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Periodontitis is one of the most common dental diseases. Compared with healthy
periodontal tissues, the immune microenvironment plays the key role in periodontitis by
allowing the invasion of pathogens. It is possible that modulating the immune
microenvironment can supplement traditional treatments and may even promote
periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory
therapies can enhance the generation of a viable local immune microenvironment and
promote cell homing and tissue formation, thereby achieving higher levels of immune
regulation and tissue repair. We screened recent studies to summarize the advances of
the immunomodulatory treatments for periodontitis in the aspects of drug therapy,
microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we
included the changes of immune cells and cytokines in the immune microenvironment of
periodontitis in the section of drug therapy so as to make it clearer how the treatments
took effects accordingly. In the future, more research needs to be done to improve
immunotherapy methods and understand the risks and long-term efficacy of these
methods in periodontitis.

Keywords: periodontitis, immune microenvironment (IME), immunomodulation, drug therapy, microbial therapy,
stem cell therapy, gene therapy
INTRODUCTION

Periodontitis, one of the most common dental diseases, is caused by an inflammatory process
affecting periodontal tissues and is indicated by periodontal soft tissue inflammation and the
progressive loss of periodontal ligaments and alveolar bone (1). Furthermore, severe periodontitis
can lead to facial collapse, impaired mastication, and effects on the digestive system. It is also
associated with various systemic and distal inflammatory diseases, including diabetes,
cardiovascular disease, rheumatoid arthritis, metabolic syndrome, and Alzheimer’s disease (2–5).

The etiology and mechanism of periodontitis is extremely complex. The occurrence and
development of periodontitis is the result of the interaction between bacteria and the host (6).
Periodontal tissue destruction begins with an inflammatory process caused by oral bacterial
infection (2). Host susceptibility is a decisive factor in the development of periodontitis. The
human oral cavity is a complex ecological environment, and teeth, gingival crevices and other parts
are conducive to bacteria attachment and reproduction (2). Host susceptibility and the effects of oral
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bacteria lead to the destruction of periodontal tissues, eventually
resulting in loosening and loss of the teeth if untreated (7).

Periodontitis initiation and progression are related to
multiple etiologic and risk factors. However, the most critical
in periodontal disease pathogenesis is a reciprocally reinforced
interplay between microbial dysbiosis and destructive
inflammation (8). Pathogens induce periodontitis in
susceptible patients and most of the time, the immune system
is very efficient and prevents disease progression until the
microbial dysbiotic environment has been established. A
complex microbial community is involved in periodontitis
pathogenesis (9), and Porphyromonas gingivalis (P. gingivalis),
Treponema denticola, and Tannerella forsythia are most often
found (10–16). Pathogens can affect periodontal tissue cells by
regulating the immune system (17) and leukocytes are essential
players in periodontitis by control of gingival biofilm
pathogenicity, activation of adaptive immunity, as well as non-
resolving inflammation and collateral tissue damage (18).

Periodontitis should be treated as early as possible. Mild to
moderate cases can usually bemanaged by nonsurgical treatments,
including auxiliary antibiotics, scaling, and root planning (19, 20).
For severe cases that cannot be fully controlled by nonsurgical
treatments, surgicalmethods can reduce pocket depth and generate
anatomical contours at the periodontal interface (21). However, the
treatment for periodontitis is not ideal. Even in patients receiving
regular professional interventions, periodontitis continues to
progress and teeth are lost (22). Moreover, because the cost of
treatment is high, periodontitis is still a major public health and
economic burden (8).

Recently, much attention has been drawn to regulating the
immune response to putative periodontal pathogens in order to
resolve inflammation, control the osteolytic environment, and
restore physiological bone formation (18). Drugs, stem cells, and
other therapies targeting the immune microenvironment have
shown promising applications. In this study, we systematically
reviewed the applications of immune modulation in the
treatment of periodontitis, especially those targeting the
immune microenvironment changes in periodontitis (Figure 1).
DRUG THERAPY

Drugs Targeting Neutrophils
As the host’s first line of defense against pathogenic
microorganisms (18, 23, 24), neutrophil homeostasis is key to
periodontal health (1).

The periodontal lesion is initiated as acute inflammation
characterized by increased numbers of neutrophils migrating into
the gingival crevice through the junctional epithelium (1, 25) as a
result of chemotaxis by plaque. They are activated by
chemoattractants macrophage inflammatory protein-1a
(MIP-1a), C-X-C motif ligand 8 (CXCL8) and constitutive higher
reactive oxygen species (ROS) (26) and initiate phagocytosis with
the assistance of antibodies and complement (27, 28), causing tissue
damage (29) and excessive release of destructive molecules, which
can be used to distinguish healthy and inflammatory periodontal
tissues (30). In patients with periodontitis, recruitment, migration,
Frontiers in Immunology | www.frontiersin.org 2
and infiltration of neutrophils are increased in the early stage, while
a significant reduction in phagocyte functions of neutrophils was
observed in individuals with periodontitis (31). All of these changes
are influenced by cytokines [e.g., granulocyte-colony stimulating
factor (G-CSF)] (25), miRNAs [e.g., nod-like receptor 12
(NLRP12)] (32) and inflammasomes [e.g., nod-like receptor 12
(NLRP12)] (33). Proinflammatory cytokines [e.g., tumor necrosis
factor (TNF)-a and interleukin (IL)-8], neutrophil enzymes,
eosinophil cationic protein (ECP), histidine decarboxylase,
histamine and neutrophil elastase (NE) secreted by neutrophils
are increased (34–37) and anti-inflammatory cytokines such as IL-
10 are decreased (38). All of these changes are affected by bacteria
(such as P. gingivalis) and bacterial products [such as leukocyte
toxin (LtxA)] (36, 38).

Oxidative stress is considered to be an important component
in various diseases (39). Polyphenols are now attracting attention
as potential sources of agents that can inhibit, reverse, or delay
the progression of diseases caused by oxidative stress and
inflammatory processes. The highest concentration of active
polyphenols has been found in the oral mucosa (40).
Resveratrol, quercetin, and N-acetylcysteine (NAC) can reduce
the production of ROS by neutrophils and upregulate the
synthesis of the type 1 collagen gene, therefore contributing to
the integrity of gingival tissues and prevention of periodontitis.
Among the three, resveratrol has the best effect as an antioxidant
that slows the progression of periodontitis. However, further
studies using in vivo models are necessary to support the clinical
use of antioxidants as a supplement to reduce oxidative stress
and prevent periodontitis in humans (41).

Progress have been made in the treatment of periodontitis
with vitamins targeting neutrophils. Clinical studies have shown
that ascorbic acid (vitamin C) can reduce inflammation in
patients with periodontitis possibly because it usually acts as a
reducing agent and can be used to treat periodontitis by reducing
the extracellular oxidants of neutrophils (42, 43). An L-ascorbic
acid derivative, L-Ascorbic acid 2-phosphate magnesium salt
(APM), is effective in decreasing cell damage through the
suppression of H2O2-induced intracellular ROS and inhibited
IL-8 production through the suppression of TNF-a-induced
intracellular ROS. This suggests that local application of APM
can help to prevent periodontal diseases (44). In addition, 1, 25
dihydroxivitamin D3 can promote neutrophil apoptosis in type 2
diabetic periodontitis through the P38/MAPK pathway, reducing
periodontitis (45) (Figure 2).

