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ABSTRACT

Drug discovery is a long and difficult process that benefits from the integration of 
virtual screening methods in experimental screening campaigns such as to generate 
testable hypotheses, accelerate and/or reduce the cost of drug development. Current 
drug attrition rate is still a major issue in all therapeutic areas and especially in the 
field of cancer. Drug repositioning as well as the screening of natural compounds 
constitute promising approaches to accelerate and improve the success rate of drug 
discovery. We developed three compounds libraries of purchasable compounds: 
Drugs-lib, FOOD-lib and NP-lib that contain approved drugs, food constituents and 
natural products, respectively, that are optimized for structure-based virtual screening 
studies. The three compounds libraries are implemented in the MTiOpenScreen web 
server that allows users to perform structure-based virtual screening computations 
on their selected protein targets. The server outputs a list of 1,500 molecules 
with predicted binding scores that can then be processed further by the users and 
purchased for experimental validation. To illustrate the potential of our service for 
drug repositioning endeavours, we selected five recently published drugs that have 
been repositioned in vitro and/or in vivo on cancer targets. For each drug, we used the 
MTiOpenScreen service to screen the Drugs-lib collection against the corresponding 
anti-cancer target and we show that our protocol is able to rank these drugs within 
the top ranked compounds. This web server should assist the discovery of promising 
molecules that could benefit patients, with faster development times, and reduced 
costs and risk.

INTRODUCTION

Virtual screening methods are nowadays fully 
integrated in the drug discovery pipelines and combined 
with high throughput screening to accelerate and reduce 
the cost of drug development [1–4]. Among the different 
virtual screening approaches, docking methods can be 
used to probe the binding pocket of a potential target and 
rationally select and reduce the number of compounds 

that should be experimentally tested. The approach is of 
interest as the availability of three-dimensional structures 
(experimental and modeled) of proteins (including 
membrane proteins) and nucleic acids is increasing 
significantly each year. However, despite the use of 
various modern high-throughput technologies, the drug 
discovery process requires many years of research and 
development and the failure rate in clinical trials remains 
very high, close to 90% [5], essentially because of the 
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lack of efficacy and safety of the drug candidates [6]. The 
drug attrition rate is particularly high in the cancer area 
with a failure rate in clinical trials around 95% [7]. In 
order to speed-up the discovery of new treatments, drug 
repositioning that aims to find new uses for existing drugs 
is considered as an effective and alternative paradigm 
in drug development. Indeed, existing drugs are well-
understood ingredients that regulatory agencies have 
approved for human use in the context of diseases and as 
such have in general well characterized pharmacokinetic 
behaviours with known safety issues if any [8]. Another 
possibility to identify novel drugs is to learn from natural 
products. Here the process is obviously longer than by 
using drug repositioning approaches, but natural products 
present the advantages of being in general chemically 
dissimilar from the synthetic compounds which enable 
to search for hits in a larger chemical space with 
often enhanced bioavailability potency or that act via 
original molecular mechanisms evolved over millions 
of years. For example, natural compounds constitute 
promising candidates for target considered as difficult 
in drug discovery such as protein-protein interactions 
and antimicrobial targets. [9]. Integration in the drug 
discovery process of virtual screening strategies making 
use of libraries containing approved drugs [10] and natural 
compounds [11] represent a very attractive approach in all 
therapeutic areas and definitively in the field of cancer.

Very few automatic and open access structure-
based virtual screening tools are available to conduct 
drug repositioning studies. Several webservers are 
available for target fishing [12], i.e. to try to identify a 
protein target for a given compound, and thus can be 
applied to drug repositioning [13–15]. Yet, to the best 
of our knowledge, the only webserver that provides 
a prepared virtual library of approved drugs (1852 
molecules approved by the FDA between 1939 and 2017) 
and a facility to screen these compounds over the users’ 
selected protein target is the e-Drugs3D webserver [16]. 
Our aim here was to provide to researchers interested in 
drug discovery, regardless of their scientific backgrounds 
(biologists, chemists, clinicians, computer scientists…), 
a user-friendly structure-based virtual screening protocol 
combined with prepared and purchasable approved drug 
and natural compound collections. We indeed decided 
to focus here only on purchasable molecules such as to 
facilitate the discovery process. We thus constructed a 
compound collection named Drugs-lib, by compiling and 
filtering four databases of approved drugs to produce a 
final library that includes only purchasable approved drugs 
presenting structures suitable for docking computations. 
We proceeded the same way to obtain two other electronic 
libraries of natural compounds, one is named FOOD-lib 
that includes food constituents and the NP-lib dedicated 
to natural products. These three libraries are implemented 
in our free structure-based virtual screening webservice, 
MTiOpenScreen. Here, we present the construction and 

implementation of these three libraries and the potential 
use of the Drugs-lib to identify new anti-cancer indications 
for existing drugs using five retrospective examples of 
approved drugs successfully repositioned experimentally, 
in vitro and  in vivo, onto oncogenic targets [17–22].

RESULTS

Purchasable approved drugs, food and natural 
compounds libraries

Compounds libraries generation. Drugs-lib, 
FOOD-lib and NP-lib are compounds libraries that 
contain approved drugs, food constituents and natural 
products, respectively, optimized for structure-based 
virtual screening studies. The three compounds libraries 
are implemented in the MTiOpenScreen web server 
[23] that allows user to perform structure-based virtual 
screening computations on a selected protein target. 
The three compounds libraries were built using the 
same protocol (see Methods section and Figure 1) that 
includes the use of FAF-Drugs4 [24] physico-chemical 
and toxicophore filtering (Figures 2A and Supplementary 
Figure 1), a visual inspection step to remove compounds 
not suitable for docking (e.g., compounds with long 
aliphatic flexible side chains, compounds with very 
complex structures, …) and the assessment of their 
purchasability according to the ZINC15 database [25]. 
The Drugs-lib was constructed by using as a starting 
point four databases of approved drugs, the “drug” subset 
of the ChEMBL database [26], the “approved” subset of 
DrugBank [27] version 5.0.10, the DrugCentral online 
compendium [28] and the “approved” SuperDrug2 
database version 2.0 [29]. A total of 21,276 compounds 
were initially included in the Drugs-lib construction 
process, but only 7173 stereoisomers corresponding 
to 4574 single isomer drugs were kept after removal 
of the duplicates and the filtering protocol mentioned 
in the method section (Table 1). The 26,941 food 
constituents of the FooDB (http://www.foodb.ca/) with 
available smiles strings were used as input for the 
FOOD-lib generation. After removal of the duplicates 
and the filtering steps, the FOOD-lib included 10997 
stereoisomers corresponding to 3015 single isomer food 
constituents (Table 1). A purchasable diverse library of 
natural products of 1237 compounds [30] was processed 
to construct the NP-lib that gathers, after the filtering 
steps, 1228 stereoisomers corresponding to 653 single 
isomer natural products (Table 1).

