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Head andneck squamous cell carcinoma (HNSCC) is a heterogeneous diseasewith

significant mortality and frequent recurrence. Prior efforts to transcriptionally

classify HNSCC into groups of varying prognoses have identified four accepted

molecular subtypes of the disease: Atypical (AT), Basal (BA), Classical (CL), and

Mesenchymal (MS). Here, we investigate the active enhancer landscapes of these

subtypes using representative HNSCC cell lines and identify samples belonging to

the AT subtype as having increased enhancer activity compared to the other

3 HNSCC subtypes. Cell lines belonging to the AT subtype are more resistant to

enhancer-blocking bromodomain inhibitors (BETi). Examination of nascent

transcripts reveals that both AT TCGA tumors and cell lines express higher

levels of enhancer RNA (eRNA) transcripts for enhancers controlling BETi

resistance pathways, such as lipid metabolism and MAPK signaling. Additionally,

investigation of higher-order chromatin structure suggests more enhancer-

promoter (E-P) contacts in the AT subtype, including on genes identified in the

eRNAanalysis. Consistently, knownBETi resistance pathways are upregulated upon

exposure to these inhibitors. Together, our results identify that the AT subtype of

HNSCC is associated with higher enhancer activity, resistance to enhancer

blockade, and increased signaling through pathways that could serve as future

targets for sensitizing HNSCC to BET inhibition.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

sixth most common cancer worldwide and the predominant

form of head and neck cancer (Marur et al., 2010; Zhou et al.,

2016). In the United States, over 60,000 new HNSCC cases and

more than 13,000 HNSCC deaths are reported per year (Zhou

et al., 2016). HNSCC covers a wide variety of anatomical sites,

including the oral cavity, oropharynx, hypopharynx, and larynx

(Forastiere et al., 2001). The prognosis for HNSCC is overall poor

with a 5-year survival of approximately 50%, which has remained

relatively unchanged for decades (Marur et al., 2010). This is

largely attributed to factors such as late stage at initial

presentation and high rates of primary tumor recurrence

(Bonner et al., 2006; Pickering et al., 2013). Treatment for

HNSCC involves combinations of surgery, chemotherapy, and

radiotherapy, with exact treatment plans depending on tumor

location and TNM stage (Marur et al., 2010; Zhou et al., 2016).

To date, studies on HNSCC have focused largely on genomic

characterizations such as exome sequencing and copy number

alterations. The most common alterations, such as mutations in

TP53 at 17p13 and alterations in p16 at 9p21, have been known

for decades (Forastiere et al., 2001; Zhou et al., 2016). More

recent comprehensive analyses of HNSCC tumors have

supported these previous findings, in addition to identifying

common alterations in the Notch1 pathway and cell cycle

genes (Agrawal et al., 2011; Pickering et al., 2013; Cancer

Genome Atlas, 2015). Unfortunately, very few of these studies

have resulted in clinically actionable findings. There are,

however, some disputed exceptions, such as the EGFR

inhibitor cetuximab, which showed benefit when combined

with radiotherapy (Bonner et al., 2006).

One interesting result of these and other studies is the notion

of molecular subtypes of disease. Inspired by similar studies in

other tumors such as breast, lung, and brain, transcriptomic data

from patient samples was used to classify head and neck tumors

into 4 subtypes: Atypical (AT), Basal (BA), Classical (CL), and

Mesenchymal (MS) (Chung et al., 2004; Walter et al., 2013;

Cancer Genome Atlas, 2015). These studies have largely focused

on the relationship of these subtypes to genomic alterations, such

as mutation patterns, copy number changes, or alterations in key

transcription factor expression, and clinical features, such as

progression free survival and lymph node metastasis at time

of diagnosis. However, there have been very few studies

describing the epigenomic features of the subtypes. The

importance of chromatin modification states in HNSCC is

further evidenced by the finding that global levels of certain

histone tail modifications correlate with clinical measurements

such as tumor stage, cancer-specific survival, and disease-free

survival in oral squamous cell carcinoma (Chen et al., 2013).

Because there are currently only a sparse number of HNSCC

epigenomics datasets, particularly in the realm of histone

modifications and chromatin regulation, there remains an

unmet need to investigate these aspects of gene regulation and

leverage newly discovered biology to better define the disease and

develop new therapeutic approaches (Castilho et al., 2017;

Serafini et al., 2020).

Since HNSCC subtypes are defined by their transcriptomic

signatures, it stands to reason they would also have unique

epigenomic features, such as enhancer landscapes, that may,

in part, be driving the defining transcriptomic signatures.

Through mapping of H3K27ac-marked active enhancers in

28 HPV-negative HNSCC cell lines, we demonstrate that the

AT subtype is characterized by high enhancer activity.

Consistently, the AT subtype was associated with resistance to

enhancer-blocking bromodomain inhibitors (BETi). BETi

resistance pathways specifically showed high enhancer activity

as measured by nascent enhancer RNAs (eRNAs) and enhancer-

promoter contacts, providing mechanistic insights into the

aggressive nature of the AT subtype. Overall, our data

suggests high enhancer activity as an epigenetic feature of

atypical HNSCCs.

Methods

Cell culture

Human HNSCC cell lines were acquired and characterized as

previously described (Zhao et al., 2011). Briefly, cell lines were

cultured in DMEM supplemented with 10% FBS, L-glutamine,

sodium pyruvate, nonessential amino acids, vitamins, and 1%

penicillin-streptomycin. All cell lines were cultured at 37°C in an

atmosphere of 5% CO2.

