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Abstract

The median age of cervical cancer (CC) presentation coincides with the mean age of meno-

pause presentation (49 years) in Mexico. Here, we investigated the association between

different HPV16 variants and early (� 49 years) or delayed (� 50 years) CC presentation.

We conducted a case-case study that included 462 CCs, 386 squamous cell carcinomas

(SCC), 63 adenocarcinomas (ACC), and 13 additional cell types. Variants were identified by

PCR and DNA sequencing. The risk conferred by each variant for developing CC earlier

than 50 years was analyzed using a univariate logistic regression model considering old-

aged patients (� 50 years) and non-HPV16 cases as the reference variables. Overall, the

frequency of HPV16 was 50.9%, and the only identified variants were the European A1/2

(31.2%) and the Asian-American D2 (10.8%), and D3 (8.9%). D2 was mainly associated

with� 49-year-old patients (15.9%); A1/2 was uniformly distributed between the two age

groups (~31%), whereas D3 increased with age to a frequency of 11.8% in the older group.

Only the D2 variant conferred a 3.3-fold increase in the risk of developing CC before 50

years of age (OR = 3.3, 95% CI = 1.7–6.6, p < 0.001) in relation with non-HPV16 cases.

Remarkably, this risk was higher for ACC (OR = 6.0, 95% CI = 1.1–33, p < 0.05) than for

SCC (OR = 2.8, 95% CI = 1.3–5.9, p < 0.01). Interestingly, when analyzing only the HPV16-

positive CC, D2 increases (OR = 2.5, 95% CI = 1.2–5, p < 0.05) and D3 decreases (OR =

0.45, 95% CI 0.2–0.9, p < 0.05) the risk to develop CC before 50 years old in relation with

A1/2 variant. These results indicated that D2 variant is associated with early and D3 with

delayed CC presentation, whereas A1/2 variant was uniformly distributed between the two

age groups.
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Introduction

Cervical cancer (CC) is the fourth most frequent cancer in women worldwide; over 500,000

new cases are identified each year, and it is the fourth cause of cancer-related death among

women in developing countries [1]. Human papillomavirus (HPV) is the main factor affecting

the development of CC [2, 3]. HPV16 is the most common viral type worldwide and is found

in approximately 50% of CC cases, followed by HPV18, HPV45, and HPV31 [3]. The inci-

dence of HPV in healthy women varies with age [4]. In most studies, HPV occurrence peaks in

young women (<25 years), and then the incidence decreases with age. In contrast, CC distri-

bution follows a standard curve, peaking at approximately 50 years of age. Therefore, half of

CC cases are diagnosed in young premenopausal women and half in postmenopausal women

[5, 6]. Most CC cases arise at 15–20 years after initial HPV infection [7]. According to the fre-

quency distribution of HPV in healthy women, this latency may explain most CC cases in

young and middle-aged women, but not the cases in women over 50 years of age [8]. These

women could have acquired HPV shortly before the disease presentation or many years prior.

In any case, these data suggest that the events leading to cervical carcinogenesis in elderly

patients may differ from those in younger patients.

The mean age of patients with CC who are positive for HPV16, 18 or 45 is lower than that

of patients infected with other HPVs [9, 10]. In a previous study in Mexico, we found that the

percent positivity of high-risk HPVs in CC cases varies with the age of the patients [9]. Three

different trends were identified, one each for HPV16, HPV18/45, and other HPVs. In the case

of HPV16, the percent positivity peaked (63.2%) at ages� 35 years of age; and then gradually

decreased until 56–60 years of age (31.1%). A second peak (52.5%) was found at 61–65 years,

which was followed by a decrease with age. The percent positivity of HPV18/45 showed a

decreasing trend from younger (19.3%) to older (>70 years, 12.8%) women. In contrast, the

percent positivity of the remaining high-risk HPVs increased from younger (15.8%) to older

(46.2%) women. These data indicate that most (>80%) CCs in young women depend on the

presence of highly oncogenic HPVs (16, 18, and 45 types) [11–14]. In contrast, nearly half of

the CC cases in older patients were associated with less oncogenic high-risk HPVs.

The bimodal trend of HPV16 positivity in CC by age [9] suggests the presence of two differ-

ent types of infection due to different viral variants, genetic or physiological changes, or differ-

ences in patient lifestyle factors. Previous findings support the hypothesis of HPV16 variants.