Compounds libraries diversity. For each compound, 
all stereoisomers tagged as purchasable in the ZINC15 
database were included in the corresponding compounds 
library. Up to 38, 42 and 12 stereoisomers per unique 
compound are counted in respectively the Drugs-lib, 
the FOOD-lib and the NP-lib. The average number of 
stereoisomers per molecule (Supplementary Figure 2) is 
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Figure 1: Schematic representation of the protocol used to generate the Drugs-lib, FOOD-lib and NP-lib. The number 
located close to the arrow indicates the number of compounds remaining in the database at each step. After the Download all stereoisomers 
available for sale in ZINC15 step, the number in brackets corresponds to the number of compounds when considering only one isomer in 
the library.

Figure 2:﻿� (A) Graphical representation of the problematic moieties identified using the of FAF-Drugs4 toxicophore-like filters for the 
Drugs-lib. (B) Heatmap representation of (1 - distance matrix) for the Drugs-lib. The distance matrix was computed using atom pair 
fingerprints and the dendogram was computed using PubChem’s fingerprints. The closer the regions of the grid are to the color red, the less 
similar the pair of ligands.
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of 1.6 for the Drugs-lib (median value equal to 1), 3.6 
for the FOOD-lib (median value equal to 2), and 1.9 and 
for the NP-lib (median value equal to 1). The structural 
diversity of the compounds included in each data set was 
investigated using atom pair fingerprints (Figures 2B 
Supplementary Figure 3). To visualize the chemical space 
covered by each library, we used principal component 
analysis and the FragFp descriptors (binary fingerprint 
that relies on a dictionary of 512 predefined structure 
fragments) computed in DataWarrior [31] (Supplementary 
Figure 4). The values of six important physico-chemical 
properties were computed with our FAF-Drugs4 server 
and the mean values for the different libraries are shown 
in Figure 3 and Table 1.

Retrospective examples of the use of the Drugs-
lib for drug repositioning on cancer targets

The Drugs-lib was developed for structure-based 
virtual screening and conceived to be implemented within 
the MTiOpenScreen service such that if users have an 
experimental 3D structure of a target or a model built 
by homology, they could initiate a drug repositioning 
study. Indeed, as output, the server will provide a list 
of compounds that could be purchased and tested 
experimentally.

In this study, we selected five published examples 
of drugs that have been repositioned on cancer targets. 
For each drug, we used the MTiOS server to screen the 
Drugs-lib against the corresponding anti-cancer target and 

we evaluated the ability of our virtual screening protocol 
to identify the known repositioned drug within the top 
1500 scores.
Fluspirilene

Fluspirilene [32] is an antipsychotic drug, 
administered by intramuscular injection, used for the 
treatment of schizophrenia. Fluspirilene mechanism 
of action is thought to be mediated by inhibition of 
the dopamine D2 receptor [33] and blockade of a 
calcium channel [34]. In 2015, Shi et al. [35] used in 
silico screening computations carried out over 4914 
FDA-approved small molecule drugs to identify the 
cyclin-dependent kinase 2 (CDK2) as a new target 
for fluspirilene. Both in vitro and in vivo experiments 
confirmed the potential of fluspirilene as a new anti-cancer 
drug for the treatment of hepatocellular carcinoma. CDK2 
is a member of the cyclin-dependent kinases family that 
is involved in cell replication and tumor growth, and is 
known to be a promising therapeutic target for cancer 
therapy [36]. Numerous CDK2 inhibitors have already 
been reported in the literature, and the CDK2 binding site 
is well-characterized. In the Protein Data Bank (PDB), 
358 human CDK2 structures co-crystallized with a ligand 
(holo structures) are available. We selected the 4EK4 and 
4KFL PDB structures to perform the virtual screening 
computations, as they are holo PDB structures, i.e. co-
crystallized with a ligand, that present the best resolution. 
In the 4EK4 and 4KFL MTiOpenScreen service outcomes, 
fluspirilene was ranked respectively at position 186 and 

Table 1: Number of compounds (#cmpds), number of unique compounds (#unique cpds) and mean values (in bold) 
of the six descriptors computed with FAF-Drugs4 for the whole Drugs-lib (7173 compounds), the whole FOOD-
lib (10997 compounds) and the whole NP-lib (1228 compounds): molecular weight (MW), octanol-water partition 
coefficient (logP), number of hydrogen bond donors (HBA) and acceptors (HBD), topological polar surface area 
(tPSA), and number of rotatable bonds (nrotB). The minimum and maximum values for each property are in italic, 
standard deviation values are indicated in brackets, the 95%-confidence interval is noted in square brackets

#cmpds #unique 
cmpds

MW logP HBD HBA tPSA nrotB

Drugs-lib 7173 4574

357.464
128.22 – 
974.61

(113.121)
[354.84;360.09]

2.656
-10.59 – 12.75

(2.261)
[2.60;2.71]

1.914
0 - 20

(1.920)
[1.87;1.95]

5.571
0 - 23

(3.030)
[5.49;5.63]

79.954
0 – 414.34
(49.050)

[78.64;80.91]

5.506
0 - 20

(4.650)
[5.56;5.77]

FOOD-lib 10997 3015

346.798
185.07 – 
796.98

(103.851)
[344.85;348.75]

2.429
-10.17 – 11.08

(3.535)
[2.36;2.50]

2.944
0 - 12

(2.246)
[2.90;2.99]

5.500
0 - 21

(3.546)
[5.43;5.57]

93.964
0 – 379.05
(61.949)

[92.77;95.10]

4.280
0 - 20

(3.438)
[4.24;4.37]

NP-lib 1228 653

388.044
131.17 – 
961.14

(165.429)
[378.78;397.31]

2.870
-11.03 – 13.54

(2.902)
[2.71;3.03]

2.926
0 - 17

(2.884)
[2.76;3.09]

6.113
0 - 28

(4.306)
[5.87;6.35]

96.424
0 – 445.44
(70.021)

[92.50;100.34]

4.354
0 - 20

(3.507)
[4.35;4.55]
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886 with predicted AutoDock Vina scores equal to -9.3 
and -8.8 kcal/mol respectively (Supplementary Table 
1). We repeated four times the screening protocol using 
the 4EK4 structure to ensure the repeatability and the 
reliability of the results (Supplementary Table 1). The 
AutoDock Vina scores and ranks associated to fluspirilene 
in these four runs were highly similar to those obtained 
in the first screening run with 4EK4, with scores varying 
between -9.4 to -9.3 and ranks ranging from 149 to 
190. To reduce the computational time associated with 
MTiOpenScreen service virtual screening of the Drugs-
lib on each of the 358 holo CDK2 PDB structures, we 
selected a representative dataset of 44 CDK2 proteins 
(Supplementary Table 1) that was used to identify 
fluspirilene as a CDK2 inhibitor [35]. The best result was 
obtained using the 1PXO structure, for which fluspirilene 
was ranked 48 with a predicted AutoDock vina score of 
-11.1 (Supplementary Table 1 and Figure 4). For all the 
other structures, except 1E1V, fluspirilene was ranked in 
the top 1500 best compounds, with ranks ranging from 83 
to 1048 and AutoDock Vina scores between -12.2 to -8.4 
according to the PDB structure used (Supplementary Table 
1 and Figure 4). To get some insights about the diversity 
of molecules identified as hits by our virtual screening 
protocol, we used the 1500 best scored compounds 
associated with the 4EK4 PDB structure and we computed 
in DataWarrior [31] the similarity between each pair 
of compounds according to the FragFp descriptors 
(Supplementary Figure 5). Three compounds that are 
clustered together with fluspirilene, i.e. that are very 
similar to fluspirilene, were also ranked within the 1500 
best scored drugs: spirilene, spiperone and fluspiperone.

