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Abstract: This study reviewed aspects of the biology of two members of the glucosinolate family,
namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin
and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota
into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute
part of a sophisticated defence system plants developed over several hundred million years of
evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery
of these components from consumption of cruciferous vegetables rich in the glucosinolates also
delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in
isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic
utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN
are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as
antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of
phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful
in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic
bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against
a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the
prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging
technology which improves the shelf-life of these products.

Keywords: glucosinolate; sulphopharane; allyl isothiocyanate; phase II detoxification enzymes;
anti-tumour agents; anti-bacterials

1. Introduction

Plants produce a myriad of phytochemicals and many of these have valuable nutritive, medicinal
and health promoting properties [1–3] (Tables 1–3). Anecdotal evidence often points to these beneficial
properties however in this report we will concentrate on two members of the glucosinolates (Figure 1),
Glucoraphanin and Sinigrin, with a very extensive scientific and nutritional literature illustrating their
potential therapeutic applications [3–12] (Table 2).

Cruciferous plants such as those listed in Table 1 represent important components of a healthy
diet and have characteristic spicy flavor profiles which are appealing to many and have important
effects in several physiological processes.
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Table 1. Examples of Glucosinolate rich Cruciferous plants of the Brassicacea family order Capparales.

Plant Types

Brocolli
Brocolli Sprouts

Cabbage
Brussell Sprouts

Cauliflower
Daikon (Japanese radish)

Daikon sprouts
Garden Cress (Lepidum sativum)

Kale
Rapeseed (Brassica napus)
Wasabi (Wasabia japonica)

White Mustard (Sinapis alba)
Yellow Mustard (Brassica juncea)

Bok Choi
Arugula, Rocket (Eruca sativa)

Collard Greens
Horseradish

Kohlrabi
Radish

Rutabaga/turnip
Watercress

Mustard Greens

2. The Natural Anti-Microbial Activity of Glucosinolate Rich Foods

When plant tissues are damaged, myrosinase, a β-thioglucosidase converts the glucosinolates
(Figure 1) to nitriles, thiocyanates and isothiocyanates (Figure 2) which have potent antimicrobial
activity with the isothiocyanates in particular displaying potent antibacterial and anti-fungal activity
profiles (Figure 3). The inclusion of dietary cruciferous vegetables rich in the glucosinolates may
counter antibiotic-resistant bacteria in the food chain arising from the overuse of antibiotics in animal
rearing practices. The traditional use of mustard-derived flavoring condiments, while contributing
desirable flavor profiles to cooked food items, also provides food preservative properties which
traditional societies have relied upon in the prevention of microbial spoilage of foods [13]. This is
particularly important in climatic conditions and ambient temperatures conducive to microbial growth
leading to food spoilage. Until relatively recently, these societies did not have access to refrigerated
storage facilities thus mustard seed products played an important role in food preservation. Mustard
seed oil is a potent source of bioactive glucosinolates and represents approximately 30% of the edible
oil market in SE Asia. The widespread use of this oil has positively contributed to food storage
properties and protection from microbial infection [13,14]. The glucosinolates and their derivatives are
volatile compounds and this property has been applied in modern gaseous food packaging technology
to extend the shelf-life of food products [14,15]. All cereals have fungal spores associated with the
grain surface and the husk, thus whole milled cereal flours used for bread production contain fungal
spores. These are inactivated during the baking process; however, fungal spoilage of bread and
bakery products can still occur in the post-baking storage and or processing of bakery products. Rape
seed oil or mustard flour have been evaluated in bread production to minimize fungal spoilage [16],
the major active glucosinolates in rape seed brown mustard (Brassica juncea) oil are AITC (85%) and
butenyl isothiocyanate (10%) [13] and these have broad fungicidal activity (Figure 3). In the bakery
environment, 2 ppm AITC inhibited the growth of Penicillium roqueforti, P. corylophilum, Eurotium
repens, A. flavus and Endomyces fibuliger on rye bread stored in an airtight environment [17]. Modified
atmospheric packaging formats (85% CO2, 1% O2) combined with mustard oil vapour packaging has
been used to extend the storage properties of bread and bakery products [18] and enhances the potency
of AITC as a preservative [18,19].
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Figure 1. Generic structure of the Glucosinolates showing glucose, sulphation and the aglycone side
chain (R) used to categorize the aliphatic, indolic or aromatic glucosinolates.
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Figure 2. Enzymatic processing of the glucosinolates by myrosinase into bioactive components.

3. The Brassicaceae Family of Plants

As already indicated, the Brassicaceae are a rich source of sulphur glucoside glucosinolates, these
impart a characteristic spicy flavor profile to these vegetables. Glucosinolates have been classified
into three categories on the basis of their amino acid precursors (i) aliphatic (e.g., glucoraphanin; Ala,
Leu, Ileu, Val, Met), (ii) indole (e.g., glucobrassicin; Trp), and (iii) aromatic (e.g., gluconasturtiin; Phe,
Tyr). While ~130 glucosinolates have been identified to date, in a survey of 2,121 German participants
in the European Prospective Investigation into Cancer and Nutrition (EPIC study), only five of these
glucosinolates were commonly found in the human diet, glucobrassicin, sinigrin, glucoraphasatin
(dehydroerucin), glucoraphanin, and glucoiberin [20].