In Mexico, it has been shown that nearly 40% of infections by HPV16 are due to Asian–Ameri-

can lineage variants, D2 (AA-c) and D3 (AA-a), which confer a nine-fold greater risk than Eu-

ropean lineage variants A1/2 (E) for the development of CC. In addition, D2-positive patients

were, on average, 6 years younger than patients positive for A1/2 and D3 [15]. These data sug-

gest that D2 could be more aggressive and associated with younger patients, and other HPV16

variants could be associated with older patients in Mexico. To investigate whether different

HPV16 variants are associated with early or delayed presentation of CC, we conducted a case-

case study. The cases of a previously published study [9] were used for the analysis of HPV16

variants.

Materials and Methods

Patient selection and study design

The cases of a previously published cross-sectional study were used for this analysis [9]. Five hun-

dred and three patients newly diagnosed with CC (incident cases) were recruited at the Oncology

Department of the Hospital General de Mexico in Mexico City, which treats patients without

Social Security in the metropolitan area. In fact, two thirds of patients recruited in the present
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study occasionally or never have attended a screening program. Inclusion criteria were clinical

diagnosis of invasive CC at the Oncology Department, no previous treatment, born and residing

in Mexico, and Mexican ancestry of at least two generations. Patients fulfilling the inclusion crite-

ria were sequentially recruited from November 2003 to April 2005 and from January 2006 to July

2007 and represented approximately 80% of the patients diagnosed with CC during this period.

All subjects received a complete clinical evaluation by an experienced oncologist. Tumor

staging was carried out according to the International Federation of Gynecology and Obstet-

rics (FIGO) [16]. Forty-one patients were excluded because of poor-quality biological samples

or because they were confirmed to have high-grade squamous intraepithelial lesions instead of

CC by three pathologists. After exclusion, 462 CC patients remained in the study group. The

participation rate of case subjects was 95% [15, 17].

For HPV detection and typing, cervix scrapes were collected using a cytobrush on the same

day the patients were recruited. Cells were suspended in a vial containing an extraction buffer

(10 mM Tris-HCl pH 7.6, 5 mM EDTA, 150 mM NaCl, 1% SDS) and stored at −20˚C until

analysis. The percent positivity of viral variants was compared between early (� 49 years of

age; n = 233) and late (� 50 years of age; n = 229) CC presentation. The risk conferred by

HPV16 variants for the development of CC before 50 years of age was calculated by consider-

ing the old-aged patients as reference of the outcome variable. The study protocol was

approved by the Scientific and Ethics Committees of the Hospital General de Mexico (approval

number DIC/03/311/04/051), and informed written consents were obtained from all partici-

pants prior to their inclusion.

Detection and HPV typing of HPV16 variants

The frequency of HPV types, which were detected by PCR with universal primers, was previ-

ously published [9]. From the total HPV16-positive samples (n = 235) included in this analysis,

90.6% (n = 213) had a single HPV16 infection and only 9.4% (n = 22) had an additional HPV

type (double infection). HPV16 variants were detected in case specimens by polymerase chain

reaction, as previously described [15, 18], using suitable primers for E6/E7 (forward 50-ATGC
ACCAAAAGAGACTGC-30, position 083, reverse 50-TTATTGTTTCTGAGAACAGA-30, position

858), the MY region of the L1 gene (forward 50-GCACAGGGCCACAATAATGG-30, position

6584, reverse 50-CGTCCTAAAGGAAACTGATC-30, position 7035) and the LCR region (for-

ward 5’-TATTTTGGAGGACTGGAATTTT-3’, position 6829, reverse 5’-TCTGTGCATAAC
TGTGGTAACTTTCTG-3’, position 156). HPV16 variants were identified by sequencing E6,

MY, and LCR regions, as previously described [15]. Sequences were analyzed using the FASTA

sequence similarity tool [19, 20], the SeqScape software (Applied Biosystems, Foster City, CA,

USA), and the ClustalW2 alignment tool (http://www.ebi.ac.uk/Tools/msa/clustalw2/). HPV16

sequences and base positions were aligned with reference sequences of specific sublineages as

follows: NC_001526.4 [reference sequence (7906 pb), Sublineage A1], AF536179 (Sublineage

A2), AY686579 (Sublineage D2) and AF402678 (Sublineage D3). Identification of the HPV16

lineages and sublineages was based on single nucleotide variants (SNVs) of positions proposed

by Yamada et al. [21] and Burk et al. [22]. In addition, for D variant classification we specially

used the diagnostic SNPs in the LCR, positions 7507 and 7743 [23], and the MY, positions 6803

and 6862 [21]. The reproducibility of the HPV16 testing was 99.2% and that of the variant anal-

ysis was 97.6%.