RNA-Sequencing processing and analysis

RNA-seq data for cell line subtype assignments were

obtained as raw counts, processed as previously described

(data available at GEO accession GSE122512) (Kalu et al.,

2017; Gleber-Netto et al., 2019). To assign HNSCC cell lines

to their representative subtypes, we used the HNSCC gene list

templates generated by Yu et al. (Yu et al., 2019) and utilized the

CMScaller workflow and implementation of the NTP algorithm

to find the closest matching subtype for each cell line (FDR <0.1)
based on their transcriptomic profiles (Hoshida, 2010; Eide et al.,

2017). Upregulated genes for each subtype were computed using

CMScaller in a one-vs-rest fashion.

For the PLX51107 treatment RNA-seq experiments,

representative cell lines were selected for the AT subtype

(HN4) and a non-AT subtype (MDA1186, CL subtype) and

treated with DMSO, GR50 of the MDA1186, or GR50 of HN4 for

24 h prior to RNA isolation. RNA extraction was performed

using an RNeasy Mini Kit per manufacturer’s instructions

(Qiagen). Isolation of mRNA was performed using NEBNext
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Poly(A) mRNA Magnetic Isolation Module and libraries were

prepared using the NEBNext Ultra II Directional RNA Library

Prep kit (New England BioLabs). Library quality was checked on

an Agilent TapeStation 4150 and quantified by Qubit

2000 fluorometer (Invitrogen). Libraries were pooled in

equimolar ratios and sequenced on Illumina NovaSeq6000 SP

runs with paired-end 100-bp reads at The Advanced Technology

Genomics Core (ATGC) at MD Anderson Cancer Center.

PLX51107 treatment RNA-seq raw reads were processed using

the provided pipeline: https://github.com/sccallahan/QUACKERS_

RNAseq-pipeline. In brief, raw readswere aligned to the hg19 genome

using STAR v2.7.2b (Dobin et al., 2013) and quality checked using

FastQC v0.11.8 (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Counts were generated using featureCounts from

subread v1.6.3 80 (Liao et al., 2013). Downstream normalization and

differential expression analysis were performed using DESeq2, with

size factors being calculated using data-driven housekeeping gene

method as implemented in the CustomSelection R package (Love

et al., 2014; Dos Santos et al., 2020). Pathway enrichment analyses

were performed using GSEA’s pre-ranked list option (Subramanian

et al., 2005). Overlaps of HN4 and MDA1186 low dose

PLX51107 differentially expressed genes were performed using the

VennDiagram package in R, and the HN4 uniquely upregulated gene

list was subjected to pathway enrichment analysis using the gsea-

msigdb online tool (http://www.gsea-msigdb.org/gsea/msigdb/

annotate.jsp).

CCLE RNA-seq data were downloaded as raw counts from

the DepMap download portal (https://depmap.org/portal/

download/). Subtype assignment and downstream analysis

were carried out as above.

Whole exome sequencing processing and
analysis

Whole exome sequencing (WES) data was processed as

previously described and obtained as a MAF file from the

authors (Kalu et al., 2017; Gleber-Netto et al., 2019). To

cluster the cell lines based on mutation background, all

mutation calls were binarized to 1 or 0 to represent “mutated”

or “not mutated,” respectively. The Jaccard distance matrix was

then computed, and the resulting matrix was clustered using

Ward’s minimum variance method. Total mutational burden

was calculated by summing the number of mutations per sample,

then grouping the samples based on their assigned molecular

subtype. Data for cell line tissue of origin and “source” were

obtained as previously described (Zhao et al., 2011).

ChIP-Sequencing processing and analysis

ChIP assays were performed as described previously

(Terranova et al., 2018). Briefly, approximately 2 × 107 cells

were harvested by scraping. Samples were cross-linked with 1%

(wt/vol) formaldehyde for 10 min at 37°C with shaking. After

quenching with 150 mM glycine for 5 min at 37°C with shaking,

cells were washed twice with ice-cold PBS and frozen at −80°C

for further processing. Cross-linked pellets were thawed and

lysed on ice for 30 min in ChIP harvest buffer (12 mM Tris-Cl,

1 × PBS, 6 mM EDTA, 0.5% SDS) with protease inhibitors

(Sigma). Lysed cells were sonicated with a Bioruptor

(Diagenode) to obtain chromatin fragments (~200–500 bp)

and centrifuged at 15,000 × g for 15 min to obtain a soluble

chromatin fraction. In parallel with cellular lysis and sonication,

antibodies (5 μg/3 × 106 cells) were coupled with 30 μL of

magnetic protein G beads in binding/blocking buffer (PBS

+0.1% Tween +0.2% BSA) for 2 h at 4°C with rotation. The

antibody used for ChIP was anti-H3K27ac (Abcam; ab4729).

Soluble chromatin was diluted five times using ChIP dilution

buffer (10 mM Tris-Cl, 140 mMNaCl, 0.1% DOC, 1% Triton X,

1 mM EDTA) with protease inhibitors and added to the

antibody-coupled beads with rotation at 4°C overnight. After

washing, samples were treated with elution buffer (10 mM Tris-

Cl, pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.5% SDS), RNase A,

and Proteinase K, and cross-links were reversed overnight at

37°C. Immune complexes were then washed five times with cold

RIPA buffer (10 mM Tris–HCl, pH 8.0, 1 mM EDTA, pH 8.0,

140 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.1% DOC), twice

with cold high-salt RIPA buffer (10 mM Tris–HCl, pH 8.0,

1 mM EDTA, pH 8.0, 500 mM NaCl, 1% Triton X-100, 0.1%

SDS, 0.1% DOC), and twice with cold LiCl buffer (10 mM

Tris–HCl, pH 8.0, 1 mM EDTA, pH 8.0, 250 mM LiCl, 0.5%

NP-40, 0.5% DOC). ChIP DNA was purified using SPRI beads

(Beckman Coulter) and quantified using the Qubit 2000

(Invitrogen) and TapeStation 4150 (Agilent). Libraries for

Illumina sequencing were generated following the New

England BioLabs (NEB) Next Ultra DNA Library Prep Kit

protocol. Amplified ChIP DNA was purified using double-

sided SPRI to retain fragments (~200–500 bp) and quantified

using the Qubit 2000 and TapeStation 4150 before

multiplexing.

