
those reported previously using the fluorometry/patch-
clamp method, an intriguing discrepancy in light of the 
reasonable agreement between the values yielded by 
both approaches for all other constructs. In a letter to  
the editor (see p. 259 of this issue), Fucile and Grassi  
claim to have identified the reasons for these divergent 
results, a development we were eager to learn about. 
Quite disappointingly, however, none of the issues 
raised in this letter is valid, as we elaborate below. We 
also note that the quoted work of Villarroel and Sakmann 
(1996) was performed on rat not mouse muscle recep-
tors, and that, in that paper, fractional Ca2+ currents were 
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that to the entire mixture of cations. It is the conduc-
tances (and hence, the slopes) that matter in this limit; 
not the lateral displacements of the straight lines.

With respect to the competition between ions, the 
reason why we consider that Ca2+ displaces other cations 
in the mixture, eventually becoming the sole charge 
carrier as its concentration increases, is that the limiting 
value of this conductance is nearly identical to that mea-
sured in the presence of saturating (100–200 mM) Ca2+ 
alone. Note that, with 100–200 mM Ca2+ in the pipette 
solution of cell-attached patches, the inward conduc-
tance is 28 pS (Fig. 1 A), whereas in the additional pres-
ence of 150 mM Na+, the conductance only increases to 
33 pS (Fig. 1 B).

In their letter, Fucile and Grassi argue that this rea-
soning is fundamentally wrong, and that the finding 
that these conductance values coincide is perhaps a 
mere coincidence (compare their Fig. 1, A and B). 
Instead, they suggest that, even in the presence of mix-
tures of 150 mM Na+ and 100 mM Ca2+ on the extra-
cellular side, the currents at hyperpolarized potentials 
are mostly carried by Na+ with only a small contribution 
by Ca2+. Most disconcerting in their analysis is the assump-
tion of ohmic behavior across the entire voltage range, 
even under extremely asymmetric conditions ([Ca2+]o/
[Ca2+]i of 1,000 and [monovalent cations]o/[monovalent 
cations]i of 103; see their Fig. 1), and the calculation 
of reversal potentials from our I-V data in Fig. 15 of 
Elenes et al. (2009), which correspond exclusively to 
inward currents.

To resolve the question as to whether monovalent cat-
ions contribute substantial inward current at high 
[Ca2+]o and hyperpolarized potentials, we compared 
the effect of increasing the concentration of extracellular 

calculated from reversal potential estimates assuming 
the validity of the Goldman-Hodgkin-Katz equation, not 
using fluorometry.

Fucile and Grassi suggest that our approach is wrong 
because we only take into account the slopes (and disre-
gard the displacements along the voltage axis) of I-V 
curves recorded with increasing concentrations of Ca2+ 
in the pipette solution of cell-attached patches, and be-
cause we consider that the limit of the inward conduc-
tance as the concentration of Ca2+ is increased (in the 
presence of a constant concentration of another cation 
in the pipette) represents currents carried by Ca2+ and 
not by the other cation in the mixture.

The reason why we only consider the slopes of the re-
corded I-V curves in Eqs. 2–5 (Elenes et al., 2009) was 
explained in the paper, and it has to do with the particu-
lar voltage dependence of the fractional Ca2+ currents. 
In the presence of a monovalent cation such as Na+ or 
K+, at a concentration of 150 mM in the pipette of 
cell-attached patches, the fractional Ca2+ current (at any 
extracellular Ca2+ concentration higher than the cyto-
sol’s) is unity at zero voltage and decreases as the volt-
age is hyperpolarized; eventually, this fractional current 
reaches a nonzero plateau. It is this (voltage-indepen-
dent) limit that we calculated and reported for each 
construct in Table II of Elenes et al. (2009), as we ex-
plicitly indicated. Moreover, we suggested that these val-
ues are expected to be very close to those corresponding 
to the resting membrane potential. Because the re-
corded I-V relationships (at hyperpolarized potentials) 
were adequately fit by straight lines, the fractional Ca2+ 
current in this voltage-independent limit (and at any 
given extracellular Ca2+ concentration) is given by the 
ratio between the channel’s conductance to Ca2+ and 