Mebendazole

Mebendazole [37] is an anthelmintic drug that 
has been used for more than 20 years for the treatment 
of a variety of parasitic infestations, both in human and 
veterinary medicine. Mebendazole acts by binding to 
tubulin [38] and induces tubulin de-polymerization which 
then disrupts the formation and functions of microtubules 
[39]. With its roles on tubulin and induction of apoptosis, 
it was postulated that mebendazole could be used for 
cancer treatment [40, 41]. Interestingly, it was shown 
that mebendazole not only inhibits cancer cell growth 
by induction of apoptosis (and thus by interacting with 
tubulin) but also seems to have an inhibitory effect 
on angiogenesis [42]. VEGFR2 (Vascular Endothelial 
Growth Factor 2), a major regulator of angiogenesis [43] 
was identified as a new molecular target for mebendazole 
[44], that could explain its anti-angiogenic potency. 
Mebendazole ability to bind and inhibit VEGFR2 
function was first predicted using the train, match, fit, 
streamline (TMFS) proteo-chemometric method applied 
on a library of 3671 FDA-approved compounds, and 
then confirmed experimentally with in vitro assays. 
Another study [19] showed that mebendazole competes 
with ATP, selectively inhibits tumor angiogenesis but not 
the normal brain vasculatures and suppresses VEGFR2 
kinase in vivo. Numerous VEGFR2 inhibitors have been 
described in the scientific literature, and some of them 
have been co-crystallized with VEGFR2, revealing the 
VEGFR2 tyrosine kinase domain binding site. The 2XIR 
PDB structure, the holo VEGFR2 structure presenting 
the best resolution (1.5 Å), was selected to screen the 
Drugs-lib against the 2XIR PDB structure using the 

Figure 3: Radar plot representation of the mean values of six descriptors computed with FAF-Drugs4. The Drugs-lib is 
shown in blue, the FOOD-lib in magenta and the NP-lib in brown. The plot involves the following molecular descriptors: molecular weight 
(MW), number of rotatable bonds (nrotB), topological polar surface area (tPSA), number of hydrogen bond acceptors (HBA) and donors 
(HBD) and octanol-water partition coefficient (logP).
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MTiOpenScreen service. Mebendazole was ranked at 
position 713 with a predicted AutoDock Vina score of 
-9.5 kcal/mol (Supplementary Table 2). The screening 
protocol was repeated five times using the 2XIR structure 
to ensure the repeatability and the reliability of the results 
(Supplementary Table 2). Very similar AutoDock Vina 
scores and rank were obtained for mebendazole, in the 
five MTiOpenScreen service runs, with scores varying 
between -9.6 kcal/mol and -9.5kcal/mol and ranks ranging 
from 585 to 713. In order to explore additional regions of 
the receptor conformational space, we extracted from the 
PDB, 35 other holo VEGR2 crystallographic structures 
and we repeated the same protocol on the 13 structures 
with no missing residues in the binding sites (see Methods 
section) by screening the Drugs-lib against each one of 
these holo VEGFR2 PDB structures (Supplementary 
Table 2). The structure associated with the best outcomes 
for mebendazole was 3U6J with a rank at position 51 
and a corresponding AutoDock vina score equal to -10.8 
(Supplementary Table 2 and Figure 4). For all other 
structures except the 3U6J PDB structure, mebendazole 
was ranked in the top 1500 best compounds, with ranks 
between positions 205 and 1448 and scores ranging from 
-10.6 to -8.6 (Supplementary Table 2 and Figure 4). We 
investigated the diversity of the 1500 best scored drugs 
associated with the 2XIR PDB structure by using the 
FragFp descriptors to compute the similarity between each 
pair of compounds in DataWarrior [31] (Supplementary 
Figure 6). We noticed that four compounds that are 
chemically similar to mebendazole, namely flubendazole, 
luxabendazole, nocodazole and oxfendazole are also 
identified as hits by our virtual screening protocol.

Raloxifene

Raloxifene is a non-hormonal anti-resorptive agent 
widely prescribed for the prevention and treatment of 
postmenopausal osteoporosis [45]. Raloxifene acts by 
binding to estrogen receptor (ER) isoforms ER_alpha 
and ER_beta and belongs to the selective estrogen 
receptor modulator (SERM) class [46]. Recently, an in 
silico protocol [47] identified raloxifene and its analogue 
bazedoxifene as new potential IL-6/GP130 protein-protein 
interface inhibitors. IL-6 (Interleukin-6) and GP130 are 
part of the IL-6/JAK/STAT3 pathway that is involved 
in proliferation, survival, invasiveness and metastasis of 
tumor cells and in suppression of the anticancer immune 
response, and constitutes an attractive target for anti-
cancer therapies. [48] The in silico findings reported 
by Li et al. were confirmed by in vitro experiments, 
paving the way for the investigation of the potential use 
of raloxifene and its analogues in therapies for IL-6/
GP130/STAT3 dependent cancers. The predicted binding 
site of raloxifene is located at the surface of the GP130 
protein, in the GP130/IL-6 D1 domain interface. In the 
PDB, three crystal structures of the human GP130 protein 
including this D1 domain are available (PDB IDs: 1I1R, 
1P9M, 3L5H). We used the MTiOpenScreen service to 
screen the Drugs-lib against the 1P9M structure as it was 
the only PDB structure of the trimer IL-6/IL-6R/GP130. 
Raloxifene was ranked 1088 with a predicted AutoDock 
Vina score of -6.5 kcal/mol (Supplementary Table 3). We 
repeated the screening protocol five times using the 1P9M 
structure to ensure the repeatability and the reliability of 
the results (Supplementary Table 3). Similar raloxifene’s 
AutoDock Vina scores (from -6.4 to -6.5) and ranks (from 