Statistical analysis

Patient age results were expressed as the median and interquartile range (IQR = 25–75%), and

the Mann-Whitney U test was performed to assess the statistical significance of differences
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among the groups. A comparison of percent positivity of HPV16 variants was made among

patients with early and late CC presentation. The significance of the differences among the

groups was assessed by Pearson chi-square test or Fisher exact test. The percent positivity of

HPV16 variants was also analyzed considering 5-year intervals and the resulting trends were

analyzed by the Spearman correlation. The risk conferred by HPV16 variants (explanatory var-

iable) was calculated using a univariate logistic regression model (LRM). When all samples

were included in the analysis, the non-HPV16 cases were considered the reference of the

explanatory variable. Non-HPV16 cases included HPV-negative samples (n = 7) and samples

positive for HPVs other than HPV16 (n = 220). When only the HPV16-positive samples were

analyzed, the A1/2-positive infection was considered the reference of the explanatory variable.

The association was expressed as the odds ratio (OR) and the 95% confidence interval (CI). All

statistical tests were two-sided; differences were considered significant when p< 0.05. The sta-

tistical analyses were conducted using Sigma Plot (Systat Software, Inc., San Jose, CA, USA) or

SPSS ver. 20 software (SPSS, Inc., Chicago, IL, USA).

Results

Frequency and identification of HPV16 variants in CC

The HPV16 percent positivity in CC was 50.9% (235/462), including only European subli-

neages A1/2 (31.4%, 144/462), and Asian–American sublineages D2 (10.4%, 50/462) and D3

(9.1%, 41/462; Table 1). Therefore, AA variants represent 38.7% (91/235) of HPV16-positive

cases (Table 1). These rates were similar to those previously reported in CC [15]. We did not

find any sample positive for more than one HPV16 variant, and the distribution of HPV16 var-

iants was not different between CC positive for single HPV16 and those positive for HPV16

and another HPV type (S1 Table).

The identification of sublineages was initially done according to the method reported by

Yamada et al. [21], using the positions in the E6 and MY regions (Fig 1). Subsequently, we

confirmed these findings by analyzing the majority of the positions in E6 (n = 13) and LCR

(n = 21) proposed by Burk et al. [22] for the classification of HPV16 variants. However, we found

some interesting novelties in E6 and LCR among the AA lineages. All 13 positions in E6 of the AA

lineages in our samples were identical to those reported by Burk. However, position 183, not

included in the classification of Burk, was a variable position in the D2 but not in the D3 variant.

The majority of the D2 isolates (92.0%, 46/50) had a T (reference position) to G substitution (Fig

1) in this position, resulting in an amino acid change of isoleucine to arginine in the protein

(I27R). In LCR, all positions but one (7729) agreed with the sequences found by Burk and Yamada.

In this position, they found a change of A (reference position) to C in all D2 and D3 sublineages.

In the present study, all D3 sublineages had the same change. However, in the majority of the D2

isolates (72.0%, 36/50), this position changed from A to T instead of A to C (28.0%, 14/50).

Analysis of HPV16 variants by age

The median age of HPV16-positive patients was 49 years (IQR = 41–60). However, large varia-

tion was observed among patients according to variants. Notably, the median age of patients

positive for D2 (40, IQR = 34–52 years) was 9 and 14 years lower than that of patients positive

for A1/2 (49, IQR = 41–61 years; p< 0.002, Mann-Whitney U test) and D3 (54, IQR = 44–62

years; p< 0.001, Mann-Whitney U test), respectively (Fig 2).

The percent positivity of HPV16 variants was studied in patients who were divided into two

age groups: young patients (�49 years) and older patients (�50 years; Table 1). The percentage

of A1/2 variants was relatively constant (~31%) between the two age groups, with a small non-

significant decrease in the older group (Table 1). In contrast, the percentage of lineage D
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variants was not uniform between the groups, and the percent was inverse for D2 and D3 vari-

ants. Whereas the D2 percentage was high in young patients (15.9%) and low in old patients

(5.7%), the percentage of D3 was low in young patients (6%) and higher in old patients (11.8%;

p< 0.001, Pearson chi-square test; Table 1).

To investigate whether the different components of the HPV16 curve were associated with

specific variants, the trends in variant percentages were analyzed by considering 5-year inter-

vals (Fig 3). In the highest peak (�35 years), the percentage of D variants was higher than that

of A1/2 variants (33.3% vs. 29.8%), primarily because of the high percentage of D2 (26.3%).

The gradual decrease in HPV16 percent positivity with patient age to the 51–55 year-old inter-

val (r = 0.89, p< 0.05, Spearman correlation) was essentially due to the decrease in the D2

percentage (r = 0.94, p< 0.05; Spearman correlation), while the percentage of D3 and A1/2

remained relatively constant (~14 and ~28%, respectively) in these ranges. After the dip of

HPV16 percent positivity in the 56–60 year-old interval, which could be simply an anecdotal

Table 1. Association between HPV16 variants and early presentation of cervical cancer.