Figure 1.  Single-channel I-V curves recorded in the cell-attached configuration from the mouse muscle AChR containing the T264P 
mutation, one of the constructs studied in Elenes et al. (2009). Note the different current axis scales of the two panels. (A) I-V relation-
ships in the presence of saturating concentrations of the indicated cations (as their chloride salts) in the pipette solution. In the case 
of Ca2+, the slopes estimated with 100 or 200 mM Ca2+ were indistinguishable, and hence, the corresponding data points were pooled 
together. (B) I-V relationships in the presence of the indicated binary mixtures of cations in the pipette solution. In the case of Na+, 
100 mM Ca2+ was enough to bring the single-channel conductance to a value close to that estimated in the presence of Ca2+ alone; how
ever, in the cases of K+ and Cs+, 200 mM Ca2+ was needed. The pipette solutions also contained 10 mM HEPES, and the final pH was 7.4.  
To facilitate the visual comparison of slopes, all I-V curves were shifted along the voltage axis so that their linear projections go 
through the origin.
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potential under these ion conditions and its rightward 
shift upon the addition of extracellular Na+. But it is im-
portant to understand that the balance of ion-specific 
currents can change steeply as a function of voltage. In-
deed, at hyperpolarized potentials, the inward flow of 
saturating Ca2+ through the muscle AChR dominates 
the inward currents, even with 150 mM Na+ (or K+ or 
Cs+) on the extracellular side, as we unequivocally show 
in Fig. 1.

In a nutshell, we also would like to know the reasons 
behind the few noted discrepancies. What is clear, how-
ever, is that the reasons argued by Fucile and Grassi in 
their letter are not the culprit.

Edward N. Pugh Jr. served as editor.
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Ca2+ in mixtures containing a constant, saturating 
concentration (150 mM) of Na+, K+, or Cs+ (Fig. 1). If 
Fucile and Grassi’s reasoning were correct, mixtures of 
100–200 mM Ca2+ and any of these monovalent cations 
are expected to have different inward conductance val-
ues because the currents at hyperpolarized potentials 
would be carried mostly by the monovalent cations, and 
these exit the channel at very different rates. Indeed, 
the inward single-channel conductance is 146 pS in the 
presence of 150 mM K+ on the extracellular side, 116 pS 
in the presence of 150 mM Cs+, and 90 pS in the pres-
ence of 150 mM Na+ (all in the nominal absence of ex-
tracellular divalent cations; Fig. 1 A). Conversely, if it 
were true that Ca2+ at sufficiently high concentrations 
becomes the only charge carrier of inward currents 
at hyperpolarized potentials (regardless of whether the 
other ion on the extracellular side is Na+, K+, or Cs+), 
then all three mixtures should have a similar single-
channel conductance, which in turn should asymptoti-
cally approximate that in the presence of saturating 
Ca2+ alone (28 pS; Fig. 1 A). From the I-V plots in Fig. 1 B, 
the inward conductances are 34 pS with 150 mM K+  
and 200 mM Ca2+ on the extracellular side, 34 pS with 
150 mM Cs+ and 200 mM Ca2+, and 33 pS with 150 mM 
Na+ and 100 mM Ca2+, which are certainly all very close 
to the conductance estimated in the presence of 100–
200 mM Ca2+ alone. Evidently, the elementary notion 
that different cations compete with each other for a site 
in the channel’s pore and that, eventually, one of them 
may dominate the currents is correct.

In their letter, Fucile and Grassi argue that the fact 
that the reversal potential of I-V curves (recorded in the 
presence of, say, extracellular 100 mM Ca2+ and intracel-
lular 150 mM of monovalent cations) shifts in the de
polarizing direction upon the addition of Na+ to the 
extracellular side indicates that monovalent cations do 
flow through the channel, even when a 100-mM Ca2+ so-
lution is present. This is, of course, a well-known experi-
mental observation that does not contradict our position 
at all. Instead, this simply indicates that, in the absence 
of extracellular Na+ and around zero voltage, intracellu-
lar monovalent cations flow outwardly faster than Ca2+ 
does inwardly; hence, the negative sign of the reversal 