Raw fastq reads for all ChIP-seq experiments were

processed using a Snakemake based pipeline https://github.

com/crazyhottommy/pyflow-ChIPseq. Briefly, raw reads were

first processed using FastQC and uniquely mapped reads were

aligned to the hg19 reference genome using Bowtie version 1.

1.2 (Langmead et al., 2009). Duplicate reads were removed

using SAMBLASTER (Faust and Hall, 2014) before

compression to bam files. To directly compare ChIP-seq

samples, uniquely mapped reads for each mark were

downsampled per condition to 15 million, sorted, and

indexed using samtools version 1.5 (Li et al., 2009). To

visualize ChIP-seq libraries on the IGV genome browser,

we used deepTools version 2.4.0 (Ramirez et al., 2016) to

generate bigWig files by scaling the bam files to reads per

kilobase per million (RPKM) and WiggleTools (Zerbino et al.,
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2014) to create average profile plots for each molecular

subtype.

Peak overlaps were performed by first generating consensus

peak files for each subtype, defined as any peak found in at least

2 samples from the subtype. The resulting 4 peaksets (one per

subtype) were then used as input for intervene’s (Khan and

Mathelier, 2017) upset module to generate upset plots and

common/unique peaksets for further analysis. Gene linkage

was performed using previously published enhancer-promoter

linkage data from Cao et al. (Cao et al., 2017), and the resulting

gene list was used as input for pathway enrichment analysis using

the gsea-msigdb online tool. Enrichment plots were generated

using two definitions of common peaks. The first method uses

DiffBind (Stark and Brown, 2020) (https://bioconductor.org/

packages/release/bioc/html/DiffBind.html) to define a peakset

using any peak found in at least 2 samples, irrespective of

subtype. The second uses the peaks found in all subtypes

when overlapped using the intervene package mentioned

previously. Both resulting peaksets were used as input for ngs.

plot (Shen et al., 2014) to generate figures.

Drug response assays

Cell confluence and proliferation were measured using the

IncuCyte ZOOM system (Essen Biosciences). For each cell line,

seeding density was optimized such that the cells would be in

their exponential growth phase for the duration of drug

treatment. On day 0, cells were seeded into 96 well plates and

left in the incubator overnight. On day 1, media containing either

drug (PLX51107 or OTX015) or DMSO was added to the wells.

Plates were then left in the IncuCyte ZOOM with treated media

for 72 h, at which point cell confluence was measured. Each assay

was performed in biological duplicate with technical triplicate

wells. Drug response metrics were calculated using GR metrics

(Hafner et al., 2016) using cell confluence as a proxy for growth

rate, and GRAOC values from each cell line were combined based

on their molecular subtype for statistical analysis.

CCLE drug response data were downloaded and processed

using the PharmacoGx “auc_recomputed” dataset (Smirnov

et al., 2016). Compounds which were missing data for more

than 25% of samples were excluded. For the JQ1 analysis,

1 sample was missing data and was imputed using predictive

mean matching [as implemented in the mice package (Buuren

and Groothuis-Oudshoorn, 2011) (https://www.jstatsoft.org/

article/view/v045i03)] on the complete, filtered drug response

matrix.

PRO-Seq processing and eRNA analysis

Extraction of nuclei and precision run-on reaction was

carried out as described previously (Mahat et al., 2016).

Nuclei were isolated from approximately 10 million cells after

treating with 12 ml of ice-cold swelling buffer (10 mM Tris-HCl

pH 7.5, 2 mMMgCl2, 3 mM CaCl2) for 10 min and scraping out

the cells. After spinning at 600 × g for 10 min at 4°C, the

supernatant was removed and the cells were lysed in 10 ml of

lysis buffer (10 mM Tris-HCl pH 7.5, 2 mM MgCl2, 3 mM

CaCl2, 10% glycerol, 0.5% NP-40, 4 U/ml SUPERase

inhibitor) on ice for 5 min. The lysate was spun at 600 × g for

8 min and the nuclei were collected. The nuclei were then

resuspended in 1 ml of freezing buffer (50 mM Tris-HCl

pH 8.0, 5 mM MgCl2, 0.1 mM EDTA, 40% glycerol) and spun

at 900 × g for 10 min. For performing precision nuclear run-on

reaction, nuclei were resuspended in 100 µL of freezing buffer

and added to 100 µL of NRO-reaction mix - NRO-reaction buffer

(10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 300 mM KCl), 1 mM

DTT, 100 U/ml SUPERase-In, 1% Sarkosyl, 250 M ATP, 250 M

GTP, 50 M biotin-11-UTP, 50 M biotin-11-CTP. Reaction was

carried out at 29°C for 4 min. RNA was extracted using TRIzol.

Base hydrolysis was carried out by heat denaturing briefly at 65°C

for 40 s following by cooling on ice and treatment with 1NNaOH

for 6 min on ice. The sample with fragmented RNA was

neutralized with 1 M Tris-HCl pH 6.8 and isolated by passing

through P-30 column (Biorad, #732-6250). The NRO-reaction

products containing biotinylated RNA was purified using

Streptavidin C1 beads which were washed thrice with wash

buffer (0.1 N NaOH, 50 mM NaCl) and twice with 100 mM

NaCl. The washed beads were resuspended in binding buffer

(10 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.1% Triton X-100)

and added to the sample and incubated at room temperature for

30 min on a rotator. After removing the supernatant using a

magnetic stand, beads were washed twice with high salt wash

buffer (50 mM Tris-HCl pH 7.4, 2 M NaCl, 0.5% Triton X-100),

once with low salt wash buffer (10 mMTris-HCl pH 7.4, 300 mM

NaCl, 0.1% Triton X-100) and twice with no salt wash buffer

(5 mM Tris-HCl pH 7.4, 0.1% Triton X-100). Beads were then

resuspended in TRIzol and RNA was extracted. The bead

purification of biotinylated RNA was performed once more,

and RNA was extracted using TRIzol to improve the purity of

the sample.