Glucosinolates have only been found in dicotyledonous plants occurring mainly in the Capparales
order (Figures 1 and 2) including cruciferous vegetables and the mustards Brassica juncea (brown
mustard) [21], Brassica napus. (rape seed) and the popular Japanese condiment horseradish Wasabi
(Eutrema japonicum or Wasabia japonica) [22,23] (Table 1). The glucosinolates are stored in a concentrated
form in the seed heads and are extracted in cold pressed oils but are also components of the stem and
leaves of these plants (Figure 4).
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Table 2. Aliphatic (A), Indolic (B) and Aromatic (C) Glucosinolates and their contents in Brassica
vegetables Capparales Order (µmol/100 g wet wt tissue) (data modified from [24–26]).

Glucosinolate Trivial Name Aglycone
Chemical Name

Aglycone
Structure Vegetable Source Glucosinolate

Content µmol/100 g)

A. Aliphatic

Glucoibervirin 3-Methylthiopropyl
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Figure 3. The antimicrobial activities of glucosinolate thiocyanate, iso-thiocyanate and nitrile 
derivatives. 

 

Figure 4. Lipid and moisture storage in Brassica napus seeds (a,b) and hypocotyl (c,d) visualized by 
non-invasive MRI. The concentration of water and oil are colour coded red (high); blue, (low). 
Crucifern immunolocalisation (e) and iodine stained starch (f) modified from [24] under Creative 
Commons Deed Attribution licence 2.5. oc,/ic outer/inner cotyledon; el, endosperm; hy, hypocotyl; 
sc, seed coat; cc, central cylinder. 
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Figure 3. The antimicrobial activities of glucosinolate thiocyanate, iso-thiocyanate and nitrile derivatives.
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Figure 4. Lipid and moisture storage in Brassica napus seeds (a,b) and hypocotyl (c,d) visualized by
non-invasive MRI. The concentration of water and oil are colour coded red (high); blue, (low). Crucifern
immunolocalisation (e) and iodine stained starch (f) modified from [24] under Creative Commons
Deed Attribution licence 2.5. oc,/ic outer/inner cotyledon; el, endosperm; hy, hypocotyl; sc, seed coat;
cc, central cylinder.
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The mustard plant, rapeseed, yellow, white and brown mustards are widely distributed and
have a characteristic yellow flower head (Figure 5). Rapeseed (Brassica napus), also known as rape,
oilseed rape [25] is a member of the Brassicacea, mustard or cabbage family named from the Latin word
for turnip, rapum [26]. This is an ancient plant known of since Biblical times, which has even been
identified in the fossil record of the Mesozoic era/mid-Devonian period in Western China. Identification
of fossil remains in food cooking implements suggest that mustard seeds may have been the first
ever condiment used to flavor food by prehistoric man [27]. Plant evolutionary studies show that
the mustard seed plant was of fundamental importance to the subsequent evolution of most other
modern day cultivated plants. The leaves, seeds, and roots of wild mustard Cleome viscosa have all been
widely used in traditional and folkloric medicine for generations. In Ayurvedic medicine mustard
was reported to have many beneficial properties, subsequent scientific and pharmacological studies
verified it’s antimicrobial, analgesic, anti-inflammatory, antipyretic, anti-diabetic and hepatoprotective
qualities [28–31]. Subsequent studies have identified the phytochemicals responsible for these
activities as shown in the present study; glucosinolates are prominently represented on this list of
bioactive compounds.

Brassica napus was botanically described and published in Species Plantarum by Carl Linnaeus,
who introduced the binomial name Brassica napus for the first time in 1753 [25] (Figure 5).
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quantities as a food item due to its high levels of erucic acid, natural rapeseed oil can contain up to 
54% w/v erucic acid [32]. Rapeseed cultivated for food production typically contains ~0.5–5% w/v 
erucic acid. Erucic acid (C22H42O2) is a C22 chain mono-unsaturated omega-9-fatty acid. A strain of 
mustard subsequently developed with low erucic acid and glucosinolate levels, Canola, a 
contraction of the terms “Canada” and “ola”, is a low erucic acid, low glucosinolate rapeseed [33]. 
Canola oil is limited by government regulation to a maximum of 2% w/v erucic acid in the USA and 
5% w/v in the EU. In 1992, the health promoting properties of rapeseed oil gained publicity in the 
George Miller feature film “Lorenzo’s Oil” starring Nick Nolte and Susan Sarandon, which 
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archive, Koehlers Medicinal Plants, Germany 1887. Image reproduced from Wikimedia Commons
Repository, https://en.wikipedia.org/wiki/Rapeseed (accessed 19 August 2019), copyright lapsed.