However, the approach of using small molecules based on the
mechanism of oxidative stress using exogenous antioxidants
such as vitamin C to treat other inflammation-related diseases
has failed. Therefore, the prospects for these treatments are not
very optimistic. Periodontitis may result from interference at the
ROS level, and the future research focuses on disease-related
ROS source-specific inhibition (46). In this regard, resveratrol
has the greater advantage (44).
Drugs Targeting Monocytes
Monocytes, an important cellular defense system against
pathogens, significantly increase in periodontitis tissues, especially
November 2021 | Volume 12 | Article 781378
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intermediate monocytes (47). A significantly higher proportion of
intermediate [Cluster of Differentiation (CD)14(+)CD16(+)]
monocytes was observed in chronic periodontitis and they
overexpressed human leukocyte antigen-DR (HLA-DR) and
programmed cell death ligand 1 (PD-L1), indicating an activated
inflammatory state (48). In addition, CD45RA(+) monocytes were
increased in aggressive periodontitis (47). Depressed chemotaxis of
monocyte results in increasedperiodontal destruction (49).There is
also a reduction in the function of phagocytes of monocytes,
suggesting a decrease in immune defenses in periodontitis (31).
Frontiers in Immunology | www.frontiersin.org 3
Pathogens stimulation of monocytes resulted in increased CD40
and CD54 expression, and enhanced the secretion of high levels of
cytokines such as TNF-a, IL-1b, IL-6, IL-8, IL-17, IL-23, monocyte
chemoattractant protein-1 (MCP-1) and interferon inducible
protein-10 (50, 51).

Resveratrol can treat periodontitis by reducing P. gingivalis-
mediated activation of the NF-kB signaling pathway. The effect
on NF-kB activation likely results from the ability of resveratrol
to act as a proliferator-activated receptor-g (PPAR-g) agonist. It
can also attenuate triggering receptor expressed on myeloid cells-
FIGURE 1 | Immunotherapies of periodontitis. The above is a detailed classification of periodontitis immunotherapy, including drug therapy, microbial therapy, stem
cell therapy, gene therapy, and other therapies. They are followed by more detailed classifications. PDLSCs, periodontal ligament stem cells; GMSCs, gingival
mesenchymal stem cells; MSCs, mesenchymal stem cells; PT, periodontal therapy; PDT, photodynamic therapy; ICG, indocyanine green; PTT, photothermal
therapy; MB-PDT, methylene blue-mediated photodynamic therapy; LIPUS, low-intensity pulsed ultrasound.
November 2021 | Volume 12 | Article 781378
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1(TREM-1) gene expression as well as soluble TREM-1 secretion
in monocytes (52).

In addition, intracanal metformin for apical periodontitis has
therapeutic efficacy. It can suppress lipopolysaccharide (LPS)-
induced inducible nitric oxide synthase (iNOS) and NO
production by monocytes, therefore inhibiting LPS-enhanced
chemokine (C-C motif) ligand 2 (CCL-2) synthesis (53). Both of
these drugs can eventually reduce bone resorption and
improve periodontitis.

Drugs Targeting Macrophages
Macrophages are central players in the destructive and reparative
phases of periodontal disease (54). The behavior changes of
macrophages are closely related to the pathogens. Pro-
inflammatory macrophages increase and are activated in
periodontitis (55). Increased proinflammatory responses,
phagocytosis, and metabolic activity of macrophages in diseased
periodontal tissue are mainly affected by various pathogenic bacteria
such as Fecal coliforms and bacterial products such as LtxA (56, 57).
Polarization is the main feature ofmacrophages in periodontitis that
differentiates them from those in normal tissues (58). In
periodontitis, macrophages tend to differentiate in the direction of
M1, while M2 differentiation is inhibited significantly (48).
Periodontitis is characterized by increased production of
proinflammatory mediators and matrix-degrading enzymes by
macrophages and increased osteoclastic activity (55). In addition,
macrophages secrete increased proinflammatory cytokines such as
Frontiers in Immunology | www.frontiersin.org 4
TNF-a, interferon-g (IFN-g), IL-1a, IL-1b, IL-6, and IL-12;
increased adhesion factors such as CXCL5 and CXCL1 (54, 59,
60); and increased inflammatory bodies such as NLRP3. In addition,
the expression of other molecules such as toll-like receptors 2
(TLR2), TLR4, and nucleotide-binding oligomerization domain 2
(NOD2) is also increased (61), mainly by in vivo cytokines such as
IL-17 and pathogenic bacteria such as Aggregatibacter
actinomycetemcomitans (A. actinomycetemcomitans) (62, 63).

There is much research on drugs targeting macrophages to
treat periodontitis. Proanthocyanidins (PACN) and cranberry
proanthocyanidins (PACs) are two of the most active substances
with positive effects on both cell behavior and molecular
expression. Because of a lower risk of development of
resistance and side effects, PACN, a multicomponent plant-
derived antibacterial substance, has become a promising
alternative and adjunctive therapy candidate for the treatment
of periodontitis. Pelargonium sidoides dendritic cell root extract
(PSRE), as one of the most PACN-enriched plants, can inhibit
IL-8 and prostaglandin E2 (PGE2) produced by LPS-induced
fibroblasts and IL-6 by leukocytes, blocking the expression of
CD80 and CD86 on the surface of macrophages and IL-1 and
cyclooxygenase-2 (COX-2) in leukocytes. Thus, PACN could be
an effective drug for periodontitis (64).

PACs can neutralize the cytolytic and proinflammatory
responses in human macrophages treated with LtxA. It can
protect macrophages against the cytotoxic effect of purified
LtxA, inhibiting caspase-1 activation, and consequently
FIGURE 2 | Drugs targeting neutrophils. Resveratrol, quercetin, and NAC can reduce the production of ROS by neutrophils, therefore contributing to the integrity of
gingival tissues and prevention of periodontitis (41). Ascorbic acid can reduce inflammation in patients with periodontitis possibly because it usually acts as a
reducing agent and can be used to treat periodontitis by reducing the extracellular oxidants of neutrophils (42, 43). APM is effective in inhibiting IL-8 production and
decreasing cell damage through the suppression of intracellular ROS (44). ↑ is a symbol for positive effects, and ↓ is a symbol for negative effects and the same goes
for the figures and tables below. NAC, N-acetylcysteine; ROS, reactive oxygen species; APM, L-Ascorbic acid 2-phosphate magnesium salt.
November 2021 | Volume 12 | Article 781378
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decreasing the secretion of IL-1b and IL-18. Apart from the above
therapeutic effects, highbush blueberry PACs can also inhibit the
release of TNF-a, IL-6, CXCL8, matrix metalloproteinase-3
(MMP-3), MMP-9, and TREM-1 in a dose-dependent manner.
PACs have been a potential candidate for the treatment and
prevention of periodontal disease because of the combination of
strong pathogen-selective antibacterial, anti-inflammatory, and
gingival tissue protection properties (57, 65) (Figure 3).

By summarizing the drugs studied in recent years, we found
that most of the drugs can affect the polarization and infiltration
behaviors of macrophages [such as CSINCpi-2 (66), Metformin
(67), and CCL2 MPs (68)] and inhibit the production of a variety
of pro-inflammatory cytokines by macrophages [such as
PMX205 (69), CSINCpi-2 (66), 6-Shogaol (70)], a few drugs
can promote the production of anti-inflammatory cytokines [e.g.
PMX205 (69)]. In addition, they still have some other effects,
such as promoting bone regeneration [Dioscin (71)],
antibacterial (Perillyl alcohol [POH) (72)] and so on. The
effects of other drugs targeting macrophages with positive
effects either on cell behavior or molecular expression are
shown in Table 1.