Figure 4: Graphical representation of the retrospective virtual screening results for each example of repositioned 
drug - oncogenic target system: fluspirilene - CDK2, mebendazole – VEGFR2, raloxifene – IL6/GP130, sulindac – 
AKR1C3 and thalidomide – cereblon (each system is represented by one line). For each line, each coloured square represents 
the rank obtained for the studied repositioned drug (i.e. fluspirilene, mebendazole, raloxifene, sulindac, thalidomide for the first, second, 
third, fourth and fifth lines respectively) in a given PDB structures. The gradient of colours scale from white for structures for which the 
repositioned drug was ranked in the first positions to blue for structures for which the repositioned drug was ranked close to the position 
1500. Red square represents structure for which the repositioned drug was not identified as a hit (i.e. ranked over the 1500 position).
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1088 to 1269) were obtained. We then reproduced the 
same protocol using this time the two other PDB structures 
1I1R and 3L5H (Supplementary Table 3). The best result 
was obtained by using the 3L5H PDB structure, where 
raloxifene was ranked at position 151 with a predicted 
AutoDock Vina score of -7.5 kcal/mol (Supplementary 
Table 3 and Figure 4). Using the 1I1R structure, the 
AutoDock Vina score associated to raloxifene was equal 
to -6.4 corresponding to rank 1012 (Supplementary Table 
3 and Figure 4). The chemical similarity of the compounds 
identified as hits by screening the Drugs-lib on the 1P9M 
PDB structure was evaluated using the FragFp descriptors 
in DataWarrior [31] (Supplementary Figure 7). Within 
these 1500 compound, only arzoxifene presents a high 
chemical similarity to raloxifene.
Sulindac

Sulindac is a non-steroidal anti-inflammatory drug 
(NSAID), commonly used to treat pathologies such as 
osteoarthritis, ankylosing spondylitis, rheumatoid arthritis 
and gout. Sulindac share the classical NSAID anti-
inflammatory mechanism of action, by targeting the COX 
enzymes (sulindac is a non-selective COX inhibitor) and 
inhibition of prostaglandins synthesis [49]. Sulindac and 
other NSAID have been identified as AKR1C3 (Aldo-
Keto Reductase 1C3) inhibitors. Interestingly, AKR1C3 
is over-expressed in a variety of cancers and its inhibition 
leads to the conversion of the PGD2 prostaglandin to 
PGJ2 prostanoids that presents anti-neoplastic properties 
[50]. Thus, AKR1C3 constitutes a promising anti-cancer 
target and its inhibitors, among which sulindac, represent 
potential new leads for anti-cancer drug development. The 
crystallographic structure of sulindac bound to AKR1C3 
is available in the PDB (PDBID: 3R7M), together with 39 
other holo crystallographic structures of human AKR1C3. 
Among these 40 structures, 19 presenting missing binding 
site residues (including 3R7M) are not directly suitable 
for the docking and weren’t considered during the protein 
structure selection process. We selected the 4WDT PDB 
structure that presents the best resolution (1.5 Å), among 
the 21 remaining PDB structures, to screen the Drugs-lib 
using the MTiOpenScreen service. Sulindac was ranked 
817 with a corresponding predicted AutoDock Vina score 
was equal to -10.1 (Supplementary Table 4). To evaluate 
the repeatability of the results, we proceeded with four 
additional runs of the screening protocol using the 4WDT 
structure (Supplementary Table 4). The same AutoDock 
Vina score of -10.1 kcal/mol was obtained in the four 
supplementary runs, with very similar corresponding 
ranks in the range 778 to 858. We then investigated using 
the 20 remaining complete holo AKR1C3 PDB structures 
whether using a different PDB structure would lead to 
similar results. We applied the same virtual screening 
protocol and we screened the Drugs-lib against each 
holo AKR1C3 PDB structure using the MTiOpenScreen 
service (Supplementary Table 4). For 17 structures among 

20, sulindac was ranked in the top 1500 best compounds, 
the best rank being associated with the 1S2A PDB 
structure (rank 88) (Supplementary Table 4 and Figure 
4). The corresponding predicted AutoDock Vina scores 
ranged from -11.6 (5JM5) to -9.2 (4DBU). We used the 
crystallographic structure of the complex AKR1C3/
Sulindac (PDBID: 3R7M) to evaluate the accuracy of 
the AutoDock Vina predicted binding modes for sulindac 
(Supplementary Table 4) using the Root Mean Square 
Deviation (RMSD) metric. The MTiOpenScreen service 
predicted binding modes for sulindac to AKR1C3 were 
not similar to the experimental one (with RMSD values 
ranging from 3.741 to 7.310, Supplementary Figure 8), 
yet, in several cases, the ligand still had several similar 
non-covalent contacts as found in the experimental 
structure. To investigate the chemical diversity of 1500 
best scored compounds associated with the 4WDT PDB 
structure, the similarity between each pair of compounds 
according to the FragFp descriptors was computed in 
DataWarrior [31] (Supplementary Figure 9). Three 
compounds that are very similar to sulindac were also 
ranked within the 1500 best scored drugs: exisulind and 
two other sulindac stereoisomers.

Thalidomide

Thalidomide is one of the most famous examples 
of drug repositioning. The history of thalidomide 
started in 1956 when it was first marketed in Germany 
as a sedative also used to prevent morning sickness in 
pregnancy. However, thalidomide was withdrawn from 
the worldwide market in 1963, after the discovery of the 
severe teratogenic effects presented by the babies exposed 
to thalidomide in utero (between the 34th and 50th day of 
pregnancy) [51]. Surprisingly, this compound, that will 
ever be associated with one of the worst pharmaceutical 
disaster, has become the object of major interest after 
demonstration of its wide range of biological effects, 
notably its immunomodulatory and anti-angiogenic effects. 
Thalidomide has been successfully used for the treatment 
of multiple myeloma [52], its beneficial effect resulting 
from the binding and the activation of cereblon [53], that 
is part of E3 ubiquitin ligase complex. This activation 
leads to the down-regulation of two transcription factors 
involved in B cell development (IKZF1 and IKZF3), 
highly expressed in multiple myeloma. The binding site 
of thalidomide on cereblon was experimentally resolved 
and seven holo X-Ray structures of the human cereblon 
protein are available at the PDB (Supplementary Table 5). 
We chose the 5FQD PDB structure because of its lower 
resolution (2.45 Å) and we used it to screen the Drugs-
lib with the MTiOpenScreen service. Thalidomide was 
ranked 24 with a predicted AutoDock Vina score of -11.0 
kcal/mol (Supplementary Table 5). We repeated 5 times 
the same screening procedure on the 5FQD structure 
to assess the repeatability of the results. Highly similar 
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ranks for thalidomide were obtained within the different 
runs (varying from rank 24 to rank 27) and the associated 
AutoDock Vina scores were ranging from -11.0 kcal/
mol to -10.9 kcal/mol (Supplementary Table 5). We then 
evaluated the performance of our screening protocol using 
a different cereblon PDB structure as input. We screened 
the Drugs-lib against each one of the six additional holo 
cereblon structure available. We obtained results very 
similar to the 5FQD outcomes (Supplementary Table 5, 
Figure 4). The best result was obtained with the 5HXB 
PDB structure for which the thalidomide was ranked 
in position 53 with a predicted AutoDock vina score of 
-10.5. For all other structures, thalidomide was always 
ranked in the 1500 best compounds with ranks varying 
between position 138 and 637 and the scores ranged from 
-9.9 to -9.1. We took advantage of the crystallographic 
structure of the complex thalidomide/cereblon (PDBID: 
4CI1) to evaluate the accuracy of the AutoDock Vina 
predicted binding modes for thalidomide (Supplementary 
Table 5, Supplementary Figure 10) as measured by 
the RMSD metric. For all cereblon PDB structures, the 
MTiOpenScreen service predicted binding modes for 
thalidomide to cereblon were fitting the experimental 
one (with RMSD values ranging from 0.349 to 1.133). 
It is interesting to note that for the 4TZ4 structure, the 
first pose was not similar to the thalidomide experimental 
binding mode (RMSD of 6.179) but using the second 
pose (with also a very favorable score of -8.8) we could 
recover the experimental binding mode of thalidomide to 
cereblon (RMSD of 0.711). The chemical similarity of the 
hits compounds when using the 5FQF PDB structure was 