Rapeseed oil is one of the oldest known vegetable oils, but historically has been used in limited
quantities as a food item due to its high levels of erucic acid, natural rapeseed oil can contain up to
54% w/v erucic acid [32]. Rapeseed cultivated for food production typically contains ~0.5–5% w/v
erucic acid. Erucic acid (C22H42O2) is a C22 chain mono-unsaturated omega-9-fatty acid. A strain of
mustard subsequently developed with low erucic acid and glucosinolate levels, Canola, a contraction
of the terms “Canada” and “ola”, is a low erucic acid, low glucosinolate rapeseed [33]. Canola oil
is limited by government regulation to a maximum of 2% w/v erucic acid in the USA and 5% w/v

https://en.wikipedia.org/wiki/Rapeseed


Biomedicines 2019, 7, 62 7 of 28

in the EU. In 1992, the health promoting properties of rapeseed oil gained publicity in the George
Miller feature film “Lorenzo’s Oil” starring Nick Nolte and Susan Sarandon, which documented the
work of a British chemist, Don Suddaby, and Augusto Odone in 1985 who developed a blend of
rapeseed and olive oils which halted the progression of Adrenoleukodystrophy, a genetic disorder
characterized by an enzyme abnormality resulting in the build-up of toxic fatty acid levels in the brain
damaging the myelin sheaths impairing neuronal function and resulting in convulsions, seizures and
hyperactivity. The antioxidant properties of activated glucosinolate compounds are also conducive to
the maintenance of brain health [34–44]. The brain is a fatty acid rich tissue and particularly prone to
redox ROS mediated mitochondrial damage during neuroinflammation [45,46].

4. Public Health Concern over the Impact of Antibiotic-Resistant Bacteria

There is considerable current-day public concern about the overuse of antibiotics in husbandry
practice in order to maintain animal health and commercial output levels. The emergence of
antibiotic-resistant organisms in humans is related to this agricultural practice. This has been
acknowledged by the WHO and by the publication of government guidelines on the use and abuse of
antibiotics in agricultural practice. The publication of a list of antibiotic-resistant pathogenic bacteria
of particular concern by the WHO (Table 3), and the allocation of major research funds to national
agencies in the USA, Canada and Australia to address the problem of antibiotic-resistant bacteria,
testifies to the significant threat these organisms represent to human health.

4.1. Treatment of Antibiotic-Resistant Bacterial Infections

Antibiotics and antimicrobial medications have been a mainstay in the treatment of infectious
diseases for over 70 years and have been an essential component in healthcare practice to combat
bacterial and fungal infections. Widespread use of antibiotics and indeed their over-prescription in
healthcare circles, plus an overuse of antibiotics in animal rearing practices in agriculture, has led to
infectious organisms being widely exposed to these compounds and, as a consequence, this has actually
selected for organisms which have developed a resistance to these compounds and these strains of
bacteria and fungi now represent a significant healthcare risk on a global scale. An estimated 2 million
patients have become infected with antibiotic-resistant bacterial strains in the USA and as a consequence
23,000 deaths were recorded directly arising from these bacterial infections. Multi-drug-resistant
bacterial infections were also responsible for an estimated 25,000 deaths per year in the EEC in 2015–2017
and these cost €1.5 billion per year in healthcare treatment and lost productivity. If these current
infection rates are not reversed then 10 million deaths globally per year are predicted by 2050 (317,000
in the USA; 392,000 in S. America; 392,000 in EEC; 4.1 million in Africa; 4.7 million in Asia and 22,000
in Australia). Moreover, it is estimated that additional hospital costs per patient will be in the order of
10,000–40,000 $US in OECD countries. Furthermore, the associated impact of lost economic output due
to increased mortality, prolonged sickness and reduced labour efficiency may effectively double this
figure. In vitro studies on the activated thiocyanates, isothiocyanates and nitrile compounds generated
from the glucosinolates by myrosinase demonstrate these are suitable compounds for antibacterial and
anti-fungal evaluations in the treatment of such infections (Figure 3). Furthermore, some of these plant
compounds synergise with existing antibiotic treatment protocols (gentamycin, vancomycin) and may
represent a useful adjunct to these treatments [47]. Listeria monocytogenes and Staphylococcus aureus in
particular were significantly inhibited by benzylisothiocyanate and 2-phenylethylisothiocyanate in
isolation or in phytochemical-antibiotic combinations.

4.2. Commercial Development of Antibiotics

Antimicrobial resistance is a global crisis that threatens the public healthcare system. Development
of novel antibiotic products is a critical component to combatting antimicrobial infections [48]. A survey
of all participants and interested parties in antibiotic research in 2015 in the European Union was
undertaken to develop new economic incentives to stimulate greater antibacterial drug innovation [48].
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Unfortunately, the financial incentives to undertake such research have proven to be insufficient
for many major pharmaceutical companies to maintain investment in antibiotic research programs.
The announcement by Novartis of its intention to exit from all antibiotic research in 2018 joined
AstraZeneca, Sanofi, and Allergan who also exited from this type of research due to the high cost
of undertaking such research coupled with a lack of financial return. This leaves Merck, Roche,
GlaxoSmithKline, and Pfizer as the remaining pharmaceutical companies that have continuing active
antibiotic research programs. An editorial in Nature Biotechnology in 2018 entitled “Wanted: a reward
for antibiotic development” summarised findings of the Nature conference “Countering Antimicrobial
Resistance” held in Beijing, China in 2018 which showcased a biodiverse array of discovery approaches
currently being undertaken globally to combat drug-resistant bacteria [49]. Even so, development of
new antibiotics has dwindled to dangerously low levels in the past three decades. It is well recognised
that this lack of innovation has perilous consequences on available treatments for pathogenic infections
to the detriment of patient care. This has resulted in the formation of several government agencies and
collaborative platforms to support the discovery of new antibiotics.