Drugs Targeting T Lymphocytes
T lymphocytes in tissues can maintain balanced in the gingival
environment (83). The number of T cells is significantly higher and
they play an important role in alveolar bone resorption (84–86).
Frontiers in Immunology | www.frontiersin.org 5
The differentiation of T cells is caused by ongoing microbial
challenges and the ensuing inflammation (87). The activation of
different T cell subtypes controls chronic inflammation through
secretion of cytokines and regulation of osteoclast production, and
they play an important role in determining whether the
inflammatory lesion will lead to tissue-destructive periodontitis
(83). Overall, Th1 and Th17 responses increase while Th2 and Treg
responses decrease in periodontitis, which can independently or
interactively increase the receptor activator of NF-kB ligand
(RANKL)/osteoprotegerin (OPG) ratio (88, 89). The early oral
infection response is mainly attributed to pathogenic Th17 up
regulation or protective Treg downregulation, and this imbalance
determines the resorption of alveolar bone (90). Persistent oral P.
gingivalis infection stimulates an initial IL-17A-based response
changing into a later de novo Th1 response with only sporadic
transdifferentiation of Th17 cells (87). As for the memory T cell
subsets, a significant increase in the proportion of CD4(+)CD69(+)
CD103(-) memory T cells was observed in periodontitis tissues
compared with healthy gingiva (91). CD4(+) memory T cells from
periodontitis tissues produced either IL-17 or IFN-g whereas CD8
(+) memory T cells produced only IFN-g (91). In addition, during
the development of periodontitis, the expression levels of IFN-g
(linked to Th cell polarization toward the Th1 cells), IL-17A, IL-
17F, IL-1b, IL-6, IL-23 (linked to Th cell polarization toward the
Th17 cells), TNF-a, RANKL, glucocorticoid-induced TNFR-
related gene (GITR), T-bet, and GATA-3 are all highly increased
FIGURE 3 | Drugs targeting macrophages. PSRE and PACN can decrease IL-8 and PGE2 by lipopolysaccharide-induced fibroblasts and IL-6 by leukocytes, blocking
the expression of CD80 and CD86 on the surface of macrophages and IL-1 and COX-2 in leukocytes (64). PAC can protect macrophages against the cytotoxic effect of
purified LtxA, reducing caspase-1 activation in LtxA-treated macrophages, consequently decreasing the release of IL-1b and IL-18. PACs can also neutralize the cytolytic
and pro-inflammatory responses of human macrophages treated with LtxA. In addition, highbush blueberry PACs can also inhibit the secretion of IL-6, CXCL8, TNF-a,
MMP-3, MMP-9, and sTREM-1in a dose-dependent manner (57, 65). PSRE, Pelargonium sidoides DC root extract; PACN, Proanthocyanidins; PAC, Proanthocyanidins.
November 2021 | Volume 12 | Article 781378
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(92–94). While less IL-4 (linked to Th cell polarization toward the
Th2 cells), IL-10 (linked to Th cell polarization toward the Treg)
and transforming growth factor-b (TGF-b) are detected in the
patients with periodontitis (95). The more detail of changes of
various T cell subtypes in periodontitis is summarized in
Supplementary Table 1.

Some drugs targeting T lymphocytes can regulate the
differentiation of T cells to reduce inflammation, thereby reducing
bone loss and improving periodontitis. Astragaloside IV (AsIV), as
one of the active ingredients in the medicinal plant Astragalus
membranaceus, can increase peripheral blood CD4(+)T cell
percentages and the CD4(+)/CD8(+) T cell ratio, while the
percentage of CD8(+) T cells can be significantly reduced, as well
as TNF-a, IL-1b, IL-2, IgA, and IgG. The reduction in IgA and IgG
Frontiers in Immunology | www.frontiersin.org 6
may be because the drugs target CD4(+) T cells, reducing T cell-
dependent antibody responses. By this mechanism, AsIV can slow
the progress of periodontitis by suppressing inflammation (96).

Other drugs, for example, curcumin and calcitriol, can regulate
the differentiation of Th cells, thus playing a therapeutic role. Both
of them can inhibit the loss of alveolar bone by changing the
proportion and function of Th cell subsets, which is manifested by
the increase of Tregs and the decrease of Th17 cells. Calcitriol
intervention can also increase Th2 polarization potential and
decrease the Th1 promoter (97, 98). In addition, curcumin also
exerts antibacterial and antioxidant effects (99, 100) (Figure 4).

For periodontitis in patients with Parkinson’s disease, vitamin
D can reduce peripheral blood CD3, CTL counts ,
proinflammatory cytokines in saliva, and autophagy-related
TABLE 1 | Effects of drugs targeting macrophages.

Macrophage activity Molecular expression Inflammatory
response

Other effects

PSRE and PACN (64) CD80, CD86 ↓ IL-8, PGE2, IL-6, IL-1, COX-2 ↓ / /
PAC (57, 65) Pro-inflammatory

responses ↓
IL-1b, IL-18 ↓; IL-6, CXCL8, TNF-a, MMP-3, MMP-9, sTREM-1
(highbush blueberry PACs) ↓

↓ Pathogen-selective antibacterial
Gingival tissue protecting
properties

Chemically-Modified
Curcumin 2.24
(CMC2.24) (73, 74)

Phagocytic activity↓ TNF-a, IL-1b, IL-10, MMP-9, MMP-2 ↓; ROS ↑ / Bone resorption↓

PMX205 (69) Macrophage
phagocytosis function ↑

NO, IL-23, TGF-b1, IL-10, Arg-1↑; Macrophage TNF-a, IL-6↓ ↓ C5a receptor antagonist

CsinCPI-2 (66) M1 Polarization↓
(Regulation of
endogenous M2
macrophages)

Cathepsin K, Cathepsin B, IL-1b, TNF-a↓ ↓ Caspase inhibitor

Perillyl alcohol (POH)
(72)

Proliferation - Macrophage ROS, arginase-1↓ / Antibacterial effect

Metformin (67) Infiltration ↓ IL-1b ↓ ↓ Reduce NLRP3 inflammatory
response activity by inhibiting
Nek7 expression

Glyburide (75) Infiltration ↓ Macrophage IL-1b ↓ ↓ Osteoclast number ↓
Gliclazide (76) Migration ↓ Myeloperoxidase activity, malondialdehyde, IL-1b, TNF-a, COX-2,

cathepsin k, MMP-2, RANK, RANKL, SOD-1, GPx-1, MIF, PI3k,
NF-kaP50, PI3k, AKT, F4/80 ↓; OPG↑

↓ Bone loss ↓

6-Shogaol (70) Number ↓ TNF-a, IL-1b ↓ / Active ingredients of ginger
Neutrophil count↓

Tea polyphenols (77) / / ↓ Protect gingival keratinocytes
from TNF-a-induced tight
junction barrier dysfunction

Dioscin (71) / IL-1b, NLRP3, Caspase-1 (macrophages- derived) ↓ ↓ Osteo-genesis↑
Ursodeoxycholic acid
(UDCA) (78)

/ Macrophage pro-inflammatory cytokines ↓ / /

Catechin (79) / Pro-IL-1b, IL-1b ↓ ↓ /
An ethanol extract of
paracasei NTU 101
(NTU101FM) (80)

/ Macrophage pro-inflammatory cytokines ↓ / Antibacterial activity
Osteoclast differentiation ↓

Hinokatil (81) / Macrophage inflammatory cytokine related gene mRNA levels ↓ / Local treatment
Alveolar bone loss, osteoclast
differentiation ↓

CCL2 MPs (68) M1 Polarization ↓
(Regulation of
endogenous M2
macrophages)

/ ↓ /

Triclosan (82) / In vitro protein citrullination and carbamylation of macrophages ↓;
post-translational protein modification↓

/ As an adjuvant treatment for
inflammatory periodontal
disease
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proteins in whole peripheral blood mononuclear cells. Vitamin
D had varied effects on reducing systemic inflammation and
promoting the induction of autophagy-related proteins related to
antibacterial function. This study has entered the clinical trial
stage (101).