evaluated using the FragFp descriptors implemented in 
DataWarrior [31] (Supplementary Figure 11). Additionally 
to the second thalidomide stereoisomer, the thalidomide 
analog lenalidomide was also ranked in the 1500 best 
scored compounds.

We also evaluated the specificity of the virtual 
screening results obtained with our 5 cancer targets by 
comparing the list of the 1500 best scored compounds 
obtained with the structure presenting the best resolution for 
each target (Figure 5). According to the considered system, 
between 152 and 378 compounds were specific for one target, 
i.e. predicted as a hit for one target only. In the opposite, 275 
compounds were identified as hits for the 5 systems.

DISCUSSION

Virtual screening methods are commonly used 
in drug discovery to rationally narrow the number of 
compounds that needs to be tested experimentally [1, 3]. 
The choice of the initial virtual library of compounds is a 
critical step to ensure the success of the whole protocol. 
In particular, to overcome the actual attrition rate of 
new drugs approval, which is particularly dramatic in 
the cancer area, interest has emerged towards exploiting 
already approved drugs [10] and natural products 
[11]. We thus decided to construct a virtual library of 
purchasable approved drugs and two virtual libraries of 
purchasable natural compounds (natural products and 
food constituents) that were then implemented in the 
online structure-based virtual screening web service 
MTiOpenScreen service.

Figure 5: Venn diagram showing the overlapping between the 1500 best scored drugs resulting from the virtual 
screening with MTiOpenScreen of the Drugs-lib against the 5 cancer targets CDK2 (in light orange, PDB structure 
4EK4), VEGFR2 (in green, PDB structure 2XIR), GP130 (in blue, PDB structure 1P9M), AKR1C3 (in yellow, PDB 
structure 4WDT) and cereblon (in pink, PDB structure 5FQD).
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Purchasable approved drugs, food and natural 
compounds libraries

Compounds libraries generation. The three virtual 
libraries of compounds were constructed by gathering 
and/or filtering available databases of approved drugs 
and natural products. To construct the Drugs-lib, four 
databases of approved drugs were used as initial sets of 
compounds: the “drug” subset of the ChEMBL database 
[26], the “approved” subset of DrugBank [27] version 
5.0.10, the DrugCentral online compendium [28] and the 
“approved” SuperDrug2 database version 2.0 [29]. We 
assumed that selecting these four databases should ensure 
an exhaustive inclusion of approved drugs in the Drugs-lib. 
Even if precisely quantify the overlaps among these four 
databases is impaired by drugs name and stereochemistry 
variations between the databases, we could obtain an 
approximation using the babel “remove duplicates” utility 
(Supplementary Figure 12). Around 3000 compounds are 
common to all databases and the majority of compounds 
are found in the ChEMBL ‘drug’ subset, but each of the 
three remaining databases provides around 100 additional 
unique compounds. The FOODB-lib is dedicated to 
food constituent molecules and initially included the 
compounds of the FooDB (http://www.foodb.ca/) with 
available smiles strings. Finally, several databases of 
natural products are available [54], but we chose to use 
as a starting point for the NP-lib, a purchasable diverse 
library of natural products of 1237 compounds [30]. The 
compounds of this diverse library were extracted from 
the UNPD database [55] and the Dictionary of Natural 
Products [56] according to a protocol developed to select 
a small but representative subset of natural compounds. 
The Drugs-lib, FOOD-lib and NP-lib were constructed 
to be implemented in the MTiOpenScreen service such 
as to be used in drug discovery structure-based virtual 
protocols. As a consequence, we filtered our initial 
sets of compounds according to three criteria: (1) the 
compounds should be suitable for docking computations 
(which excludes highly flexible compounds and very 
small or large molecules); (2) the compounds structures 
should not include major documented toxicophores; 
and (3) the compounds should be purchasable to enable 
experimental validation of the docking predictions. Our 
filtration protocol associates both automatic filtration steps 
using FAF-Drugs4 and babel, and a visual inspection step 
to validate the selection of compounds that should be 
included in the datasets. Finally, the Drugs-lib includes 
7173 stereoisomers corresponding to 4574 single isomer 
drugs, the FOOD-lib gathers 10997 stereoisomers 
corresponding to 3015 single isomer food constituents and 
the NP-lib is formed of 1228 stereoisomers corresponding 
to 653 single isomer natural products.

Compounds libraries diversity. Structural 
dissimilarity of compounds, which is used to measure the 
chemical space covered by a dataset, is one of the key 

points to ensure success of virtual screening protocols. 
Among the different approaches that can be used for its 
measure (see [57] for a review), we chose in this study, to 
use atom pair fingerprints to measure distances between 
compounds within each library and FragFp fingerprint 
descriptors to visualize the chemical space covered by 
the three libraries. Results show that, despite their relative 
limited size, the three libraries include compounds that are 
structurally diverse. The FOOD-lib and NP-lib chemical 
space coverage are largely overlapping, which is logical 
since the food constituents listed in the FooDB are 
chemical compounds present in unprocessed foods and 
are thus also natural products. Interestingly, even if there 
is a clear separation between the Drugs-lib chemical space 
coverage and the FOOD-lib and NP-lib ones, there are 
some overlapping areas as numerous approved drugs were 
inspired by natural products or natural product mimics 
[58]. The predicted physico-chemical property values 
(MW, logP, nrotB, TPSA, HBD and HBA) of the three 
final libraries are reported in Table 1 and Figure 3. These 
further highlight an interesting distribution of properties 
for drug discovery endeavors.