The European Observatory on Health Systems and Policy has been assembled to support the
development of new therapeutic antibiotics and contains members from The European WHO Regional
Office, European Governments (Austria, Belgium, Finland, Ireland, Norway, Slovenia, Sweden, the
UK, Veneto Region in Italy), European Commission, World Bank, National Union of Health Insurance
Funds in France, Schools of Economics and Political Science; Hygiene and Tropical Medicine in London,
UK. The Observatory has a secretariat in Brussels and hubs in London and Technical University of
Berlin. A 133-page report issued in 2016 by Renwick, Simpkin and Mossialos entitled “Targeting
innovation in antibiotic drug discovery and development: The need for a One Health – One Europe –
One World Framework” [50] recommends several initiatives to promote antibiotic research including
financial incentives, R&D support, effective coordination and dissemination of findings from European
agencies, effective collaboration with outside agencies and preclinical support [50].

The pharmaceutical industry has not released any new antibiotic formulations for over
three decades, and this has resulted in an alarming incidence of deaths resulting directly from
antibiotic-resistant bacteria. The World Health Organisation (WHO) has publicised this as a major
public healthcare issue, indicating the real possibility that without new antibiotic treatments becoming
available, we may be entering an era when even previously treatable bacterial infections will become
life-threatening. The repurposing of anti-cancer drugs for the treatment of bacterial infections has been
suggested since some of these have proven to be effective in vitro for the elimination of recalcitrant,
multidrug tolerant bacteria, while other antibiotics are useful as anti-cancer compounds [51–54].
Among the most harmful human pathogenic bacteria, Staphylococcus aureus (Golden Staph) stands out
as one of the most virulent and troublesome due to its ability to cause life-threatening infections and to
readily adapt to changing environmental conditions [55,56]. The ability of S.aureus to establish itself in
various community home and hospital environments, and its resistance to antibiotic treatment make this
an important healthcare threat [57]. The emergence of methicillin resistant S.aureus (MRSA) almost five
decades ago demonstrates the serious nature of such infections. Hospital environments are conducive
to S.aureus colonisation and its virulence is a major threat particularly to patients with reduced immune
function. Particularly virulent strains of Enterococcus, resistant to conventional antibiotic treatment,
have also emerged in hospitalized patients [58]. Of particular concern are the vancomycin-resistant
enterococci (VRE), that lead to infections of the urinary tract associated with prolonged catheter use
or to catheter mediated bloodstream infections [59]. There is therefore an increasing global interest
in the identification of bioactive compounds from plant sources, which display antibacterial and
anti-fungal properties that are pharmacologically effective but which display limited or no side effects.
The glucosinolates produced by the Brassicacea family, order Capparales contain compounds with
potent antibacterial, anti-fungal, anti-nematodicidal, anti-viral and insecticidal properties making
them obvious candidates in the search for compounds to counter bacterial infections [4,10,11,60–66].
Morever, many of the glucosinolates act synergistically with existing antibiotic regimens improving
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their effectiveness [47,63]. A list of antibiotic-resistant “priority pathogens” published by WHO
in 2017 covers 12 bacterial families posing the greatest threat to human health [67] and highlights
Gram-negative bacteria resistant to multiple antibiotics which threaten global public health, these have
been referred to as Super-bugs [68–70].

The effective antibiotics available for the treatment of bacterial infections are relatively small
in number and in many cases have become largely ineffective. The last time a new antibiotic was
released on to the world market was approximately 30 years ago, there is a strong need for antibiotic
development and a world market eagerly awaiting this product. The WHO has established three
treatment categories based on the urgency for new antibiotics: these are critical, high and medium
priority (Table 3). The WHO have categorized critical, high, and medium priority treatment areas for
antibiotic-resistant bacterial strains (Table 3) and have identified hospital and nursing home patients
with reduced immune function as being a particularly susceptible group to such infections. Patients
who regularly use ventilators, dialysis machines and medications requiring long-term administration
by catheter are liable to become infected with strains of Acinetobacter, Pseudomonas, Klebsiella, E. coli,
Serratia, and Proteus that are capable of causing severe and often deadly bloodstream infections and
the development of pneumonia. Unfortunately, bacterial strains have emerged which are no longer
responsive to the carbapanem and third generation cephalosporins, which were previously the most
effective compounds used to treat such infections. Gonorrhoea is rapidly becoming a condition which
will soon become untreatable.