Libraries were generated based on previously described

protocol (Van Nostrand et al., 2016). Isolated RNA samples

were dephosphorylated by FastAP (ThermoFisher) and

T4 Polynucleotide kinase (NEB). Samples were cleaned up

using MyONE Silane beads and RNA was isolated with RLT

buffer (Qiagen). To the eluted RNA, a barcoded RNA adapter

(RiL19) was ligated to the 3′ end using T4 RNA ligase (NEB). The

3′ adaptor ligated RNA was again cleaned up as mentioned

above. RNA was then reverse transcribed with AR17 primer and

AffinityScript reverse transcriptase (Agilent). cDNA was then

cleaned up by treating with ExoSAP-IT (Affymetrix) to remove

excess oligonucleotides. Excess RNA was removed from cDNA

by treating with 1 M NaOH at 70°C for 12 min and neutralizing

with 1 M HCl. cDNA was then cleaned up with MyONE Silane
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beads and RLT buffer and eluted in 5 mM Tris-Cl, pH 7.5. A

second 5′adaptor (rand3Tr3) was ligated to cDNA with T4 RNA

ligase in an overnight reaction at room temperature. The adaptor

ligated cDNA was then cleaned up with MyONE Silane beads

and RLT buffer and eluted in 10 mM Tris-Cl, pH 7.5. cDNA

samples were then PCR amplified using NEBNext® Ultra™ II Q5®

Master Mix multiplexing was done with D50X and D70X

primers. Libraries were size selected and purified using SPRI

beads. Final libraries were quantified using D1000 tapestation

and Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific)

and sequenced using NovaSeq6000 with 100 nt paired-end

format.

Fastq files from precision nuclear run-on sequencing (PRO-

seq) experiments were processed using the previously described

PEPPRO pipeline (Smith et al., 2021). Briefly, fastq files first

undergo pre-processing steps of adapter removal, read

deduplication, read trimming, and reverse complementation.

The resulting files are then “pre-aligned” to the human rDNA

genome to siphon off these unwanted reads. The rDNA-removed

files are then aligned to the human hg19 genome using bowtie2

(Langmead and Salzberg, 2012). After quality control assessment,

5 samples from the AT subtype (representing the 3 unique cell

lines used in the drug response assays) and 3 samples from the CL

subtype (representing the 2 unique cell lines used in the drug

response assays) were carried forward for further analysis. The

aligned, sorted bam files for these samples were used as input for

downstream analysis using the previously described NRSA

downstream analysis pipeline (Wang et al., 2018). In brief,

NRSA uses bidirectional transcription in intergenic regions to

identify and call enhancers/eRNAs. A raw counts table for these

eRNAs is then generated and fed into the DESeq2 tool for

differential expression analysis. Identified enhancers are

assigned to their nearest genes to generate a list of genes with

upregulated eRNA expression in the AT subtype, which was then

used as input for pathway enrichment analysis.

TCGA RPKM expression levels of numerous eRNAs from

typical enhancers were downloaded from publicly available

datasets (https://bioinformatics.mdanderson.org/Supplements/

Super_Enhancer/TCEA_website/parts/3_eRNA_quantification.

html) based on previously published work (Chen et al., 2018;

Chen and Liang, 2020). TCGA mRNA-seq for subtype

assignment was downloaded from FireBrowse (http://

firebrowse.org/). TCGA samples were assigned to molecular

subtypes by first generating templates based on previously

assigned molecular subtypes from the initial HNSCC TCGA

cohort (Cancer Genome Atlas, 2015). These assigned subtypes

were then expanded to the current cohort of samples by using the

CMSCaller functionality described above. As before, samples

were only retained for further analysis if they possessed an

assignment FDR <0.1. Samples were then grouped into

“Atypical” or “Other” based on their molecular subtype, and

significant differential expression of eRNAs was determined by >
1.5 fold-change in expression and FDR <0.05. As with the PRO-

seq data, these eRNAs were linked to their nearest gene using

bedtools via the bedr R package (Quinlan and Hall, 2010), and

the resulting gene list was used as input for pathway enrichment

analysis. Intersections of the TCGA eRNA enriched pathways

and PRO-seq eRNA enriched pathways were performed using

the Venn Diagram package in R and significance was calculated

using the hypergeometric overlap method, with a Universe size

set to the number of unique pathways in a particular gene set.

Only pathways with a p.adjust <0.25 with a maximum of

20 enriched pathways per gene set were included in the analysis.

HiChIP protocol, processing, and analysis

HiChIP was performed as described (Mumbach et al., 2016).

Briefly, 1 × 107 cells for each HNSCC cell line (1 unique cell line

per HNSCC subtype) were crosslinked. In situ contacts were

generated in isolated and pelleted nuclei by DNA digestion with

MboI restriction enzyme, followed by biotinylation of digested

DNA fragments with biotin–dATP, dCTP, dGTP, and dTTP.

DNA was then sheared with Bioruptor (Diagenode); chromatin

immunoprecipitation was done for H3K27Ac with use of anti-

H3K27ac antibody. After reverse-crosslinking, 150 ng of eluted

DNA was taken for biotin capture with Streptavidin C1 beads

followed by transposition with Tn5. In addition, transposed

DNA was used for library preparation with Nextera

Ad1_noMX, Nextera Ad2.X primers, and Phusion HF 2XPCR

master mix. The following PCR programwas performed: 72°C for

5 min, 98°C for 1 min, then 11 cycles at 98°C for 15 s, 63°C for

30 s, and 72°C for 1 min. Afterward, libraries were two-sided size

selected with AMPure XP beads. Libraries were paired-end

sequenced with reading lengths of 76 nucleotides.