Retrospective examples of the use of the Drugs-
lib for drug repositioning on cancer targets

We were here interested to apply our screening 
server with the Drugs-lib on previously reported drug 
repositioning [59] studies. The aims of this approach 
are to accelerate and improve the success rate of drug 
development, which are essential for all therapeutic areas 
and especially in the field of cancer. Indeed, current 
development of new anti-cancer drugs suffers of several 
major difficulties: the process is long and expensive, the 
success rate in Phase I of clinical trials is low with poor 
survival benefits, while chemo-resistance and adverse 
effects are frequently observed [60]. To evaluate the 
ability of our screening protocol to identify new use for 
existing drugs in anti-cancer therapies, we searched the 
literature for examples of drugs that were successfully 
repositioned as anti-cancer agents. Because we are using 
a structure-based virtual screening approach, we focused 
on cases for which (1) the molecular target responsible 
for the anti-cancer properties of the drug was identified 
and (2) an experimental structure of the molecular target 
was available in the PDB. We selected five drug-protein 
target test cases to realize this retrospective validation: 
fluspirilene-CDK2, mebendazole-VEGFR2, raloxifene-
GP130, sulindac-AKR1C3 and thalidomide-cereblon. For 
the five systems, several PDB structures were available 
for the target proteins. The protein being considered as 
rigid during the docking computations, the choice of the 
starting protein structure is one of the key points that 
could seal the success or failure of the virtual screening 
protocol [61–66]. In this study, we selected the holo 
PDB structures (i.e. co-crystallized with a ligand) that 

http://www.foodb.ca/
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had the best resolution with no missing residues in the 
binding site areas. It is to note that for GP130, only apo 
structures (i.e. structures in unbound conformations) were 
available and then were used for this study. For the other 
oncotargets presented here, suitable apo structures were 
available for CDK2 (PDB ID: 5IF1) and cereblon (PDB 
ID: 6BN8) and the screening of the Drugs-lib using these 
structures led to results comparable to those obtained with 
the holo structures (data not shown). Yet, it is in general 
recommended to use holo structures as starting point for 
virtual screening. We are aware that the resolution is not 
the perfect metric to guide protein structure selection 
for virtual screening, but it presents the advantage of 
being directly available in the PDB file and can be 
easily followed by researchers that are not familiar with 
structure-based methods and protein structure handling. 
More experienced users could also investigate the binding 
pocket and select the conformations that are more open. 
Yet, using our automatic virtual screening server and the 
structures presenting the best resolutions, we successfully 
identified, for each test case, the corresponding 
repositioned drug ranked within the first 1500 best scores. 
The results obtained could be reproduced since repeating 
the docking protocols several times for each system led to 
highly similar or identical outcomes in terms of docking 
scores and ranks. Despite some conformational flexibility 
observed in the binding sites (Supplementary Figure 13), 
the results were also reproducible with different PDB 
structures of the same protein. Indeed, regardless the 
structure used, the repositioned drug was always retrieved 
in the 1500 best compounds, except for one CDK2 PDB 
structure among 44 coordinate files (1E1V), one VEGFR2 
structure among 13 (3U6J) and three AKR1C3 structures 
among 21 coordinate files (1SC, 4DBU and 5HNT). 
Using the 1E1V PDB structure, fluspirilene was ranked 
1526 with a predicted AutoDock vina score equal to -8.5. 
Fluspirilene is very close to be in the top 1500 list and 
the score of -8.5 is shared by compounds ranked from 
positions 1451 to 1668. The docking of mebendazole 
to the 3U6J structure was associated with a predicted 
AutoDock Vina score of -9.1 and the corresponding 
rank was 1793. The comparison of 3U6J binding site 
residues conformations with the other 12 VEGFR2 PDB 
structures used in this study (Supplementary Figure 
14) shows that the GLU885 in the 3U6J PDB structure 
present a conformation quite different from the other 
VEGFR2 structures. This could explain why using the 
3U6J PDB structure, mebendazole was not ranked in the 
first 1500 best compounds. Sulindac predicted binding 
mode in the 4DBU AKR1C3 PDB structure obtained 
an AutoDock Vina score of -9.2 and was ranked 2254. 
AKR1C3 represents a very challenging target for docking 
computations, with a large binding site with many 
different subpockets, and a high flexibility of binding 
site residues (as illustrated in Supplementary Figure 13D) 
and of entire loop regions [67]. This may explain both the 

failure of our protocol with the 1S2C, 4DBU and 5HNT 
structures and its inability to reproduce the crystallized 
sulindac pose (observed in the 3R7M PDB structure) using 
other AKR1C3 PDB structures. This suggests that for such 
proteins, additional work would be required to prepare a 
coordinate input file for docking purposes.

When several PDB structures are available for 
docking and when there is no obvious reason to choose 
one structure over the others, the “ensemble docking” 
approach (i.e. realize the docking of the database into 
multiple and diverse conformations of the receptor) can be 
used. The set of receptor conformations can be obtained by 
selecting different PDB structures [68] or generated using 
molecular dynamics simulations and normal mode analysis 
[69]. The results obtained with such approaches can thus 
be interpreted not only by considering the scores and ranks 
of the compounds in each structure of the considered 
target but by selecting the best AutoDock Vina score in 
the ensemble of PDB structures for each compound. Using 
the ensemble docking approach that makes use of several 
PDB files, the final ranks of fluspirilene, mebendazole, 
raloxifene, sulindac and thalidomide were respectively 
636, 409, 300, 1164 and 53 (and the corresponding 
AutoDock Vina scores were respectively -12.2, -10.8, 
-7.5, 11.4 and -11.0) and in all situations the drugs were 
identified as hits in our output lists.

Focusing on the chemical diversity of the compounds 
that are ranked within the 1500 best scored drugs, we 
showed that, for each target, some compounds that are 
chemically very similar to the query repositioned drug 
and more dissimilar compounds were predicted as hits. 
On one side, experimentally testing different analogs of a 
same chemical series presents the advantages to possibly 
identify one compound that will present an enhanced 
activity compared to the other analogs and to give some 
insights about structure-activity relationships within the 
series. On the other side, investigating compounds that 
present quite diverse chemical structures is also very 
interesting to identify the most potent compounds and the 
most promising chemical series. Moreover, for each target, 
between 10 and 25% of compounds were specifically 
identified as a hit for one target only. It is to note that 
overlapping between the predicted hits for different targets 
is expected since we are selecting 1500 compounds over 
7173 but the predicted AutoDock Vina scores and ranks 
should be different between the targets and can also be 
considered by the user. For example, the glicetanile was 
ranked in the position 175 on the cereblon target, but only 
542 on AKR1C3 and after the 1000th position for CDK2, 
VEGFR2 and GP130.