Drugs Targeting Cytokines
Imbalance in the inflammatory cytokine network is involved in
the periodontal disease process. The interactions between the
pathogens and host cells, including leukocytes, can lead to a
cytokine cascade. Pro-inflammatory cytokines (such as IL-1 and
TNF) lead to periodontitis while anti-inflammatory cytokines
ameliorate the disease (102). At the site of periodontitis, the
levels of proinflammatory cytokines such as TNF-a, IFN-g, IL-1,
IL-6, IL-12 and G-CSF are significantly increased (25, 54, 103)
while anti-inflammatory cytokines are decreased (IL-4 and IL-
10) (104). Cytokines and other molecules can be used to diagnose
periodontitis, in which the combination of IL-6 and MMP-8
shows the best diagnostic performance (105).

Drugs that target cytokines have been mostly studied in vitro.
They can inhibit inflammation and reduce bone resorption by
inhibiting the production and action of pro-inflammatory
factors. Among them, most drugs can inhibit the expression of
TNF-a, such as trans-cinnamic aldehyde (106), kawa-205ME
(107), b-carotene (108), calcitonin gene-related peptide (CGRP)
(109), Platycarya strobilacea leaf extract (PLE) (110), and
bismuth drugs (111). In addition, trans-cinnamic aldehyde
Frontiers in Immunology | www.frontiersin.org 7
(106), psoralen and angelicin (112), bismuth drugs (111), SIM-
PPI (113), and benzydamine (114) can inhibit the expression of
IL-1b. On the contrary, drugs that target cytokines have no effect
on anti-inflammatory factors. This may be because some studies
have shown that there is little change in anti-inflammatory
cytokines in gingival crevicular fluid in patients with
periodontitis (115). More detailed effects of these drugs are
shown in Table 2.
OTHER IMMUNE CELLS PARTICIPATING
IN PERIODONTITIS

In addition to the immune system components aforementioned,
other components such as DCs, mast cells (MCs) and B
lymphocytes also play a role in the development of periodontitis.

DCs act as a bridge for innate and adaptive immune responses
(122). The presence of DCs in periodontitis may be a sign of the
severity of the lesion (123). Activated in periodontitis by the
protein kinase B (AKT)/Forkhead box O1 (FoxO1) axis, DCs
play both protective and destructive roles through activation of
the acquired immune response (124, 125). DCs can promote
Th17-specific differentiation (126) and Treg and Th17 responses
(127), thereby alleviating periodontitis. However, P. gingivalis
upregulated its short mfa1 fimbriae, leading to increased
invasion of DCs, which may have negative consequences for
the host (128).
FIGURE 4 | Drugs targeting T lymphocytes and their mechanisms. Curcumin and calcitriol can regulate the differentiation of Th cells, thus playing a therapeutic role.
Both of them can inhibit the loss of alveolar bone by changing the proportion and function of Th cell subsets, which is manifested by the increase of Treg cells and
the decrease of Th17 cells. Calcitriol intervention can also increase Th2 polarization potential and decrease Th1 promoter (97, 98). In addition, curcumin also exerts
antibacterial and antioxidanteffects (99, 100). AsIV can increase peripheral blood CD4(+)T cell percentages and the CD4(+)CD8/CD8(+) T-cell ratio, while the
percentage of CD8(+) T cells can be significantly reduced, as well as TNF-a, IL-1b, IL-2, IgA and IgG (96). AsIV, Astragaloside IV.
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MCs participate in immune regulation. In the evolution of
periodontal disease there are significant dynamic alterations in
migration and localization of MCs (129). There is a correlation
between the number of MCs and depth of the gingival pocket
(130). The significantly increased number of tryptase- T cell
immunoglobulin mucin domain 1 (TIM-1) double-positive MCs
had the similar tendency as the severity of periodontitis
inflammation (131), especially in invasive periodontitis (132).
Pro-inflammatory cytokines in MCs increase, including TNF-a
(133), IL-31 (134), and TLR4 (135). Through releasing different
proinflammatory cytokines, MCs can also promote leukocyte
infiltration under various inflammatory states in the oral
tissues (136).

B cells can aggravate the RANKL-dependent osteoclast
differentiation in alveolar bone loss, leading the periodontitis
(83) to a more severe extent compared with T cells (137). The
proportion of memory B cells decreases in periodontitis, which
Frontiers in Immunology | www.frontiersin.org 8
shows the highest tendency to support osteoclast differentiation
(137). However, there is also a class of B cells that produce IL-10,
which can downregulate adaptive and innate immunity,
inflammation, and autoimmunity (138). Migration of B10 cells
in periodontitis resulted in increased IL-10, decreased IL-17 and
RANKL, regulating local host immune response by reducing the
expression of pro-inflammatory cytokines and inhibiting the
local proliferation of Th17 cells (139).

It’s worth noting that a lot of drug research has focused on
natural molecules like resveratrol and PACN. These natural
molecules are a more promising alternative and adjunct to
traditional antibiotic treatment strategies because they reduce
the risk of developing resistance, short-term and long-term
toxicity, adverse and side effects (64). However, many related
researches failed to enter clinical application, one of the
important reasons is that the biological activity, toxicity and
other characteristics of natural molecules have not been
TABLE 2 | Effects of drugs targeting cytokines.

Pro-inflammatory
cytokines

Other
molecules

For bone Other effects

Trans-cinnamic aldehyde (106) TNF-a, IL-1b ↓ / Bone loss↓ Anti-inflammatory effects
Kava-205Me (107) TNF-a ↓ / / Reduce the secretion of other cytokines involved in early

inflammation, including IL-12, eotaxin, RANTES, IL-10 and IFN-g
Carnosic Acid (116) CXCL9, CXCL10,

CXCL11 (IL-27
stimulation) ↓

/ / By inhibiting the activation of STAT1, STAT3 and Akt

b- carotene (108) TNF-a, IL-6, MCP-
1 ↓

/ / /

Psoralen and Angelicin (112) IL-1b, IL-8 ↓ / Alveolar bone
loss↓

Anti-inflammatory effects

Calcitonin generelated peptide
(CGRP) (109)

TNF-a (Osteoblast-
derived) ↓

cCaspase3,
cCaspase8
activation ↓

Osteoblast
apoptosis↓

An important neuropeptide for bone remodeling

Platycarya strobilacea leaf extract
(PLE) (110)

TNF-
a(Macrophage-
derived) ↓

MMP-9,
Cathepsin K ↓

Bone resorption↓ Block NFATc1, osteoclast fusion DC-STAMP and osteoclast active
cathepsin K gene expression levels

Bismuth drugs (111) IL-6, IL-1b, TNF-a
(Macrophage-
derived) ↓

/ / Anti-inflammatory effects

The Amyl-1-18 peptide (A peptide
derived from rice) (117)