Using HiC-Pro (Servant et al., 2015), HiChIP paired-end

reads were aligned to the hg19 genome with duplicate reads

removed, assigned to MboI restriction fragments, and filtered for

valid interactions. Interaction matrices were then generated with

the same software. To generate anchor points for downstream

looping analysis, outputs from HiC-Pro were used as inputs for

peak calling in HiChIP-Peaks (Shi et al., 2020). To ensure loops

were called from similar background enhancers, peaks from

HiChIP-Peaks were concatenated into a single file and used as

anchor point inputs for loop calling via hichipper (Lareau and

Aryee, 2018). HiChIP loop visualization was performed using

DNAlandscapeR (https://molpath.shinyapps.io/

dnalandscaper/).

Statistical analysis

Statistical analyses, including generation of graphs and

plots, were performed using R versions 3.4.4 and 3.6.0.

Significance levels are * = p < 0.05, ** = p < 0.01, and

***p < 0.005 unless otherwise indicated in figure legends.

Frontiers in Cell and Developmental Biology frontiersin.org05

Callahan et al. 10.3389/fcell.2022.936168

https://bioinformatics.mdanderson.org/Supplements/Super_Enhancer/TCEA_website/parts/3_eRNA_quantification.html
https://bioinformatics.mdanderson.org/Supplements/Super_Enhancer/TCEA_website/parts/3_eRNA_quantification.html
https://bioinformatics.mdanderson.org/Supplements/Super_Enhancer/TCEA_website/parts/3_eRNA_quantification.html
http://firebrowse.org/
http://firebrowse.org/
https://molpath.shinyapps.io/dnalandscaper/
https://molpath.shinyapps.io/dnalandscaper/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.936168


FIGURE 1
Cell line subtype assignments and characteristics. (A) Schematic of workflow used to assign HNSCC cell lines to their respective subtypes using
RNA-seq data. (B) Table of subtype assignments for each of the 28 cell lines used in this study. (C) Heatmap of gene expression modules in each
molecular subtype, defined as FC > 3 in a one-vs-rest comparison. (D) Hierarchical clustering of the 28 cell lines based on Jaccard distance metrics
obtained from binarized mutation counts from WES data. (E) Boxplots demonstrating total number of mutations in each sample, grouped by
molecular subtype (p = NS for each comparison). (F) Stacked barplot showing distribution of cell line anatomic location for each molecular subtype.
(G) Pie chart showing percentage of samples in each molecular subtype that came from primary, recurrent, or metastatic lesions.
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Statistical tests utilized are as indicated in respective text and

figure legends.

Results

Head and neck squamous cell carcinoma
cell lines assigned to known molecular
subtypes have similar mutation profiles
and tissue origins

Identifying inter-tumor heterogeneity can help better

understand the diversity of biological mechanisms driving the

neoplastic phenotypes within pathology-based tumor types (e.g.,

breast cancer, colon cancer, etc.) and discover targeted therapies

for specific patient populations (Guinney et al., 2015; Fragomeni

et al., 2018; Collisson et al., 2019; Vasaikar et al., 2019). We

sought to define heterogeneity within HNSCC patients, especially

at the epigenetic level. To this end, we first leveraged published

work by Yu et al., which extensively studied CCLE cancer cell

lines and their appropriateness as models of human cancer by

comparing them to corresponding TCGA tumors (Yu et al.,

2019). As part of this work, the group generated “templates” of

gene expression values for numerous subtypes in 9 different

tumor types. Using the HNSCC templates from this study (one

per molecular subtype) and RNA-seq data from the panel of cell

lines available to us (Supplementary Table S1), we utilized the

nearest template prediction method, as implemented in the

CMScaller R package, to assign our cell lines to their most

representative molecular subtype (Figure 1A) (Hoshida, 2010;

Eide et al., 2017). After selecting only samples with an assignment

FDR <0.1, twenty-eight HPV-negative HNSCC cell lines were

successfully matched to a molecular subtype, resulting in 7 AT

samples, 9 BA samples, 5 CL samples, and 7 MS samples

(Figure 1B). Analysis of RNA-seq data in one-versus-rest

comparisons demonstrated varying levels of differential

expression based on subtype, with a large number of

upregulated genes (FC > 3, n = 756) in the AT subtype

(Figure 1C).

To further investigate a potential genomic basis that could be

driving the transcriptomic partitioning into molecular subtypes,

we investigated WES data on our panel of cell lines. We first

clustered our lines based on their mutational background, and,

interestingly, we did not observe any clustering of samples from

the same molecular subtype. In fact, the only examples of tight

clusters in the data came from 3 matched pairs of cell lines in

which the samples were either from a primary or metastatic

lesion of the same patient (Figure 1D). Similarly, we did not

observe any significant differences between subtypes based on

total mutational burden (Figure 1E). This finding is largely

consistent with HPV-negative TCGA data, with the singular

exception of the AT vs. MS comparison showing a significant

difference in mutation number in TCGA (p.adj = 0.031)

(Supplementary Figure S1) (Cancer Genome Atlas, 2015).

Importantly, observed clustering was neither associated with

the anatomic site of origin of the primary tumor from which

each the cell lines were derived, nor with the type of tumor the

sample was from (e.g., primary vs. recurrence). With the possible

exception of the MS subtype, all of the HNSCC subtypes had a

fairly equal distribution of samples from the oral cavity,

oropharynx, and larynx (Figure 1F). We note this varies from

the findings in the TCGA data, where subtype was correlated

with anatomic location (Cancer Genome Atlas, 2015). With

respect to cell line source, the AT subtype was the only one to

contain cell lines from all 3 groups of samples (primary,

recurrence, and metastasis), while BA contained only primary

and recurrence, and CL and MS contained only primary and

metastasis (Figure 1G). Taken together, these results demonstrate

that HNSCC molecular subtypes can be successfully assigned to

cell lines using RNA-seq data, and that despite their

transcriptomic differences, the unique HNSCC subtypes do

not have significantly different mutational backgrounds,

overall mutation burden, or tissues of origin from one another

in our cell line models.