Our server should be beneficial to reduce the 
experimental cost of drug repositioning. Indeed, assuming 
no additional post-processing investigations of the docked 
poses provided by the server and testing experimentally 
1500 compounds instead of the entire collection enable 
time- and money-saving. To compare the cost of buying 
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1500 compounds of the Drugs-lib instead of the whole 
library, we used information provided at the Sigma 
Aldrich website (https://www.sigmaaldrich.com/) to make 
an estimation of the cost of some compounds present in 
Drugs-lib. This information was directly available for 
598 compounds (Supplementary Figure 15) and we 
hypothesized that these molecules were representative of 
the whole Drugs-lib. The median price value was $1.32 
per mg of compound. Thus, buying 5 mg for the top 
1500 compounds selected in silico would approximately 
cost ~$10,000 versus ~$48,000 for the whole Drugs-
lib collection. Similar costs could be envisioned by 
investigating the website of other vendors. It is also 
important to note here that we assume that users have 
a difficult target with a complex assay that requires a 
relatively high amount of compounds while in numerous 
cases, initial biochemical screening experiments can be 
done with 1 mg of compound, thus lowering significantly 
the costs of one screening campaign as compared to the 
one that we mention here. When considering only one 
occurrence of each drug name in the server output list (ie., 
as we have several stereoisomers, the same compound 
name can appear several times in the list but the users can 
decide to only purchase the main bioactive form, if known, 
from a chemical vendor), we note that the threshold can be 
lowered to the top 1000 best compounds. In this case, the 
associated cost for 5mg for 1000 molecules will be around 
~$7,000 versus ~$30,000 for the 4574 single isomer drugs 
of the whole Drugs-lib.

We suggest that using MTiOpenScreen service and 
the Drugs-lib collection on cancer targets represent a 
promising and affordable approach to identify new anti-
cancer properties of already approved and marketed drugs.

MATERIALS AND METHODS

Libraries generation

Ligand collection

The compounds used to generate the three datasets, 
Drugs-lib, Food-lib and NP-lib, were extracted from 
six different freely available databases. To construct the 
Drugs-lib, four different drug databases were merged: (1) 
the “drug” subset of the ChEMBL database [26] included 
11.542 compounds (chemicals and biologics), (2) the 
“approved” subset of DrugBank [27] version 5.0.10 
gathering 2141 compounds, (3) the DrugCentral online 
compendium [28] that contained 3965 compounds and (4) 
the “approved” SuperDrug2 database version 2.0 [29] that 
contained 3628 molecules. The Food-lib was constructed 
using as a starting point the FooDB (http://www.foodb.
ca/) a large database on food constituents. The NP-lib 
was obtained by filtering a purchasable diverse library of 
natural products [30].

Library curation for structure-based virtual screening 
computations

The three libraries were prepared using the same 
protocol (Figure 1), with only one additional step of 
databases merging and duplicates removing to prepare 
Drugs-lib. The ChEMBL “drug” (https://www.ebi.ac.uk/
chembl/drugstore, downloaded 28/11/2017), DrugBank 
“approved” (https://www.drugbank.ca/releases/latest, 
downloaded the 14/11/21017) and SuperDrug2 “approved” 
(http://cheminfo.charite.de/superdrug2/downloads.html, 
downloaded 13/12/2017) subsets were downloaded in SDF 
format from their respective website. The DrugCentral 
subset was downloaded in smiles format (http://drugcentral.
org/download, downloaded 04/01/2018). The FooDB 
database was downloaded (http://foodb.ca/downloads, 
downloaded 04/01/2018) in sql format and all compounds 
for which a smiles string was provided were extracted 
in smiles format. The DrugCentral and FooDB subsets 
were converted from smiles format to SDF format using 
Babel [70]. The MolPort IDs of the diverse library of 
natural products were retrieved from the supplementary 
data of ref [30] and the corresponding compounds were 
downloaded in SDF format from the MolPort website  
(https://www.molport.com/shop/index). Some MolPort 
compounds with outlier structures were removed. For 
each of the six initial compound datasets, we used FAF-
Drugs4 (Free ADME-Tox Filtering) [24] to perform a 
primary filter that involved the removal of salts, mixtures, 
inorganics, isotopes and duplicates. Furthermore, we 
applied soft physico-chemical filters to remove compounds 
with a molecular weight inferior to 100 or superior to 
1000, more than 20 rotatable bonds and less than 5 heavy 
atoms. After this first step, and for the Drugs-lib only, we 
merged the FAF-Drugs4 “Accepted” compounds of the 
ChEMBL “drug”, DrugBank “approved”, DrugCentral 
and SuperDrug2 “approved” into a unique dataset. The 
duplicates compounds were removed using both the Babel 
--unique /nostereo/nochg option (version 2.3.2, for more 
information see http://openbabel.org/wiki/Main_Page) 
and FAF-Drugs4 duplicate tool that compares the 
canonical smiles of the molecules. This collection 
containing unique drugs was then used as input for the 
next library preparation steps. A second filtering step of 
the three compound collections was achieved by visual 
inspection of their 2D structures in DataWarrior [31] such 
as to remove molecules with structures not suitable for 
docking studies (e.g., drugs with long aliphatic flexible 
chains, some sugars, some sub-structures that could not be 
generated in 3D nor docked with the currently available 
approaches…). We then applied another filtering step 
to remove compounds containing toxicophores. The 
computations were performed with several FAF-Drugs4 
filtering subroutines: undesirable substructure moieties, 
retrieve covalent inhibitors, PAINS A, B and C. In FAF-
Drugs4, a SMARTS substructure search is used to identity 
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substructures known to be potentially involved in toxicity 
problems (undesirable substructure moieties), to form 
covalent bonds with the macromolecular target (retrieve 
covalent inhibitors) and to belong to the PAINS (Pan 
Assay Interference Compounds) category of molecules 
(the PAINS A, B and C filters were used) [71]. For 
some substructures, a pre-defined cutoff of occurrences 
is used to decide whether a molecule should be filtered 
out or not. The output of FAF4-Drugs classifies the input 
molecules in 3 categories “Accepted” (i.e. compounds 
with no structural alerts), “Intermediate” (i.e. compounds 
with low-risk structural alerts and/or for which the 
number of occurrences are below the defined threshold) 
and “Rejected” (i.e. compounds that include a high-risk 
structural alert and/or exceed the threshold of occurrence 
of low-risk structural alerts) (for more information, see  
http://fafdrugs4.mti.univ-paris-diderot.fr/groups.html). The 
FAF-Drugs4 “Accepted” and “Intermediate” compounds 
were downloaded in SDF format and converted in smiles 
format using Babel. To investigate whether or not the 
selected compounds could be purchased, we searched 
the ZINC15 database [25] with our list of smiles as query 
input. The compounds tagged as ‘for-sale’, i.e. in-stock 
compounds (compounds purchased from manufacturers 
and ready for sale), on-demand compounds (all substances 
that are for sale) and boutique compounds (compounds 
often made to order), were kept and their corresponding 
purchasable stereoisomers were downloaded from the 
ZINC15 database [25] in SDF format. The compounds 
were then protonated at pH = 7 using the ChemAxon 
(Marvin Calculator Plugins version 17.23) calculator 
plugin [72] (option majormicrospecies -H 7). The 3D 
conformation of each compound was generated with 
CORINA Classic [73] (option stergen), by preserving 
the stereocenters that were already defined in the ZINC 
SDF file (option preserve). For the present study, only one 
stereoisomer was generated for each compound (option 
msi=1). The hydrogen atoms were also added during the 
3D conformation generation (option wh). Finally, the 
compounds were converted in pdbqt format. The final list 
of drug molecules is shown in Supplementary Table 6.
MTi OpenScreen