The common practice of routine administration of broad-spectrum antibiotics to treat an infection
before identification of the specific pathogen responsible for an infection has proven to be an ill-advised
practice. By removing the normal bacterial microflora, antibiotics actually provide an opportunistic
niche for the emergence of antibiotic-resistant bacterial strains which no longer have to compete
with the normal bacterial populations present in the body [71,72]. Klebsiella pneumoniae is a Gram
negative, facultative anaerobic commensal microorganism that can cause chronic urinary tract and soft
tissue infections, pneumonia, and sepsis, and mostly occurs in immunocompromised patients [73].
Klebsiella pneumoniae normally colonises the mouth, skin, and intestines. Illness predominantly
affects middle-aged and older men with debilitating diseases but infants are increasingly now being
reported with this organism in urinary tract and intestinal infections [74–76]. The emergence of
multi-drug-resistant bacterial infections in hospitalized patients with underlying morbidity is of
particular concern [77]. In a recent US epidemiology study [72] 25% of K. pneumoniae infections
in long-term acute care hospitals were resistant to carbapenems, which are currently used to treat
penicillin-resistant Gram-negative pathogens. The most common condition caused by Klebsiella bacteria
outside the hospital environment is pneumonia, bronchopneumonia and bronchitis and has a death
rate around 50%, even when antimicrobial therapy is administered. Gram negative Enterobacteriaceae
bacteria such as Klebsiella have evolved β-lactamase genes which counter the effectiveness of
carbapanem as an antibiotic and have resulted in the rapid spread of such antibiotic-resistant bacteria
worldwide [78]. Transmissible carbapenem-resistant Enterobacteriaceae have been recognised for the
last two decades; however, the global dissemination of these bacteria is a more recent pandemic and
is now recognised to be occurring at an alarming pace [79]. Identification of Klebsiella pneumoniae
carbapenamase-producing K. pneumonia as a deadly pathogen is of particular concern due to the rise
of its global incidence in pediatric and neonatal intensive care units [80–82].
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Table 3. The WHO Dirty Dozen Pathogen List of Problematic Super Bugs *.

Priority Category Bacterium Drug Resistance

Critical
Acinetobacter baumannii
Pseudomonas aeruginosa Carbapanem

ESBL** producing members of the Enterobacteriaceae

High

Enterococcus faecium Vancomycin
Staphylococcus aureus Methicillin/Vancomycin

Helicobacter pylori Clathrimycin
Campylobacter spp. Fluoroquinolone

Salmonellae Fluoroquinolone
Neisseria gonorrhoeae Cepalosporin/Fluoriquinolone

Medium
Streptococcus pneumonia Penicillin
Haemophilus influenzae Ampicillin

Shigella spp. Fluoriquinolone

* http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-
urgently-needed (accessed 12 January 2018); ** Certain strains of bacteria are resistant to treatments with commonly
used antibiotics such as penicillin and cephalosporins. These bacteria produce enzymes known as Extended
Spectrum Beta-Lactamases (ESBL). ESBL producing bacteria are resistant to most types of third generation
antibiotics and include strains of Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. Enterobacter spp.,
Salmonella spp., Morganella morganii, Proteus mirabilis, Serratia marcescens and Pseudomonas aeruginosa produce ESBLs
relatively infrequently.

5. WHO, United Nation and World Bank Programmes and Coordinated Interagency
Collaborations Designed to Combat Antibiotic-Resistant Bacteria

A number of National and International Government initiated and private sector organisations
have emerged which aim to investigate better methods to combat the threat of drug-resistant bacterial
strains. Stated operational areas, research objectives and areas of expertise for each organisation
demonstrate a diverse approach to combating this global public health concern and some areas
of overlap, however in order to avoid duplication, redundancy and areas of wasted effort further
agencies have also been set up to co-ordinate and disseminate research findings to all interested parties.
Independent private commercial organisations are also actively engaged in the search for effective
treatments for antibiotic-resistant organisms to service an immense global market.

The Global Antimicrobial Resistance Surveillance System (GLASS) is a WHO initiative which
was established to support a systematic approach to the collection, analysis and dissemination of
antimicrobial resistance data at a global level to facilitate informed decision-making, at the local, national
and regional action areas. GARDP, The Global Antibiotic Research and Development Partnership
was also formed by WHO and DNDi, Drugs for Neglected Diseases initiative. GARDP undertakes
research and development through public-private partnerships. IACG, Interagency Coordination
Group on Antimicrobial Resistance is an initiative of the United Nations Secretary-General which was
established to improve coordinated efforts between international organisations and to ensure effective
global health security activity [83].

CARB-X has indicated its intention to release up to four new antibacterial treatments based on
modifications of current antibiotics in the next 4 years. The UN Deputy Secretary-General and WHO
Director General are co-chairs on IACG along with executive members from several other UN and
international agencies and acknowledged experts from several industry sectors.