Head and neck squamous cell carcinoma
molecular subtypes are associated with
distinct enhancer landscapes

Transcription of a gene is regulated by concerted action of

multiple complexes on specific epigenetic elements located in cis

or trans the gene promoter. Enhancers are a major component of

the gene regulation circuits and known to be deregulated in

cancers (Lee and Young, 2013; Herz et al., 2014). They act as

binding platforms for transcription factors that, upon various

environmental cues relayed by the cell surface signaling

pathways, cooperate with chromatin modifying and

remodeling machinery to activate target genes (Lee and

Young, 2013). We hypothesized that these transcriptional

subtypes could have underlying differences in gene regulatory

landscapes that could partly explain the observed transcriptomic

differences. To investigate these differences, we generated

enhancer profiles for each cell line by performing ChIP-seq

for the H3K27ac histone mark, which is widely used as a

marker of active enhancers (Creyghton et al., 2010; Rada-

Iglesias et al., 2011). We next generated consensus peak sets

for each subtype by overlapping the enhancer regions of all cell

lines within a subtype and taking the set of enhancers that

occurred in 2 or more samples of the subtype. This resulted

in 4 total consensus peak sets, each representing a unique subtype

(i.e., one consensus peak set per subtype). We observed distinct

enhancer peak enrichment among the four molecular subtypes

(Figure 2A) (Lex et al., 2014; Khan andMathelier, 2017). Notably,

we discovered the AT subtype has a much larger set of consensus

enhancers than any of the other subtypes, and the most common
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FIGURE 2
The Atypical subtype is associated with unique enhancer peaks regulating genes related to lipid metabolism and MAPK signaling. (A) UpSet plot
showing the total number of H3K27ac typical enhancer peaks in each molecular subtype (pink horizontal barplot), as well as the number of peaks in
each possible intersection of peaksets (black bars and dot plot). (B,C) Visualization of mean bigWig signal for each subtype at (B) MAP3K8 and (C)
IGFBP3 enhancer loci containing H3K27ac peaks unique to the AT subtype (green bar/grey shading). (D,E)H3K27ac ChIP-seq enrichment plots
of enhancer loci common to all HNSCC molecular subtypes, defined as (D) any peak contained within 2 or more individual samples or (E) the
3,404 peaks shared among all consensus peaksets in (A), demonstrating the strongest signal in the AT subtype. (F) UpSet plot showing the total
number of super enhancer peaks in eachmolecular subtype (blue horizontal barplot), as well as the number of super enhancer peaks in each possible
intersection of peaksets (black bars and dot plot). (G) Visualization of mean bigWig signal for each subtype at a MAP3K12 super enhancer containing
peaks unique to the AT subtype (green bar/grey shading).
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subset of enhancers in our analysis is the set that is unique to the

AT subtype (Figure 2A). To investigate the function of the

5,683 enhancers unique to the AT subtype, we utilized data

from Cao et al. (Cao et al., 2017), which constructed enhancer-

target networks across multiple cancer and sample types, to

assign each of these enhancers to their target genes (Figures

2B,C). These genes were then used for pathway enrichment

analysis, which revealed enrichment for pathways involved in

lipid metabolism, MYC signaling, and MAPK signaling (Figures

2B,C, Supplementary Table S2).

In addition to identifying unique enhancers, we

investigated the total H3K27ac signal enrichment across

enhancers shared by all 4 subtypes to determine if, in

addition to the largest number of H3K27ac peaks, the AT

subtype also had greater signal enrichment overall. Indeed,

using two separate methods to arrive at a “shared” H3K27ac

peak set, we observed that the AT subtype had more

enrichment of H3K27ac signal across enhancers shared

among all HNSCC subtypes (Figures 2D,E). In agreement

with our typical enhancer analysis, we found that the AT

subtype also harbored the largest number of called super-

enhancers (Figures 2F,G). Further, linking of these super-

enhancers to their gene targets not only displayed enrichment

for MAPK signaling and lipid metabolism, but also identified

enrichment for PI3K and WNT-β-catenin signaling

(Supplementary Table S3). These results demonstrate that

the AT subtype of HNSCC is enriched for H3K27ac-marked

typical enhancers and super-enhancers compared to other

HNSCC, and these enhancer regions may activate important

cell signaling pathways that are associated with aggressive

HNSCCs.

The Atypical subtype is more resistant to
bromodomain inhibition

Recently, the realm of “epigenetic” therapies for cancer

has been of major interest for both research and in clinical

applications (Castilho et al., 2017; Cheng et al., 2019; Bates,

2020). Targeting epigenetic modifications and the proteins

that regulate their placement and/or removal is a particularly

attractive approach to cancer therapeutics since these

modifications are generally considered to be reversible,

particularly when compared to more “permanent” changes

such as mutations and copy number alterations. One class of

compounds with numerous clinical trials for a variety tumor

types is BRD and extraterminal domain (BET) inhibitors,

which function by inhibiting the “reader” proteins

responsible for recognizing and propagating the signal of

acetylated histone residues. These inhibitors have been used

in prior studies as enhancer-blocking agents, and the

pathways we found to be activated by AT-specific

enhancers and super-enhancers (e.g., MAPK and PI3K

signaling) are well-characterized mechanisms of BET

inhibitor resistance (Supplementary Tables S2, S3) (Rathert

et al., 2015; Kurimchak et al., 2016; Iniguez et al., 2018;

Cochran et al., 2019; Loganathan et al., 2019; Tonini et al.,

2020; Yan et al., 2020). Hence, we hypothesized that the AT

subtype may be differentially responsive to BET inhibition.