IL-6(Macrophage-
derived)↓

/ / Neutralize lipopolysaccharides and inhibit NF-kB signal transduction
and IL-1R-related signal transduction
Anti-inflammatory effects

SIM-PPi (113)
Local Application of
Pyrophosphorylated Simvastatin
Prevents Experimental Periodontitis

IL-1b, IL-6 ↓ / / Synthesized by directly conjugating a SIM trimer to a pyrophosphate
(PPi), greatly improving water-solubility of SIM and shows strong
binding to hydroxyapatite (HA)

Benzydamine (114) Pro-inflammatory
cytokines (IL-1b) ↓

Prostaglandin↓ Bone resorption,
Osteoclast
differentiation↓
Osteoblast
differentiation↑

Used as a cytokine inhibitor or non-steroidal anti-inflammatory drug

Flavan-3-ols and proanthocyanidins
from Limonium brasiliense (118)

↓ / / /

Simvastatin(SIM) (113) / / Osteogenesis↑ Widely used in the treatment of hypercholesterolemia HMG CoA
reductase inhibitors
Anti-inflammatory effects

Resolvins (119, 120) / / / Cannot suppress acute inflammation; prevent the prolongation of
inflammation

Rice peptides REP9 and REP11
(121)

/ / / Transcriptional activity of inflammatory and osteoclast-related
molecules↓
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scientifically and effectively explored. We don’t know yet how
effective or safe they are. On the other hand, most of the relevant
studies lacked the actual pathophysiological aspects of the disease
(140). Nevertheless, the potential value of natural molecules in
the development of periodontitis therapeutics requires a
multidisciplinary research and development team to
comprehensively address the actual disease challenges and
patient treatment needs (141).

All in all, drug therapy, as a traditional method, has made
faster progress compared with the emerging treatment methods.
Most drugs target macrophages, T cells, and/or cytokines. Most
of the drug studies are still in vitro, but there are still some drugs
(such as ascorbic acid) that can be used in human periodontitis.
At present, drug therapies targeting components of the immune
system are still lacking and more laboratory and clinical studies
are needed.
MICROBIAL THERAPY

Probiotic Therapy
Oral probiotics are a relatively safe and effective adjunctive
treatment for periodontitis. Their complementary use has the
potential to improve disease indicators and reduce the need for
antibiotics (142). In order to make better use of adjuvant therapy
of probiotics, we believe that it is necessary to find more correct
probiotics strains, gain more recognition from patients, and
focus on developing more individualized treatment plans (143).

Probiotic-assisted routine treatment of periodontitis treatment
(144) may have a positive impact on the immune prognosis of
patients. It has been found that GCF/MMP-8 levels were
significantly reduced in patients treated with scraping and root
planning (SRP) and probiotics combined (145). Significantly
reduced levels of pro-inflammatory cytokines IL-1ß and IL-8
were observed in patients with generalized chronic periodontitis
treatedwith aprobiotic buccal adjuvant containingBifidobacterium
animalis subsp. lactis (B. lactis) HN019 for SRP (146), while the
levels of b-defensin-3, TLR4, CD57 and CD4 were significantly
increased (147). Supplementation with probiotics containing
Lactobacillus reuteri during periodontal therapy was associated
with a significant decrease in MMP-8 levels and a significant
increase in matrix metalloproteinase-tissue inhibitor (TIMP-1)
levels. This suggests that lozenges reduce inflammatory markers
in the short term (148).Using the intestinal symbioticAkkermansia
Muciniphila in an experimental periodontitis model induced by P.
gingivalis, alveolar bone loss was improved. In vitro, bone marrow
macrophages increased IL-10 and decreased IL-12, and expressions
of connective integrity markers such as integrin -b1, e-cadherin,
andZO-1 in gingival epithelial cellswere also increased. Thisproves
that Akkermansia muciniphila can be considered as an adjunct to
periodontal therapy (149).

As an independent means of treatment, the therapeutic effect
of probiotics has also been positive. Gastric administration of
Lactobacillus gasseri SBT2055 in mice enhanced immune
Frontiers in Immunology | www.frontiersin.org 9
regulation and prevented periodontitis through intestinal
immune system. The expression and secretion of TNF-a and
IL-6 decreased significantly. The mRNA and peptide products of
b-defensin-14 were significantly increased in the distal mucosa
and intestinal tract of mice (150).

In addition, probiotics have also been found to have a
preventive effect. Prophylactic administration of a combination
of omega-3 and probiotics reduced alveolar bone loss and
improved serum IL-1b, IL-6, and IL-10 levels (151).

Existing meta-analyses have shown that probiotics have a
positive therapeutic effect on periodontitis (152). Many probiotic
strains have strong aggregation ability, strong adhesion ability to
oral tissue, and high antagonistic activity against oral pathogens.
And they were largely free of antibiotic resistance (153).
However, this treatment does not seem to be a permanent
solution, as most of these probiotics originate from the
external oral microenvironment and may not succeed in
permanently colonizing the oral cavity. For them to continue
to play an active therapeutic role, we need to develop a more
appropriate frequency of administration (154). Therefore, the
extraction of probiotics from the mouth of healthy people may
promote the permanent colonization of probiotics and may be a
more ideal treatment method (155).

Antibacterial Therapy
There have been many achievements in antibacterial treatment
of periodontitis, but there is still no clinical treatment available.
As for antibacterial therapy, the main method is to induce
immunity to pathogens through vaccination.

P. gingivalis capsular defect mutant strains cause reduced loss
of alveolar bone because of non-expression of RANKL and a
decrease in Th1/Th17 cytokines, Th1/Th17 lymphocytes, and
osteoclasts (156). Subcutaneously vaccination with formalin-
killed P. gingivalis can result in upregulation of Tregs through
the production of IL-10 and TGF-b, downregulation of Th17
cells and IL-17A production and inhibition of lymphocyte
proliferation (157). P. gingivalis-specific inflammatory immune
response can be protected by therapeutic vaccination with a
chimera (KAS2-A1) (parenteral or intraoral administration)
immunogen targeting the major virulence factors of the
bacterium, the gingipain proteinases. In addition, this
protection is characterized by an antigen-specific IgG1 isotype
antibody and Th2 response, which produced an effective
therapeutic intervention that protected against P. gingivalis-
induced periodontitis (158).

To date, however, P. gingivalis vaccination has been studied
only in animals, and no effective prophylactic human
periodontal vaccine has been developed, with the reason for
the failure of prophylactic human periodontal vaccines unknown
(157). We consider patients with P. gingivalis-associated
periodontitis have higher threshold levels of pathogens in the
subgingival plaque and exhibit an inflammatory immune
response. Therefore, therapeutic vaccination may exacerbate
inflammation and bone resorption in these patients (Figure 5).
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STEM CELL THERAPY

Mesenchymal stem cells (MSCs), including oral mesenchymal
stem cells, have significant regenerative potential and
immunological roles of interacting with the inflammatory
microenvironment, while inflammation can also affect the
properties of oral MSCs (159, 160). These cells encompass the
periodontal ligament stem cells (PDLSCs), the gingival
mesenchymal stem cells (GMSCs), the stem cells from human
exfoliated deciduous teeth (SHED), the dental pulp stem cells
(DPSCs), the dental follicle stem cells (DFSCs), the bone marrow
mesenchymal stem cells (BMMSCs) and so on. With the
emergence of bioengineered therapies, some studies have
investigated the potential use of cell therapies, in which the
main ones include undifferentiated mesenchymal cells together
with different scaffolds (161). Additionally, genetic modulation
may enhance the therapeutic potential of MSCs (159).