HPV16 variants Age Group: % (n) OR (95% CI) p value

�49 �50a Total

All cases

HPV16 negativeb* 45.1 (105) 53.3 (122) 49.1 (227) 1

HPV16 positive 54.9 (128) 46.7 (107) 50.9 (235) 1.4 (1–2) 0.078

A1/A2 33.0 (77) 29.3 (67) 31.2 (144) 1.3 (0.9–2) 0.176

D2 15.9 (37) 5.7 (13) 10.8 (50) 3.3 (1.7–6.6) 0.001

D3 6.0 (14) 11.8 (27) 8.9 (41) 0.6 (0.3–1.2) 0.154

Total 100 (233) 100 (229) 100 (462)

Squamous cell carcinoma

HPV16 negativeb* 46.6 (90) 54.4 (105) 50.5 (195) 1

HPV16 positive 53.4 (103) 45.6 (88) 49.5 (191) 1.4 (0.9–2) 0.127

A1/A2 35.2 (68) 30.6 (59) 32.9 (127) 1.3 (0.9–2.1) 0.195

D2 13.5 (26) 5.7 (11) 9.6 (37) 2.8 (1.3–5.9) 0.009

D3 4.7 (9) 9.3 (18) 7 (27) 0.6 (0.2–1.4) 0.213

Total 100 (193) 100 (193) 100 (386)

Adenocarcinoma

HPV16 negativeb* 37.5 (12) 51.6 (16) 44.4 (28) 1

HPV16 positive 62.5 (20) 48.4 (15) 55.6 (35) 1.8 (0.7–4.9) 0.261

A1/A2 18.8 (6) 19.4 (6) 19 (12) 1.3 (0.3–5.2) 0.678

D2 28.1 (9) 6.5 (2) 17.5 (11) 6 (1.1–33) 0.039

D3 15.6 (5) 22.6 (7) 19 (12) 1 (0.2–3.7) 0.944

Total 100 (32) 100 (31) 100 (63)

HPV16-positive casesc

A1/A2* 60.2 (77) 62.6 (67) 61.3 (144) 1

D2 28.9 (37) 12.1 (13) 21.3 (50) 2.5 (1.2–5.0) 0.013

D3 10.9 (14) 25.2 (27) 17.4 (41) 0.45 (0.2–0.9) 0.031

Total 100 (128) 100 (107) 100 (235)

Odds ratios were calculated using a logistic regression model.

Reference variable * (OR = 1), p value and 95% confidential interval are shown.

a.�50-year-old CC group was taken as reference group.

b. HPV16 negative included HPV-negative samples and samples positive for HPVs other than HPV16.

c. ORs were not statistically significant when these cases were stratified by histology (S3 Table).

doi:10.1371/journal.pone.0169315.t001
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finding due to small numbers, the percentage of A1/2, D2 and D3 remained relatively constant

(~32%, 6% and 11%, respectively) in the latter intervals.

Frequency of HPV16 variants according to tumor histology

As previously reported, most of the tumors analyzed were squamous cell carcinomas (SCC),

with a frequency of 386 (83.5%), followed by adenocarcinomas (ACC), adenosquamous cell

carcinomas (ASCC), and undifferentiated carcinomas (IND), with frequencies of 63 (13.6%), 7

(1.5%), and 6 (1.4%), respectively. The distribution of HPV16 variants was radically different

between the adenocarcinoma (ACC) and squamous cell carcinoma (SCC) groups (p< 0.001,

Pearson chi-square test; Totals in Table 1). The percentage of the D variants was higher than

that of A1/2 variants in the ACC (36.5% vs. 19%), whereas the reverse was observed in SCC

(16.6% vs. 32.9%; p< 0.001, Pearson chi-square test). This difference was more evident when

the� 49 year-old groups were compared (p< 0.01, Pearson chi-square test).

The median age of patients positive for different variants was similar between SCC and

ACC (S2 Table). In both groups, D2-positive patients were younger than patients positive for

other variants. Although the median of D2-positive patients with ACC (40, IQR: 33–49 years)

was two years lower than that of patients with SSC who were positive for this variant (42, IQR:

35–55 years), the difference was not statistically significant.