We first investigated HNSCC cell line response to

JQ1 using the publicly available CCLE drug response data

(Basu et al., 2013; Seashore-Ludlow et al., 2015; Rees et al.,

2016). We used the available CCLE RNA-seq data to assign

samples to their respective HNSCC molecular subtype, then

compared their response to BET inhibition in this dataset.

Interestingly, we found that the AT samples have a lower

JQ1 AOC (Area Over the Curve, where lower values indicate

resistance) than those in the non-AT group (p = 0.0503,

Welch’s t-test) (Figure 3A, Supplementary Figure S2A),

indicating the AT subtype is more resistant to

JQ1 treatment. To extend this analysis, we selected

2 compounds currently being evaluated in clinical trials,

OTX015 (Birabresib) and PLX51107, and performed drug

response assays in our HNSCC cell lines (Bates, 2020). For

each compound, we selected representative cell lines for each

molecular subtype (3 AT, 3 BA, 2 CL, and 3 MS), treated with

the respective compound for 72 h, then computed the GRAOC

of each cell line using cell confluence as a proxy for cell

number. We elected to use the GRAOC metric for drug

response since GR metrics have been demonstrated to be

more reproducible than traditional metrics, such as Area

Under the Curve (AUC) and IC50, when measuring drug

sensitivity in cancer cell lines (Hafner et al., 2016). As we

anticipated based on our previous analysis, the BET inhibitor

PLX51107 demonstrated significantly lower GRAOC values in

the AT subtype compared to any other HNSCC subtype,

indicating an increased resistance to treatment in that

group (Figure 3B). The inhibitor OTX015 also displayed a

similar trend towards increased resistance in the AT subtype

that was similar to, but more pronounced than, the

JQ1 response data in the CCLE database (Supplementary

Figures S2A,B). Given that BRD proteins are responsible

for mediating gene transcription and are the main targets

of BET inhibitors, we investigated the expression of this

family of proteins both in our cell line panel and in the

HNSCC TCGA data (Rathert et al., 2015; Kurimchak et al.,

2016; Iniguez et al., 2018; Cheng et al., 2019; Cochran et al.,

2019). This analysis demonstrated a significant elevation in

BRD7 in the AT subtype compared to other subtypes in our

HNSCC cell lines (Supplementary Figures S2C,D), and a

significant elevation in BRD4 expression in AT vs. BA and

AT vs. MS comparisons in the HNSCC TCGA data

(Supplementary Figures S2E,F).

To better understand the mechanisms behind this

observed resistance to treatment, we selected one

representative cell line from the AT subtype (HN4) and
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one cell line from the non-AT subtypes (MDA1186, CL

subtype), treated with PLX51107 or DMSO, and performed

gene expression analysis using mRNA-seq profiling in each

condition. MDA1186 was treated with PLX51107 at its own

GR50 value (hereafter referred to as “low” concentration), and

HN4 was treated at its own GR50 value (hereafter referred to

as “high”), as well as the low concentration. To ensure

PLX51107 behaved similarly to other published BET

FIGURE 3
Atypical HNSCC shows increased resistance to BET inhibition and uniquely upregulates genes associated with resistance pathways upon
treatment. (A) Atypical samples in the HNSCC CCLE dataset demonstrate lower JQ1 AOC values than non-Atypical samples (p = 0.0503, Welch’s
t-test). (B) Drug response assays with the BET inhibitor PLX51107 demonstrate the Atypical subtype is significantly more resistant to BET inhibition
than other molecular subtypes (*** adj.p < 0.001, ** adj.p < 0.01). (C) Hierarchical clustering of all genes from HN4 and MDA1186 samples
treated with DMSO, PLX51107 at GR50 MDA1186 (low), or GR50 HN4 (high). (D) PCA plot of samples as described in (C), displaying separation on the
basis of cell line (PC1) and treatment status (PC2). (E) Overlap of genes upregulated (|log2fold-change| > 1.5 & FDR <0.05) in HN4 and MDA1186 at
PLX51107 low concentration; numbers in Venn diagram represent size of set. (F) Horizontal barplots of Hallmark (left) and KEGG (right) pathway
enrichment results from the 1,437 genes uniquely upregulated by HN4 in (E); pathways highlighted in blue are associated with knownmechanisms of
BET inhibitor resistance.
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inhibitors, we created BET inhibitor response signatures

using publicly available data and, using GSEA, confirmed

that the response of the AT and non-AT cell lines to

PLX51107 was consistent with previously documented BET

inhibitor response signatures (Supplementary Figures S3C,D)

(Puissant et al., 2013; Picaud et al., 2016). Hierarchical

clustering of all genes in the RNA-seq dataset

demonstrated 2 major clusters, one per cell line, as well as

2 sub-clusters, either DMSO or PLX51107-treated, per major

cluster (Figure 3C). To further examine the differences in

response to drug treatment, we performed a principal

component analysis (PCA), which revealed a first

component driven by the cell line identity, and a second

component driven by treatment status (Figure 3D).

Examining the results from the hierarchical clustering and

PCA analysis together, we noted that the majority of

transcriptional response to BET inhibition in the AT cell

line occurs at the lower drug concentration, and only a

minority of gene expression changes occur between the

low and high concentrations (Figures 3C,D). Closer

inspection of the gene expression heatmap indicates that

the genes that are specifically upregulated in the AT

subtype after PLX51107 treatment, but not in the non-AT

subtypes, may be responsible for mediating resistance to BET

inhibition (Figure 3C).