Inflamed tooth tissue, including pulp and gums, can serve as a
source of MSCs with full stem cell properties. The osteogenic
capability of DPSCs and GMSCs is not only preserved but
increased by the overexpression of several proinflammatory
cytokine-dependent chaperones and stress response proteins
(162). Similarly, infected DFSCs maintain their stem cell
functionality, reduce polymorphonuclear leukocyte (PMN)-
induced tissue and bone degradation via suppression of PMN-
Frontiers in Immunology | www.frontiersin.org 10
activity, but allowed for the survival of the oral pathogens (163).
However, PDLSCs from periodontitis patients are less capable of
forming cell aggregates, and show impaired osteogenesis and
regeneration. The decline in function can be attributed in part to
TNF-a (164), which can be improved by osthole (165),
tetramethylpyrazine (166) and resveratrol (167).

The immunoregulative capacity of MSCs is largely governed
by the surrounding inflammatory intensity (168). Under low
inflammatory condition, MSCs promote the inflammatory
response through the secretion of cytokines that recruit
immune cells to the local area, while if the inflammatory
cytokines exceed a certain threshold, MSCs shift from pro- to
anti-inflammatory cells, preventing an overexpression of
immunoreaction (169–171). This means that mesenchymal
stem cells can adjust their role as inflammation progresses,
maintaining tissue integrity and homeostasis, which could pave
the way for ameliorating periodontitis.
PDLSCs
PDLSCs in periodontitis tissues have impaired immune
regulatory function due to changes in their inflammatory
microenvironment, resulting in immune response imbalance
and inflammation-related bone loss. PDLSCs provide new
prospects and potential therapeutic cells for tooth regeneration
FIGURE 5 | Influence of vaccination against pathogens in patients and healthy people. P. gingivalis capsular defect mutant strains cause reduced loss of alveolar
bone because of non-expression of RANKL and a decrease in Th1/Th17 cytokines, Th1/Th17 lymphocytes, and osteoclasts (156). Subcutaneously vaccination with
formalin-killed P. gingivalis can result in upregulation of Tregs through the production of IL-10 and TGF-b, downregulation of Th17 cells and IL-17A production and
inhibition of lymphocyte proliferation (157). P. gingivalis-specific inflammatory immune responses can be protected by therapeutic vaccination with a chimera (KAS2-
A1) immunogen targeting the major virulence factors of the bacterium, the gingipain proteinases. This protection is characterized by an antigen-specific IgG1 isotype
antibody and Th2 cell response (158). Patients with P. gingivalis-associated periodontitis have higher threshold levels of pathogens in the subgingival plaque and
exhibit an inflammatory immune response. Therefore, therapeutic vaccination may exacerbate inflammation and bone resorption in these patients (89, 94).
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and reconstruction of periodontal ligament tissue damaged by
periodontal disease (172, 173).

PDLSCs possess low immunogenicity and marked
immunosuppression via PGE2-induced T-cell anergy (174).
PDLSCs can induce polarization of macrophages to the M2
phenotype, which contributes to enhanced periodontal
regeneration after stem cell transplantation (175). In addition,
PDLSCs significantly decrease the level of non-classical major
histocompatibility complex glycoprotein CD1b on DCs,
resulting in defective T cell proliferation, demonstrating their
potential to be utilized in promising new stem cell therapies
(176). The use of allogeneic PDLSCs in a miniature pig model led
to a reduction in humoral immunity. This may be because
PDLSCs inhibit B cell activation through intercellular contact,
mainly mediated by programmed cell death protein 1 (PD-1) and
PD-L1. In addition, PDLSCs can inhibit the proliferation,
differentiation and migration of B cells. But interestingly,
PDLSCs enhanced B cell viability by secreting IL-6 (177).

Approaches based on extracellular vesicles (EVs) appear to
provide a new paradigm for cell-free therapies that overcomes
many of the clinical limitations of current cell transplantation. As
an ideal vector, EVs have been shown to display anti-
inflammatory and immunosuppressive actions in different
tissues and could represent a potent therapeutic tools against
chronic inflammation during periodontitis (178).

EVs from PDLSCs grown on gelatin-coated alginate
microcarriers may be used to target chronic inflammation during
periodontitis in bioreactors. EVs permanently suppressed basal and
LPS-induced activity ofNF-kB in PDLSCs and partially suppressed
inhibitory effect of anti-TLR4 blocking Ab, without affection to
osteogenic mineralization (178). MicroRNA-155-5p in PDLSC-
derived EVs can upregulate sirtuin-1 in CD4(+) T cells, thereby
alleviating Th17/Treg imbalance (90). Furthermore, the
conditioned medium of PDLSCs reduced mRNA levels of TNF-a
in periodontal healing tissue (179).

GMSCs
GMSCs, a unique group of MSCs with the characteristic of
inflammatory resistance, have been the focus of extensive
research due to their easy accessibility, numerous distinct
properties, including their homing to injury sites, their
contribution to tissue regeneration and prominent
immunomodulatory properties (160, 180).

It has been reported when transplanting GMSCs via the tail
vein of mice, these cells were able to enter the site of periodontal
injury (181). The delivery of GMSCs led to a significant decrease
in TNF-a, IL-1b and IL-6 (M1 markers), a significant increase in
IL-10 (M2 markers), thus inhibiting the activation of M1
macrophages (182, 183). GMSCs can also decrease the
infiltration of DCs, MCs, CD8(+) T cells and Th17 cells, and
increase the infiltration of Tregs (184). Hypoxic stimulation
promoted the immunomodulatory properties of human
GMSCs by enhancing the suppressive effects of human GMSCs
on peripheral blood mononuclear cells (PBMCs) (185). In
addition, GMSC-derived EVs can promote the conversion of
M1 to M2 and reduce the proinflammatory cytokines produced
by M1 macrophages (such as TNF-a, IL-1b and IL-12) (186).
Frontiers in Immunology | www.frontiersin.org 11
However, many issues need to be resolved, such as costs,
time-consuming culture procedures, insufficient stem cell
sources, and other safety issues (187, 188).

Other MSCs
In an induced rat model of periodontitis, SHED survived in
periodontal tissue for about 7 days with minimal tissue diffusion.
Then, the treatment of periodontitis withmulti-dose SHED every 7
days can change the expression profile of cytokines in gingival
crevicularfluid,with a reduction in the pro-inflammatory cytokines
TNF-a, IFN-g and IL-2, and an increase in the anti-inflammatory
molecule IL-10. SHED can also promote the differentiation of
macrophage M2 (189) and induce an immune regulatory
phenotype in monocyte derived DC (moDCs) cells, thus
increasing CD4(+)Foxp3(+)IL-10(+) T cells (190).

IFN-g stimulated DFSCs by inducing immunomodulated
effects of healthy donor PBMC, promoting the proliferation and
differentiation of DFSCs, thereby inhibiting IL-4 and IFN-g levels,
increasing IL-10 levels, and increasing the number of CD4(+)
FoxP3(+) cells (191). Dental follicle progenitor cells (DFPCs) can
also sense and respond to LPS, resulting in the down-regulation of
TLR4 mRNA expression and significantly increasing the
migration of DFPCs. But IL-6 levels remained the same. Based
on the role of DFPCs in the immune microenvironment of
periodontitis, the potential of DFPCs as biological grafts for
periodontal regeneration has been further confirmed (192).