Association between HPV16 variants and early or delayed presentation

of CC

We considered the older patients (� 50 years of age) as the reference of the outcome variable

and non-HPV16 cases as the reference of the explanatory variable to investigate whether HPV16

variants are associated with early CC presentation (� 49 years of age). D2 increased 3.3-fold the

risk of developing CC before 50 years of age (OR = 3.3, 95% CI = 1.7–6.6, p< 0.001), in relation

Fig 1. Nucleotide sequence changes in E6, L1 (MY), and LCR regions from A1/2, D2 and D3 HPV16 variants. The figure shows

nucleotide changes in the E6, L1 (MY) and LCR regions which were amplified from 235 DNA isolates derived from cervical carcinomas

positive for HPV16. The nucleotide positions at which variations were observed are written vertically. Classification of HPV16 variants were

performed according to Yamada et al. [21] and Burk et al. [22]. The E6 panel shows 14 variant positions, all used by Yamada and all but one

(183) by Burk. The LCR panel shows 21 positions, all used by Burk and Yamada. The MY panel shows 14 positions that were used by Yamada.

Variant-sequence positions that do not vary in relation with the HPV16-reference sequence are marked with dashes. The number of positive

CC samples (n) is shown at the right side. The HPV16R sequence (7906 bp), listed as NC_001526.4 in GenBank, was used as the reference

sequence for all the alignments. The reference sequences used to classify the specific sublineages were as follows: NC_001526.4 (Sublineage

A1), AF536179 (Sublineage A2), AY686579 (Sublineage D2) and AF402678 (Sublineage D3). In addition, for D variant classification we

specially used the diagnostic SNPs in the LCR, positions 7507 and 7743 [23], and the MY, positions 6803 and 6862 [21].

doi:10.1371/journal.pone.0169315.g001
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with non-HPV16 cases. Considering SCC and ACC cases separately (Table 1), this risk was

higher for ACC (OR = 6, 95% CI = 1.1–33, p< 0.05) than for SCC (OR = 2.8, 95% CI = 1.3–5.9,

p< 0.01). In contrast, A1/2 and D3 were not associated with any increased risk to develop CC

before 50 years of age in relation with non-HPV16 cases.

When we assessed only HPV16-positive CC cases and considered the A1/2 variant as the

reference of the explanatory variable, D2 increased (OR = 2.5, 95% CI = 1.2–5, p< 0.05) and

D3 decreases (OR = 0.45, 95% CI 0.2–0.9, p < 0.05) the risk to develop CC before 50 years old

(Table 1). When we analyzed the risk with the opposite group as the reference (� 49-year

group), D3 increased the risk to develop CC after 49 years old (OR = 2.2, 95% CI 1.1–4.6,

p< 0.05). However, when the HPV16-positive cases were stratified by histology, the ORs were

not statistically significant (S3 Table).

Discussion

In this study, we demonstrated that HPV16 variants were associated differently between

young and older women with CC. D2 was found to be associated with younger patients (� 49

Fig 2. Age distribution of CC patients classified by HPV16 variants. Box plots show the age distribution of patients

classified by HPV16 variant. The upper and lower boundaries of the boxes represent the 75th and 25th percentiles,

respectively. The black and dotted lines within the boxes represent the median and mean values, respectively, and the

whiskers represent the minimum and maximum values that lie within 1.5× the interquartile range from the end of the

box. Values outside this range are represented by black circles. The statistical significance for the differences in the

median age between the D2 group and the other groups was determined by the Mann-Whitney U Test. The box labeled

as HPV16 negative includes samples positive for HPVs other than HPV16 (n = 220) and HPV-negative samples (n = 7).

*p < 0.001, **p < 0.002.

doi:10.1371/journal.pone.0169315.g002
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years) and D3 with older patients (� 50 years), whereas A1/2 was uniformly distributed

between the two age groups.

The lineage D and A genomes differ by approximately 1% [22], although for some genes

such as E2 [24], they differ by up to 2%. This difference in the genome is sufficiently large to

expect functional changes between two biological entities. In fact, biological differences

regarding cellular transformation have been reported between lineage D and A [25, 26, 27].

However, D2 and D3 are highly similar, differing only by a few bases. Experimental evidence

can help to explain the mechanisms facilitating D2-mediated development of invasive cancer

in a considerably short period. The binding of the E2 protein from lineage A variants to the

four E2-binding sites within HPV LCRs diminishes the expression of E6 and E7 [28]. How-

ever, in comparative in vitro experiments, E2 of the D2 variant, in contrast to E2 of the A1/2

variant, did not significantly repress the transcription of the E6 and E7 oncogenes [29]. Fur-

thermore, the D2 control region (LCR) is less susceptible to repression by the E2 protein based

on in vitro experiments [30]. If this occurs in vivo, the expression of viral oncogenes in D2

infections can occur immediately after infection, as no E2 protein represses the viral LCR. In

contrast, in lineage A infections, the progression to more advanced stages may take place more

slowly, as the transcription of the E6 and E7 oncogenes is repressed by the E2 protein [29, 31].