The Centers for Disease Control and Prevention (CDC) and related US agencies are also actively
involved in several measures to combat antibiotic-resistant bacterial infections through a collaborative
global approach across all government and private sector agencies. CDC has published “CDC.
The Core Elements of Human Antibiotic Stewardship Programs in Resource -Limited Settings:
National and Hospital Levels. Atlanta, GA: US Department of Health and Human Services, CDC;
2018. Available at: https://www.cdc.gov/antibiotic-use/healthcare/implementation.html” (accessed
14 July 2019) to help improve guidelines for antibiotic use in healthcare settings worldwide. The Food
and Drug Administration (FDA) has also announced plans to combat antibiotic resistance through

http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
https://www.cdc.gov/antibiotic-use/healthcare/implementation.html
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innovative antibiotic developments and the coordinated use of antibiotics in human medicine and in
animal husbandry practice. CARB-X, a global non-profit partnership launched in 2016, is dedicated
to accelerating antibacterial research to counter the global impact of drug-resistant bacteria This
organisation, led by Boston University is currently funding 33 projects in N. America, Europe
and Asia. CARB-X is funded by BARDA, The US Department of Health and Human Services
Biomedical Advanced Research and Development Authority which is part of the Office of the
Assistant Secretary for Preparedness and Response (ASPR). Other organisations which form part of
the CARB-X initiative include The Wellcome Trust, a global UK based charity working to improve
global health. BMBF, Germany’s Federal Ministry of Education and Research and the United Kingdom,
The Global Antimicrobial Resistance Innovation Fund based in the United Kingdom (UK GAMRIF),
and world’s largest humanitarian Foundation (Bill and Melinda Gates Foundation) also contribute
funding to CARB-X and National Institute of Allergy and Infectious Diseases (NIAID) and US National
Institutes of Health (NIH) also provide in-kind support. CARB-X has reported that they will invest
>$500 US million by 2021 into the development of antibiotics to combat the deadliest super-bugs,
and develop vaccines, rapid diagnostics, and other life-saving products to aid in the treatment of
antibiotic-resistant bacteria. This supports The US National Action Plan for Combatting Antibiotic-Resistant
Bacteria, AR: https://www.cdc.gov/DrugResistance/us-activities.html. (accessed 2 July 2019) Strategies
being developed in Australia to combat bacterial resistant infections involve a unified approach by
all government and private agencies to combat the threat of antibiotic overuse and development of
antibiotic-resistant bacterial infections.

6. Application of the Myrosinase-Glucosinolate System in Biomedicine

The bioactivity of glucosinolate hydrolysis products and potential biomedical applications are
well documented (Tables 3–6). SFN has roles in cancer prevention, high blood pressure, macular
degeneration and stomach ulcers and is a potent inducer of mammalian phase II detoxication enzyme
systems which deactivate and excrete many carcinogens. The induction of NAD(P)H quinone reductase,
heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit, and glutathione S transferases
occurs through the Keap1-Nrf2-ARE cell signaling pathway [84–86]. Numerous studies in human
colon, leukemia, pancreatic, lung, and skin cancer cell lines have demonstrated SFN’s inhibitory effects
on cell cycle arrest [12,87–89] and elevated apoptosis in human bladder [90] and prostate [91] cell lines.
Sulforaphane’s ability to disrupt tubulin and actin polymerization, inhibits mitotic spindle formation
and tumour cell growth in animal models of breast cancer [92,93] and also inhibits histone deacetylase,
increasing apoptosis in human colon, prostate, and kidney cell lines [94–97].

6.1. The Bioactivity of Glucosinolates

The glucosinolates are benign molecules requiring conversion by myrosinase to bioactive
thiocyanate, isothiocyanate and nitrile derivatives (Figure 2). Therefore, glucoraphanin and sinigrin
are converted into bioactive SFN and AITCs with fungicidal, bactericidal, nematocidal, antioxidant
and anti-cancer properties. Biofilm formation on medical devices and implants such as catheters,
mechanical heart valves, pacemakers, prosthetic joints, and contact lenses pose a critical medical
problem. The most common biofilm-forming bacteria include Enterococcus faecalis, Staphylococcus
aureus, Staphylococcus epidermidis, Streptococcus viridans, Escherichia coli, Klebsiella pneumoniae, Proteus
mirabilis, and Pseudomonas aeruginosa [98–103], S. aureus and S. epidermidis are most commonly found
on cardiovascular devices [104–106], it estimated that 40%–50% of prosthetic heart valve infections,
and 50%–70% of catheter biofilm infections are due to these bacteria [107,108]. Despite the evaluation
of a wide range of anti-fouling compounds [103,109,110] improvements are still required in this
area. Glucosinolates have proven useful in the prevention of biofilm development by Pseudomonas
aeruginosa [5,111–113].

Cooking of cruciferous vegetables inactivates myrosinase activity however the gut microbiota in
humans may provide myrosinase activity and lead to absorption of SFN and AITCs in the intestine.

https://www.cdc.gov/DrugResistance/us-activities.html


Biomedicines 2019, 7, 62 12 of 28

A diet rich in cruciferous vegetables is associated with a lower risk of developing breast, lung, prostate,
and colorectal cancer [114–118]. It is important to control the redox balance in the human brain
to control neuronal mitochondrial activity, oxidant stress on mitochondria can diminish neuronal
energetics and promote neurodegeneration in Parkinson’s and Alzheimers’s disease [119]. Brain
tissue is very rich in fatty acids and is especially sensitive to the action of free radical oxidant activity.
The GSTs are ROS scavengers and are neuroprotective [119–121].