The MTiOpenScreen web service provides users with 
a blind docking (full surface) service for a small number 
of molecules or for extensive docking in a user defined 
binding pocket (this service is called MTiAutoDock 
and the computations are carried out with AutoDock4.2 
[74]) and a screening service named MTiOpenScreen 
[23]. The screening service implements the docking 
program AutoDock Vina [75] to perform virtual screening 
computations and two in-house prepared drug-like 
chemical libraries (a Diverse-library and library expected 
to be enriched in inhibitors of protein-protein interaction, 
the iPPI-library) are available. It is also possible to 
upload a library of up to 5000 molecules generated by 

the user. AutoDock Vina associates a gradient-based 
conformational search approach and an empirical scoring 
function. AutoDock Vina parameters as implemented 
in MTiOpenScreen service are the following: the grid 
resolution is set to 1 Å, the maximum number of binding 
modes to output is fixed to 10, and the exhaustiveness level 
(controlling the number of independent runs performed) 
is assigned to 8. To define the search space, the user can 
choose whether to simply provide a list of residues forming 
part of the binding site or to manually specify the grid 
dimensions and the grid center coordinates. In the updated 
MTiOpenScreen service reported here, we now provide the 
purchasable approved drugs, food and natural compounds 
libraries discussed above. The virtual screening results of 
the 1500 top ranked compounds are reported by the server. 
The file containing the predicted binding poses (in pdbqt 
and mol2 format) and the predicted binding affinity (kcal/
mol) table can be downloaded. Screening the Drug-lib using 
the MTiOpenScreen service took approximately 2 hours per 
structure.

Protein receptor preparation

MTiOpenScreen service allows the user to upload 
the protein receptor with two different formats (mol2 and 
pdb). Users can thus download the protein structures from 
the PDB and use them directly without any preparation 
step in the MTiOpenScreen service. However, as 
some PDB structures can be problematic (missing side 
chains, alternate side chains conformations, presence 
of crystallographic adjuvant molecules in the binding 
site, …), we recommend to prepare the protein structures 
for docking. One very simple two-step protein preparation 
protocol is available within the Chimera package, a 
free to academic and nonprofit users and user-friendly 
visualization tool [76]. The procedure is described in the 
Supplementary Data (Supplementary Figure 16).

Test cases protein structure selection and grid 
calculation parameters

Fluspirilene. 368 holo X-ray crystallographic 
structures of human CDK2 are available in the Protein 
Data Bank [77]. We used as test dataset of CDK2 proteins 
the 44 CDK2 proteins used for the ensemble docking study 
of ref [35] (Supplementary Table 1). In order to use the 
same AutoDock Vina grid center for all the proteins of the 
test dataset, the 44 proteins were aligned using the 4EK4 
structure as the reference. The x, y, z AutoDock Vina grid 
center coordinates used are -1.560, -7.963, 27.836 and the 
size of the search space was set to 20 Å x 20 Å x 20 Å.

Mebendazole. 36 holo X-ray crystallographic 
structures of human VEGFR2 are available in the PDB 
[77]. 23 holo VEGFR2 structures presenting missing 
crystallized residues in the binding site area were 
excluded and the 13 remaining structures were used for 
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this study (Supplementary Table 2). In order to use the 
same AutoDock Vina grid center for all the proteins of 
the test dataset, the 17 proteins were aligned using the 
2XIR structure as the reference. The x, y, z grid center 
coordinates used are 21.592, 24.657, 38.079 and the size 
of the search space was set to 20 Å x 20 Å x 20 Å.

Raloxifene. 3 apo structures of the human GP130 
proteins including the GP130-IL6 interface domain are 
available in the PDB [77] (PDB ID: 1I1R, 1P9M, 3L5H) 
and were used for this study (Supplementary Table 3). 
In order to use the same AutoDock Vina grid center for 
all the proteins of the test dataset, the 36 proteins were 
aligned using the 1P9M structure as the reference. The x, 
y, z grid center coordinates used are -101.693, 216.308, 
44.304 and the size of the search space was set to 20 Å x 
20 Å x 20 Å.

Sulindac. 40 holo X-ray crystallographic structures 
of human AKR1C3 are available in the PDB [77]. 19 
holo AKR1C3 structures presenting missing residues in 
the binding site area were excluded and the 21 remaining 
structures were used for this study (Supplementary Table 
4). In order to use the same AutoDock Vina grid center 
for all the proteins of the test dataset, the 40 proteins were 
aligned using the 4WDT structure as the reference. The 
x, y, z grid center coordinates used are -4.179, 26.732, 
33.010 and the size of the search space was set to 20 Å x 
20 Å x 20 Å.

Thalidomide. 7 holo X-ray crystallographic 
structures of human cereblon are available in the PDB 
[77] and were used for this study (Supplementary Table 
5). In order to use the same AutoDock Vina grid center 
for all the proteins of the test dataset, the 7 proteins were 
aligned using the 5FQD structure as the reference. The 
x, y, z grid center coordinates used are 44.356, 130.694, 
17.347 and the size of the search space was set to 20 Å 
x 20 Å x 20 Å.

Statistical analysis

Graphics were produced using the statistical 
and graphical tool R (http://www.r-project.org/). The 
ChemmineR package [78] was used to compute atom 
pair fingerprints and PubChem’s fingerprints for distance 
matrix computation. Supplementary Figures 1 and 2 were 
plotted with the ggplot2 package [79] and Figure 1 was 
plotted with the fmsb package (https://cran.r-project.org/
web/packages/fmsb/index.html). DataWarrior [31] was 
used to perform the principal component analysis using 
the FragFp fingerprint descriptors and to produce the 
Supplementary Figure 4. DataWarrior [31] was also used 
to evaluate the chemical diversity of compounds using 
the FragFp fingerprint descriptors and to produce the 
Supplementary Figure 5, 6, 7, 9 and 11 with the defined 
similarity limit set to 80%. The Figure 5 was produced 
with the InteractiVenn web-based tool [80].
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polar surface area; VEGFR2: vascular endothelial growth 
factor 2.
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