Lineage A variants lose the E2 gene during viral integration into the tumor genome more fre-

quently than D2 and D3 variants [18, 24, 29, 32]. However, this appears to occur rather late in

the process of tumor development [33, 34]. Based on comparative in vitro experiments, the E2

protein of D3, which differs in five positions with the E2 protein of D2, represses the expres-

sion of viral oncogenes similar to the E2 protein of lineage A variants [29]. Therefore, similar

to the lineage A variants, this could also explain the delay in CC progression.

Another factor that could be involved in the age presentation of the disease is the number

of viral copies in the tumor [35, 36]. In almost all CCs, lineage D variants retain the E1/E2
genes and the viral load is very high; on average, twice the load present in lineage A infected

tumors [24]. As the viral load increases, the expression of viral oncogenes increases linearly

Fig 3. Percent positivity of HPV16 variant by 5-year age intervals. The figure shows the percentage of HPV16

infections as a whole and as segregated by lineages D (D2 and D3) and A (A1/2) based on 5-year age intervals for all CC

patients (n = 462). The decrease in HPV16 and D2 percent positivity with patient age to the 51–55 year-old interval were

statistically significant (p < 0.05, Spearman correlation). The HPV16+ plot has already been published in a previous paper

[9], but it was included as a reference for the trend of HPV16 variants.

doi:10.1371/journal.pone.0169315.g003
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[29]. However, this seems to not be a key factor in the timing of CC development, since D3

also has a high viral load. By contrast, the E6 oncogene of lineage D variants has more immor-

talizing, transforming and tumorigenic abilities than E6 of lineage A variants [25, 26, 27].

These increased abilities have been explored using the E6 gene of D3. Since D2 and D3 share

the mutations Q14H, H78Y and L83V in E6 [22, 37], which are related to binding and degra-

dation of p53, we assumed that D2 also has these abilities. However, it is not known whether

the other change in E6 (I27R), exclusively found in D2 and related to T cell epitopes [38],

could have contributed to the differences in the risk and age of CC presentation associated

with this virus in this study. This change, found in 92% of the D2-positive CCs explored in this

study, has been rarely reported in other studies due to the very low occurrence of D2 [23, 39,

40, 41].

The first peak of HPV16 percentage (� 35-year interval) clearly results from the high fre-

quency of D2 in those patients. Although few studies have examined the changes in HPV16

percent positivity by age in women with CC, the frequency of HPV16/18 is high in younger

women throughout the world [42]. However, because D2 does not exist or is very rare outside

Mexico and perhaps other Latin American countries [22], other HPV16 variants may contrib-

ute to such high frequency in most countries.

The percentages of D2 and D3 variants in this cancer series were similar to those reported

in our previous study [15]. The populations analyzed in each study were different. In the first

study, we analyzed women with Social Security, whereas in the present study, patients did not

have any Social Security; therefore, in principle, these patients were much poorer than those in

the former study. There is molecular evidence that the poorest Mexican population has a

much greater Amerindian genetic component than the middle and upper classes [43]. The D

lineage was not generated in America, it is too old. Recent paper on HPV16 evolution [44] sug-

gests that a D variant ancestor was evolved before the early settlers of America crossed the

Bering Strait. However, the origin of D2 and D3 variants is not completely clear, because the

distribution of these variants around the world is different. Whereas the D2 distribution is by

far more common in America [21, 22], D3 has a global distribution [40]. Furthermore, it is

quite interesting that the population studied has a unique nucleotide at position 7729 (T) in

D2, possibly representing a founder variant that has spread in Mexico. The examination of

HPV16 variants in more countries may reveal the origin of these variants. To determine how

the frequency of lineage D variants is related to the Amerindian genetics, it will be necessary to

conduct a detailed study involving admixture mapping [45].

The D2 frequency decreased beginning at 35 years of age (26%) until 50 years of age (4%),

with frequencies remaining uniformly low at older ages. This decline may be related to pre-

menopause, suggesting that D2 is susceptible to hormonal influences. Inferring a causal associ-

ation between hormones and HPV infection is difficult [46]. However, consensus sequences in

LCR, including some associated with hormonal response, have several mutated sites in lineage

D variants. One of them (A7729T), located in a putative glucocorticoid response element

(GRE) binding site [47, 48, 49], is detected mostly in the LCR of D2. Whether this change

could be involved in hormonal response and with the shorter development of CC is not

known.