Table 4. Combination Therapies of Sulphoraphane and Conventional Anti-Cancer and Antibacterial Drugs.

Compound Used in Combination Therapy Reference

SFN-Selenium nanoparticles [122]
Paclitaxel [9]
Cisplatin [123]
Luteolin [124]
Clofarabine [125]
Doxorubicin [126]
5-fluorouracil [127]
HistoneH3 [128]
Withaferin A [129]
Hispidulin [130]
Carboplatin [131]
Docetaxel [132]
Lapatinib [133]
PR-104A [134]

Table 5. Some Examples of The Diverse Therapeutic Applications of Sulphoraphane.

Medical Conditions Treated with Sulphoraphane

Spatial learning and memory dysfunction [135]

Chemotherapy-induced neuropathic pain [136]

Protection of granulosa cells against oxidative stress [137]

Cadmium-mediated carcinogenesis [138]

Oxidative stress in cultured adult cardiomyocytes [139]

Protective effects of glucosinolate hydrolysis products in neurodegenerative diseases [140]

Clearance of Amyloid-β and Tau protein in a mouse model of AD [141]

Experimental diabetic peripheral neuropathy [142]

Joint inflammation in a murine adjuvant-induced mono-arthritis [143]

Protection against cognitive impairment in AD-like lesions in diabetes [144]

Anti-inflammatory effect of SFN on human THP-1 macrophages in a murine AD model [145]

Inhibition of oxidative stress/inflammation improves cardiac function in a Rabbit
Model of Chronic Heart Failure [146]

Inhibition of class IIa histone deacetylase activity [147]

Apoptosis via microtubule disruption in cancer [148]

Inhibition of LPS-Induced Inflammation/cytotoxicity/oxidative microglial stress [149]

Down-regulation of MAPK/NF-κB signaling in LPS-activated BV-2 microglia [150]

Inhibition of oxidative stress in an in vitro model of age-related macular degeneration [151]

Modification of Histone H3, unpacking of chromatin, to prime defence [128]

Modulation of oxidative stress and inflammation in rats with toxic hepatitis [152]

Modulation of oxidative damage in lead exposed rat hippocampus [153]



Biomedicines 2019, 7, 62 13 of 28

Table 5. Cont.

Medical Conditions Treated with Sulphoraphane

Prevention of dexamethasone-induced myotube atrophy via Akt/Foxo1 [154]

Induction of p53 deficient SW480 cell apoptosis by ROS MAPK signaling [155]

Role of microRNAs in the chemopreventive activity of SFN [156]

Novel phosphonate analogs of SFN with in vitro and in vivo anti-cancer activity [157]

Gastrointestinal protection against H. pylori and NSAID-Induced Oxidative Stress [158]

Protection against sodium valproate-induced acute liver injury [159]

Enhanced SFN cardioprotection against oxidative stress by 17β-Estradiol [159]

Photoprotective Effects of SFN and Hispidulin [130]

Improvement of neuronal mitochondrial function in brain tissue [160]

Chemoprevention of oxidative stress-associated with oral carcinogenesis [161]

Amelioration of bladder dysfunction via activation of Nrf2-ARE Pathway [162]

Protection against aortic complications in diabetes [163]

Anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and
activation of Nrf2/HO-1 [164]

Table 6. Sulphoraphane Applications in Cancer Models.

Cancer Type Reference

Leukemia [87,165–170]

Prostate cancer [91,95,171–173]

non-small cell lung cancer cells [131,174,175]

Pancreatic cancer [176–179]

Breast cancer [92,93,125–127,129,132,133,180–187]

Bladder cancer [162,188–193]

Ovarian cancer [123]

HepG2 Carcinoma Cells [194–198]

Gastric cancer [199,200]

Squamous cell carcinoma [201,202]

Nasopharangeal cancer [203]

Melanoma [204]

Glioma [163,205–207]

Colon cancer [134,208,209]

Lung cancer [210,211]

Schwannoma [212]

Colorectal cancer [213]

Cervical cancer [214]

Oral cancer [215,216]