Using BMMSCs in a rat model of periodontitis, significant
reverse of alveolar bone lesion was observed after BMMSC
transplantation. The expression of TNF-a, IFN-g and IL-1b was
down-regulated by BMMSC transplantation (193, 194). When
combined with acetylsalicylic acid, the levels of TNF-a and IL-17
decreased, while the levels of IL-10 increased, and the inflammatory
microenvironment was improved more (195). Injection of
BMMSCs in a mouse model of periodontitis was also shown to
reduce periodontitis inflammation (196). Meanwhile, BMMSCs-
derived apoptotic extracellular vesicles (ApoEVs) could also
regulate the polarization of macrophages (197).

DPSCs are capable of self-renewal and multidirectional
differentiation, which provides a broad prospect for tooth
regeneration. DPSCs have low immunogenicity and can inhibit
lymphocyte proliferation and regulate cytokine production in
vitro. DPSCs can inhibit T cell proliferation, B cell proliferation
and mixed lymphocyte response. The number of Th17 cells in
peripheral blood mononuclear cells co-cultured with DPSCs was
significantly increased, while the number of Treg was significantly
decreased. DPSCs significantly inhibited the secretion of TNF-a,
IFN-g, IL-2 and IL-17 and promoted IL-10 secretion without
affecting IL-1b and IL-6 production (198, 199). These results have
shed light on the therapeutic mechanism of DPSCs. In addition,
DPSC-derived exosomes-incorporated chitosan hydrogel (DPSC-
Exo/CS) can also facilitate macrophages to convert from a pro-
inflammatory phenotype to an anti-inflammatory phenotype,
thus ameliorating periodontal lesion (200).

The more detailed role of MSCs in the immune
microenvironment of periodontitis is summarized in Table 3.

Oral MSCs have the unique clinical advantage of availability
in large numbers, controlling proliferation, migration and
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homing, multidirectional differentiation, and inflammatory
responses. However, in order to convert laboratory periodontal
regeneration methods to clinical application, the mechanisms of
cell-based immunomodulatory and regeneration processes need
to be understood (187).
GENE THERAPY

Gene therapy was defined as therapy “that mediates their effects
by transcription and/or translation of transferred genetic
material and/or by integrating into the host genome and that
are administered as nucleic acids, viruses, or genetically
engineered microorganisms” by the U.S. Food and Drug
Administration (FDA) (201). Gene therapy has been developed
to expose multiple factors to damaged surfaces for long periods
of time and maintain constant protein levels, promoting recovery
(202). Many studies have found that gene expression of cells in
periodontitis tissues changes (203, 204). And genotypes are also
important for susceptibility to periodontitis (205). These both
provide the possibility of gene therapy to improve immune
microenvironment, alleviating periodontitis.

Some studies have focused on immune-related genes.
Through gene delivery or gene modification, it can play a good
role in improving inflammation or periodontal regeneration.
However, the number of studies is still inadequate and further
research is needed to determine the exact effect.

It has been found that the gene modification of the P2X7
receptor (P2X7R) can promote the repair of inflammatory lesions
in PDLSCs. In addition to maintaining their robust functionality
under inflammatory conditions, P2X7R gene-modified stem cells
may have positive influences on their neighbors through paracrine
mechanism, suggesting a novel strategy to modify the harsh local
microenvironment of periodontitis to accommodate stem cells and
promote improved tissue regeneration (206).

Follicular dendritic cell secreted protein (FDC-SP) is
considered as an immune molecule that regulates the
interaction between Follicular DCs and B cells (207). FDC-SP
was also found to inhibit osteogenic differentiation of human
periodontal ligament cells (hPDLCs). Therefore, a stable and
effective recombinant lentiviral vector expressing FDC-SP was
Frontiers in Immunology | www.frontiersin.org 12
constructed to study its effect on the phenotypic expression of
hPDLCs. The results showed that in FDC-SP transfected cells,
the expressions of type 1 collagen a 1, type 1 collagen a 2, and
type 3 collagen were up-regulated, while the expressions of
osteocalcin, osteopontin, and sialoprotein were down-
regulated. In addition to the insignificant adverse effect of
transfection FDC-SP on the proliferation of hPDLCs, FDC-SP
can inhibit the differentiation of hPDLCs into the mineralization
tissue forming cells, which can regulate the regeneration of
periodontal tissue engineering (208).

Functional studies in vitro and in vivo have indicated that an
isoform of Atp6i, T-cell immune response cDNA7 (TIRC7), has
a significant association with the regulation of T cell and B cell
activation (209). The possibility of adeno-associated virus
(AAV)-mediated RNAi knockdown for the treatment of
periodontal disease was first explored. AAV-small hairpin (sh)
RNA-Atp6i/TIRC7 was locally injected into periodontal tissue in
vivo, and the number of T cells in the periodontal ligament in the
treatment group was significantly reduced. Meanwhile, the
expression of IL-6, IL-17A, RANKL, Cathepsin K (Ctsk), acid
phosphatase 5 (Acp5) and CD115 in gingival tissue was also
decreased (210).

Given its crucial role and specific expression in osteoclasts,
Ctsk is often considered as an important therapeutic target for
targeting bone loss in periodontal disease (211). Using a known
mouse model of periodontitis, AAV Expressing Ctsk shRNA
(AAV-shRNA-Ctsk) was locally injected into periodontal tissues
in vivo. AAV-shRNA-Ctsk inhibited the expression of pro-
inflammatory cytokines TNF-a, INF-g IL-1a, IL-1b, IL-12 and
IL-17, but increased the expression of IL-6 in infected mice. In
addition, T cells and DCs in the periodontal ligament were
significantly reduced in the AAV-shRNA-Ctsk group, which
significantly reduced inflammation. This suggests that AAV-
mediated Ctsk silencing can significantly protect mice from P.
gingivalis osteoclast bone resorption (212).

Injection of naked plasmid DNA encoding miR-200c into the
gingiva effectively rescued miR-200c downregulation, prevented
periodontal and systemic inflammation, and reduced the
transcription of IL-6 and IL-8, which explained the mechanisms
of gingival application of miR-200c in attenuating systemic
inflammation in periodontitis (213).
TABLE 3 | Role of MSCs in anti-inflammation.

PDLSCs GMSCs SHEDs DFSCs BMMSCs DPSCs

cytokines IL-6, IL-10 ↑;
TNF-a, CD1b ↓

IL-10↑;
TNF-a, IL-1b, IL-6, IL-12 ↓

TNF-a, IFN-g ↓ IL-10 ↑;
IFN-g,
IL-4↓

IL-10 ↑;
TNF-a, IL-1a, IL-1b,
IL-17, IFN-g ↓

IL-10 ↑; TNF-a, IFN-g,
IL-2, IL-17 ↓

T
lymphocytes

Anergy of T cells
Imbalance of Tregs↓

Infiltration of Tregs ↑; Infiltration of
CD8(+) T cells and Th17 cells↓;

TNF-a(+)IFN-g(+)CD4
(+)cells ↓

Tregs ↑ / Tregs ↑; Th17 cells↓

B
lymphocytes

Proliferation, migration,
differentiation, activation of B
cells ↓

/ / / / /

Macrophages M1 macrophages ↓; M2
macrophages↑

M1 macrophages ↓; M2
macrophages↑

M1 macrophages ↓;
M2 macrophages↑

/ M1 macrophages ↓;
M2 macrophages↑

M1 macrophages ↓;
M2 macrophages↑

References (160, 173, 175–177) (160, 183–186) (160, 189, 190) (191,
192)

(194–197) (160, 198–200)
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Soluble protein delivery of a TNF-a antagonist inhibits
alveolar bone resorption induced by periodontitis. The delivery
of the TNF receptor-immunoglobulin Fc (TNFR : Fc) fusion
gene to rats led to sustained therapeutic levels of serum TNFR
protein and can reduce local inflammatory cell infiltration and
the levels of several pro-inflammatory cytokines such as IL-1b,
TNF-a , IL-6 and IL-10, protecting bone volume and
density (214).