Finally, it can be stated that one of the strengths of this study was the large number of

HPV16-associated CC cases positive for lineage D that were analyzed, especially those positive

for D2. Considering this, in this case-case study, we have statistically proved the higher risk con-

ferred by D2 for the development of CC before 50 years of age, both in SCC and ACC, as com-

pared to the older-aged group. However, to compare the risk that these HPV16 variants confer

for the development of the disease between infected and uninfected women of different ages, it

is necessary to conduct a case-control study. Since the incidence of D2 and D3 infections in
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healthy women is very uncommon, a large control group is required to make a robust analysis

considering age stratification.
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Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic Classification of Human

Papillomavirus Types Associated with Cervical Cancer. N Engl J Med. 2003; 348:518–27 doi: 10.1056/

NEJMoa021641 PMID: 12571259

4. Franceschi S, Herrero R, Clifford GM, Snijders PJ, Arslan A, Anh PT, et al. Variations in the age-specific

curves of human papillomavirus prevalence in women worldwide. Int J Cancer. 2006; 119(11):2677–84.

doi: 10.1002/ijc.22241 PMID: 16991121

5. Bruni L, Barrionuevo-Rosas L, Serrano B, Brotons M, Albero G, Cosano R, et al. ICO Information Cen-

tre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the

World. Summary Report 2014-02-20. Accessed: www.hpvcentre.net/statistics/reports/XWX.pdf.

6. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of

human papillomavirus and related diseases. Vaccine. 2012; 30:F12–F23. doi: 10.1016/j.vaccine.2012.

07.055 PMID: 23199955

7. Chan PK, Chang AR, Yu MY, Li WH, Chan MY, Yeung AC, et al. Age distribution of human papillomavi-

rus infection and cervical neoplasia reflects caveats of cervical screening policies. Int J Cancer. 2010;

126(1):297–301. doi: 10.1002/ijc.24731 PMID: 19588497

8. Castle PE, Schiffman M, Herrero R, Hildesheim A, Rodriguez AC, Bratti MC, et al. A prospective study

of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica.

J Infect Dis. 2005; 191(11):1808–16. doi: 10.1086/428779 PMID: 15871112
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39. Huertas-Salgado A, Martı́n-Gámez DC, Moreno P, Murillo R, Bravo MM, Villa L, et al. E6 molecular vari-

ants of human papillomavirus (HPV) type 16: an updated and unified criterion for clustering and nomen-

clature. Virology. 2011; 410(1):201–15. doi: 10.1016/j.virol.2010.10.039 PMID: 21130481

Human Papillomavirus 16 Variants and Cervical Cancer Presentation

PLOS ONE | DOI:10.1371/journal.pone.0169315 December 30, 2016 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/9032384
http://dx.doi.org/10.1016/j.virol.2013.07.018
http://www.ncbi.nlm.nih.gov/pubmed/23998342
http://dx.doi.org/10.1128/JVI.00483-12
http://www.ncbi.nlm.nih.gov/pubmed/22491459
http://www.ncbi.nlm.nih.gov/pubmed/10508478
http://dx.doi.org/10.1128/JVI.01512-12
http://www.ncbi.nlm.nih.gov/pubmed/22951839
http://dx.doi.org/10.1038/onc.2010.93
http://www.ncbi.nlm.nih.gov/pubmed/20383192
http://dx.doi.org/10.1371/journal.pone.0101540
http://www.ncbi.nlm.nih.gov/pubmed/24983759
http://dx.doi.org/10.1016/j.virol.2014.08.022
http://www.ncbi.nlm.nih.gov/pubmed/25222147
http://dx.doi.org/10.1099/vir.0.19317-0
http://www.ncbi.nlm.nih.gov/pubmed/15166426
http://dx.doi.org/10.1128/JVI.79.10.5914-5922.2005
http://dx.doi.org/10.1128/JVI.79.10.5914-5922.2005
http://www.ncbi.nlm.nih.gov/pubmed/15857977
http://dx.doi.org/10.1002/jmv.23792
http://dx.doi.org/10.1002/jmv.23792
http://www.ncbi.nlm.nih.gov/pubmed/24150786
http://www.ncbi.nlm.nih.gov/pubmed/1846186
http://dx.doi.org/10.1371/journal.pone.0097588
http://www.ncbi.nlm.nih.gov/pubmed/24992025
http://dx.doi.org/10.1016/j.ygyno.2003.11.035
http://www.ncbi.nlm.nih.gov/pubmed/14984955
http://dx.doi.org/10.1158/1055-9965.EPI-09-0025
http://dx.doi.org/10.1158/1055-9965.EPI-09-0025
http://www.ncbi.nlm.nih.gov/pubmed/19861526
http://dx.doi.org/10.1002/jmv.23487
http://www.ncbi.nlm.nih.gov/pubmed/23280876
http://dx.doi.org/10.1016/j.virol.2006.01.038
http://www.ncbi.nlm.nih.gov/pubmed/16519914
http://dx.doi.org/10.1002/ijc.24322
http://www.ncbi.nlm.nih.gov/pubmed/19358280
http://dx.doi.org/10.1016/j.virol.2010.10.039
http://www.ncbi.nlm.nih.gov/pubmed/21130481


40. Tornesello ML, Losito S, Benincasa G, Fulciniti F, Botti G, Greggi S, et al. Human papillomavirus (HPV)

genotypes and HPV16 variants and risk of adenocarcinoma and squamous cell carcinoma of the cervix.