6.2. Cancer and Dietary SFN and AITC Levels

Meta analyses of clinical trials on dietary glucosinolates have generally provided promising but
not compelling evidence of the efficacy of these as anti-oxidants or anti-cancer agents despite positive
in vitro findings in cell culturing experiments and may reflect the inefficiencies of the dietary route for
delivery of these compounds. Positive effects are generally achieved in vitro with concentrations of
the active glucosinolate components in the 1–40 µmol range. It is unlikely that this level of therapeutic
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agent would be delivered successfully to the target tumour cells in vivo by the diet. Attempts have
been made to increase the glucosinolate content of broccoli hybrids, broccoli sprouts are also richer
sources of the glucosinolates, particularly since these are consumed uncooked thus endogenous
myrosinase is not inactivated by the cooking process and it has time to convert the glucosinolates
to bioactive forms during food mastication. The detection of SFN and AITCs excreted in urine
and faecal matter following consumption of cooked cruciferous vegetables where the endogenous
myrosinase is inactivated in the initial cooking stages, indicates that the gut microbiota are another
source of myrosinase activity. Therefore, therapeutic doses of SFN and AITCs are likely achievable
to target tumour cells in the colon [104,210,211], prostate [91,95,171–173] and bladder [162,188–193].
Dietary glucosinolates are also effective in the treatment of gastric H.Pylori infections and gastric
cancer. The delivery of therapeutic doses of dietary SFN and AITCs through the systemic circulation to
pancreatic, ovarian, breast and liver cancer and melanoma, however, is less likely to be as effective and
may explain the relatively poor findings of meta analyses of dietary clinical trials on the glucosinolates
as anti-cancer agents. In many cases, the statistical power achieved in these analyses has also been
reduced by low sample sizes or no associations were established. More high-quality cohort studies
with larger sample sizes and well controlled confounding factors are required to confirm the benefit of
dietary cruciferous vegetable consumption; initial studies have delivered sufficient evidence to warrant
such studies. The bioavailability of glucosinolates following different food processing methods has also
been evaluated in order to improve the dietary content of bioactive forms of the glucosinolates [217]
Supplementation of the diet with broccoli sprouts or myrosinase containing mustard products have
also been examined as a means of increasing the dietary SFN and AITC content [218]. The effective
delivery of SFN and AITCs to the target cells in solid tumours is a difficult proposition. Delivery
systems based on hyaluronan as a carrier molecule have been developed for several steroids and
cytotoxic compounds and successfully treated solid tumours however this methodology has yet to be
applied to the delivery of SFN or AITCs in these problematic cancers (reviewed in [219]).

6.3. The Beneficial Bioactivities of Sinigrin and Their Applications in Biomedicine

Although the scientific literature on sinigrin (Table 7) is not as extensive as that of SFN, they share
similar bioactivities and areas of application and if supplied as a dietary component will not be acting
in isolation anyway [113].

Table 7. The Varied Applications of Sinigrin in Biomedicine.

Application Reference

Reduction of liver fibrosis [220]

Suppression of NF-κB/MAPK and NLRP3 inflammasome activation in macrophages [221]

Promotion of wound healing [113,222]

Anti-cancer properties in methyl glyoxal modification [223]

Anti-proliferative activity on carcinogen-induced hepatotoxicity [224]

Biofumigation of potato cyst nematode [21]

Inhibition of Listeria monocytogenes on bologna sausages [112]

inhibition of invasion, migration, MMP-2/-9 activities in SK-Hep 1 human hepatoma cells [225]

Brussel sprout juice mediated effects on cell cycle and adhesion of human colorectal carcinoma
cells (HT29) in vitro [226]

AITC mediated mitotic block, loss of cell adhesion/disrupted cytoskeleton in HT29 cells [227]

Cytotoxicity and genotoxicity of allyl and phenethyl isothiocyanates, glucosinolates, sinigrin
and gluconasturtiin [228]

Inhibition of microbial growth [47,65,229]

Effects of dietary sinigrin or indole-3-carbinol on O6-methylguanine-DNA-transmethylase
activity and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA methylation and
tumorigenicity in F344 rats

[230]
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7. Concluding Remarks

The myrosinase-glucosinolate system in plants is a sophisticated protective system that developed
over several hundred million years of evolution. With a greater understanding of the system’s component
parts, it is now possible to apply this knowledge to human physiological processes, an advance that
is of potential benefit in biomedicine. Some of these compounds may be useful in the prevention of
fouling of plant equipment, sterilisation of medical implants, wound healing and the prevention of some
forms of cancer. The extensive literature documenting the biodiversity of glucosinolate applications in
biomedicine indicates considerable promise in future areas of investigation in:

1. Antibiotics, anti-fungal and anti-viral agents
2. Biofilm prevention in medical implants, catheters and industrial plant equipment
3. Nutritive additives with anti-cancer properties
4. Advanced food packaging technology to improve shelf-life of food products.
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Abbreviations

AD Alzheimer’s disease
AKT A serine/threonine-specific protein kinase
ARE Antioxidant response element
EPA Environment Protection Agency
ESBL Extended Spectrum Beta-Lactamases
Keap-1-Nrf2-ARE Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated

protein 1–anti-oxidant response element
AITC Allyl isothiocyanate
GARDP Global Antibiotic Research and Development Partnership
GSK Glycogen Synthase Kinase
GST Glutathione-S-transferase
DNDI Drugs for Neglected Diseases initiative
IACG Interagency Coordination Group on Antimicrobial Resistance
LPS Lipopolysaccharide
MAPK A mitogen-activated protein kinase
NFκB Nuclear factor kappa light chain enhancer of activated B cells
NLRPR3 Nucleotide-binding domain and leucine-rich repeat–containing protein 3
NSAID Non-Steroidal anti-inflammatory
PDGF Platelet derived growth factor
ROS Reactive oxygen species
SMC Smooth muscle cell
TNF Tumour necrosis factor-alpha
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