To date, most gene therapy for periodontitis has focused on
bone regeneration (215–217). There is still little research on the
immune microenvironment, but some of the existing studies
show good application prospects (214). Gene therapy targeting
the immune microenvironment can not only change the
environment for cell survival but also indirectly promote bone
regeneration. Transient gene expression is easier to achieve in
periodontitis than in some genetic diseases that require lifelong
expression of certain genes (218). At present, relatively high
transfection efficiency and relatively low mutation rates can be
achieved in gene therapy (219). However, the disadvantage of
gene therapy is that some viral vectors themselves may induce an
immune response, which may worsen the immune
microenvironment of periodontitis (220). Some newly
developed nonviral vectors can solve these problems to some
extent (221).
OTHER THERAPIES

The periodontal therapy (PT) associated with photodynamic
therapy (PDT) reduced the expression of TNF-a in gingiva
(222). Indocyanine green (ICG)-diode laser-based photothermal
therapy (PTT) decreased the expression of IL-1b and MMP-8
(223). Methylene blue-mediated photodynamic therapy (MB-
Frontiers in Immunology | www.frontiersin.org 13
PDT) reduced the level of TNF-a and IL-1b and induced
macrophage apoptosis through ROS and mitochondria-
dependent apoptosis pathways (224). In addition, singlet
phototherapy can lead to the development of reactive
inflammation in periodontitis and significant vascularization of
periodontal tissue, contributing to rapid tissue regeneration and
stable remission (225). The above treatment methods can
effectively slow down the development of periodontitis.

Low-intensity pulsed ultrasound (LIPUS) treatment inhibits
the secretion of cytokines such as IL-1a, IL-1b, IL-6, IL-8, CCL2,
CXCL1, and CXCL10 by periodontal ligament fibroblasts
(PDLFs) and reduces the inflammatory response induced by
IL-1b and TNF-a. It can also inhibit the development of
periodontitis (226) (Table 4).
CONCLUSION

The change in the immune microenvironment in periodontitis is
enormous. Activity of leukocytes and inflammatory molecules
increases, which can eliminate inflammation, but this excessive
activity can cause great damage to the periodontal tissues,
including alveolar bone. The treatment of periodontitis by
modulating the immune microenvironment is a promising
strategy. New anti-inflammatory and periodontal regeneration
therapies can enhance the immune microenvironment and
promote cell homing and tissue formation, thus achieving
higher levels of immune regulation and tissue repair. In the
future, more work will be needed to refine immunotherapy
approaches, understand the risks and long-term efficacy of
these approaches, and further develop treatment techniques to
reduce the pain and social burden for patients with
periodontal diseases.
TABLE 4 | A summary of immunotherapies and their target.

Drug therapy Microbial therapy Stem cell
therapy

Gene
therapy

Other
therapy

Neutrophil Vitamin C, 1, 25 dihydroxivitamin D3, resveratrol, quercetin, NAC / DFSCs,
GMSCs

/ /

Monocyte Resveratrol, metformin / / / /
Macrophage PACN, PSRE, PACs, CMC2.24, Dioscin, Tea polyphenols, POH, 6-

Shogaol, UDCA, Catechin, Metformin, Glyburide, Gliclazide,
NTU101FM, Hinokatil, CCL2 MPs, CsinCPI-2, Triclosan, PMX205

/ PDLSCs,
GMSCs,
DPSCs,
SHED, EV-
GMSCs

/ MB-PDT

Lymphocyte AsIV, Curcumin, Calcitriol, Vitamin D, antibiotic therapy P. gingivalis capsular defect mutant
strains, formalin-killed P. gingivalis,
KAS2-A1

PDLSCs,
GMSCs,
DPSCs,
SHED,
DFSCs, EV-
PDLSCs

TIRC7,
Ctsk

/

Cytokines Trans-cinnamic aldehyde, Resolvins, Flavan-3-ols and
proanthocyanidins from Limonium Brasiliense, Benzydamine, Rice
peptides REP9 and REP11, the Amyl-1-18 peptide, SIM, SIM-PPi,
Kava-205Me, Carnosic Acid, b- carotene, Psoralen and Angelicin,
CGRP, PLE, Bismuth drugs

B. lactis HN019, Lactobacillus reuteri,
Akkermansia muciniphila, Lactobacillus
gasseri SBT2055, P. gingivalis capsular
defect mutant strains, formalin-killed P.
gingivalis

PDLSCs,
GMSCs,
DPSCs,
SHED,
DFSCs,
BMMSCs

P2X7R,
miR-200c,
TIRC7,
Ctsk,
TNFR: Fc

PT-PDT,
ICG-
PTT,
MB-
PDT,
LIPUS
Novembe
r 2021 | Volum
e 12 | Articl
e 781378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Immunomodulation in Periodontitis Treatments
PERSPECTIVES

Great progress has been made in studying changes in the immune
microenvironment of periodontitis through research on various
leukocytes and cytokines that play key roles. However, as with
immunotherapy for other diseases, it is necessary to research in
more detail the effects of different types of immune regulation on
the periodontal microenvironment and periodontal tissue
regeneration, including immune response patterns and cytokine
networks in periodontal tissue in both healthy and
inflammatory conditions.

Pathogens induce periodontitis in susceptible patients and in
most of the time the immune system is very efficient and
prevents disease progression until a microbial dysbiotic
environment has been established. Abundant experimental
evidence shows that immunotherapy is effective in the repair
and regeneration of periodontal tissue and can be used as a
treatment for periodontitis. Standard therapies fail to completely
solve the pathogenesis of periodontitis, but we believe that
mature immune-targeted therapies will play an irreplaceable
role if the immune microenvironment of periodontitis can be
studied in depth. A conceptually reasonable treatment strategy
for periodontitis may be the transformation of macrophages
from the M1 to the M2 phenotype, increasing anti-inflammatory
subtypes of T cells and anti-inflammatory cytokines and
decreasing pro-inflammatory cytokines.

Previous studies have shown that it is possible to manipulate
the changes in the immune microenvironment. There are many
drugs that target the immune microenvironment in treating
periodontitis, and they are relatively well established. The use
of new therapies for anti-inflammatory and periodontal
regeneration or the combination of these new approaches with
existing therapeutic drugs and cytokines can enhance the
generation of a viable local immune microenvironment,
promote cell homing and tissue formation and thereby achieve
higher levels of immune regulation and tissue repair. It is
undeniable that new treatment methods have great prospects.
However, they always have other defects and inappropriate
places, which may be the problem of safety, the uncertainty of
treatment effect, or technical and economic problems. These
uncertain problems that need to be improved urgently need
further research to draw scientific conclusions in order to
benefit patients.
Frontiers in Immunology | www.frontiersin.org 14
It is important to note that most of the treatments mentioned
in this review have not yet been used in the clinic and cannot be
used as a reference for clinical decisions. In the future, more
research needs to be done to improve immunotherapy methods
and understand the risks and long-term efficacy of
these methods.
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