Gynecol Oncol. 2011; 121(1):32–42. doi: 10.1016/j.ygyno.2010.12.005 PMID: 21211829

41. Badano I, Totaro ME, Culasso AC, Sanabria DJ, Schurr TG, Balette IC, et al. Genetic characterization

and clinical implications of human papillomavirus type 16 (HPV16) variants from northeastern Argen-

tina. Infect Genet Evol. 2015; 29:103–9. doi: 10.1016/j.meegid.2014.11.013 PMID: 25461847

42. Hammer A, Rositch A, Qeadan F, Gravitt PE, Blaakaer J. Age-specific prevalence of HPV16/18 geno-

types in cervical cancer: A systematic review and meta-analysis. Int J Cancer. 2016; 138(12):2795–

803. doi: 10.1002/ijc.29959 PMID: 26661889

43. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, Quinto-Sanchez M, Jaramillo C, Arias W, et al. Admixture

in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on

7,342 individuals. PLoS Genet. 2014; 10(9):e1004572. doi: 10.1371/journal.pgen.1004572 PMID:

25254375

44. Badano I, Totaro ME, Culasso ACA, Sanabria DJ, Schurr TG, Balette IC et al. Genetic characterization

and clinical implications of human papillomavirus type 16 (HPV16) variants from northeastern Argen-

tina. Infect Genet Evol. 2015; 29:103–9. doi: 10.1016/j.meegid.2014.11.013 PMID: 25461847

45. Goetz LH, Uribe-Bruce L, Quarless D, Libiger O, Schork NJ. Admixture and clinical phenotypic varia-

tion. Hum Hered. 2014; 77(1–4):73–86. doi: 10.1159/000362233 PMID: 25060271

46. Moodley M, Sewart S, Herrington CS, Chetty R, Pegoraro R, Moodley J. The interaction between ste-

roid hormones, human papillomavirus type 16, E6 oncogene expression, and cervical cancer. Int J

Gynecol Cancer. 2003; 13(6):834–42. PMID: 14675321

47. Chansaenroj J, Theamboonlers A, Junyangdikul P, Swangvaree S, Karalak A, Poovorawan Y. Whole

genome analysis of human papillomavirus type 16 multiple infection in cervical cancer patients. Asian

Pac J Cancer Prev. 2012; 13(2):599–606. PMID: 22524831

48. Gurgel AP, Chagas BS, do Amaral CM, Nascimento KC, Leal LR, Silva Neto Jda C, et al. Prevalence of

human papillomavirus variants and genetic diversity in the L1 gene and long control region of HPV16,

HPV31, and HPV58 found in North-East Brazil. Biomed Res Int. 2015;130828. doi: 10.1155/2015/

130828 PMID: 25793187

49. Pientong C, Wongwarissara P, Ekalaksananan T, Swangphon P, Kleebkaow P, Kongyingyoes B, et al.

Association of human papillomavirus type 16 long control region mutation and cervical cancer. Virol J.

2013; 10:30. doi: 10.1186/1743-422X-10-30 PMID: 23343096

Human Papillomavirus 16 Variants and Cervical Cancer Presentation

PLOS ONE | DOI:10.1371/journal.pone.0169315 December 30, 2016 13 / 13

http://dx.doi.org/10.1016/j.ygyno.2010.12.005
http://www.ncbi.nlm.nih.gov/pubmed/21211829
http://dx.doi.org/10.1016/j.meegid.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25461847
http://dx.doi.org/10.1002/ijc.29959
http://www.ncbi.nlm.nih.gov/pubmed/26661889
http://dx.doi.org/10.1371/journal.pgen.1004572
http://www.ncbi.nlm.nih.gov/pubmed/25254375
http://dx.doi.org/10.1016/j.meegid.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25461847
http://dx.doi.org/10.1159/000362233
http://www.ncbi.nlm.nih.gov/pubmed/25060271
http://www.ncbi.nlm.nih.gov/pubmed/14675321
http://www.ncbi.nlm.nih.gov/pubmed/22524831
http://dx.doi.org/10.1155/2015/130828
http://dx.doi.org/10.1155/2015/130828
http://www.ncbi.nlm.nih.gov/pubmed/25793187
http://dx.doi.org/10.1186/1743-422X-10-30
http://www.ncbi.nlm.nih.gov/pubmed/23343096