To investigate these uniquely upregulated genes, we

overlapped the set of genes upregulated by the AT subtype

and by the non-AT subtype at the low

PLX51107 concentration. As we expected, we discovered a set

of 1437 genes uniquely upregulated in the AT subtype after BET

inhibition (Figures 3C,E). Pathway analysis of these 1437 genes

using the Hallmarks and KEGG gene sets reveals enrichment for

multiple pathways previously demonstrated to convey resistance

to BET inhibition and identified by our previous enhancer-based

analysis, including MAPK signaling, WNT-β-catenin signaling,

phosphatidylinositol signaling, and lipid metabolism pathways

(Figure 3F) (Rathert et al., 2015; Kurimchak et al., 2016; Iniguez

et al., 2018; Cochran et al., 2019; Loganathan et al., 2019; Tonini

et al., 2020; Yan et al., 2020).

These results support our previous hypothesis that the AT

subtype is more resistant to BET inhibition than other HNSCC

subtypes and suggest the enrichment of H3K27ac-marked

enhancers involved in these pathways is a contributing factor

to the observed resistance.

Bromodomain inhibitor resistance is
mediated by baseline enhancer activity
and chromatin structure

Our previous analyses have indicated that the AT subtype

of HNSCC has two intriguing properties with respect to BET

inhibition: first, H3K27ac-marked enhancers unique to the

AT subtype regulate genes enriched for known BET inhibitor

resistance pathways, and, second, the AT subtype is able to

uniquely upregulate genes enriched for BET inhibitor

resistance pathways after treatment with BET inhibitor

(Figures 2B,C,G; Supplementary Tables S2, S3; Figures

3E,F). Because of these observations, we suspected the AT

subtype may have a stronger baseline enhancer activity at

genes involved in resistance pathways and that these genes

may have higher numbers of enhancers-promoter contacts,

enabling a more robust response to BET inhibitor treatment.

To investigate the activity of enhancers involved in

regulating baseline resistance gene expression, we

performed PRO-seq to investigate the eRNA landscape of

the AT and non-AT subtypes (Supplementary Table S4)

(Mahat et al., 2016). Enhancer RNAs are a recently

discovered class of non-coding transcripts found at active

enhancers that arise from the transcription of enhancer

elements themselves and are involved in functions such as

regulating gene transcription and controlling enhancer-

promoter looping (Arnold et al., 2019; Zhang et al., 2019;

Sartorelli and Lauberth, 2020). We used PRO-seq, with a

particular focus on eRNAs, to investigate differential

enhancer activity in our AT subtype. For this experiment,

we expanded our AT group to include the 3 cell lines from our

drug assay, and we expanded the non-AT group to include the

2 cell lines from the CL subtype used in our drug assay.

Differential expression analysis of PRO-seq-defined eRNAs

revealed 321 differentially expressed eRNAs, with 207 being

upregulated and 114 being downregulated (Figure 4A).

To assess the likely functional output of these eRNAs, we

assigned each eRNA to its nearest gene and performed

pathway enrichment analysis, which demonstrated an

enrichment in multiple metabolic pathways, including lipid

metabolism and cholesterol homeostasis, and hedgehog

signaling (Figure 4B). These findings are largely in

agreement with our previous enhancer-based analysis of

H3K27ac-linked genes, which displayed enrichment for

similar BET inhibitor resistance associated pathways

(Supplementary Table S2). To extend this finding to

human tumors, we leveraged data from recent publications

investigating eRNA expression in TCGA tumors (Cheng

et al., 2019; Chen and Liang, 2020). After assigning all the

HNSCC TCGA tumor samples to their molecular subtype, we

examined eRNA expression in the AT subtype compared to

non-AT samples and found the AT subtype upregulated

1,867 eRNAs. After linking these eRNAs to their nearest

gene, we found that, in agreement with our PRO-seq data

from HNSCC cell lines, these genes were enriched for

cholesterol homeostasis, hedgehog signaling, and MAPK

signaling function (Figure 4C). Next, we overlapped both

our HNSCC cell line PRO-seq data and the TCGA HNSCC

eRNA data with the predicted enhancers for Cao et al. (Cao

et al., 2017) and found that 52% (3766/7246) of the cell line
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FIGURE 4
Enhancers of MAPK signaling, WNT signaling, and Cholesterol Homeostasis genes display increased eRNA transcription and enhancer-
promoter looping in Atypical HNSCC. (A) Differential transcription (|log2fold-change| > 1.5 & FDR <0.1) of eRNAs between the Atypical and Classical
subtypes as measured by PRO-seq (green dots meet fold-change and FDR thresholds, purple dots meet fold-change threshold only). (B) Hallmark
pathway enrichment analysis of genes linked to eRNAswith significantly increased transcription from (A); pathways in blue have been previously
associated with BET inhibitor resistance. (C) Overlap of hallmark (left) and KEGG (right) pathway enrichment results between PRO-seq-determined
significantly enriched eRNAs from (A) and (B) and TCGA-measured differentially expressed eRNAs between Atypical and non-Atypical samples; p
values represent hypergeometric tests of gene set enrichment result overlaps; bolded terms represent shared pathways associatedwith BET inhibitor
resistance. (D) Lollipop plot demonstrating the loop count:anchor count ratio of H3K27ac HiChIP data for each molecular subtype. (E) Volcano plot
of differentially transcribed (|log2fold-change| > 1.5 & FDR <0.1) eRNAs between the Atypical and Classical subtypes after filtering transcripts for only
those contained within H3K27ac HiChIP anchors (pink dots meet fold-change and FDR thresholds, purple dots meet fold-change threshold only). (F)
Joined Hallmark and KEGG pathway enrichment analysis of genes linked to differentially transcribed eRNAs in (E); pathways in blue have been
previously associated with BET inhibitor resistance. (G) Visualization of H3K27ac HiChIP loops at the MAP3K8 locus (left) and EGFR locus (right) in all
4 HNSCC molecular subtypes.
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PRO-seq enhancers and 67% of the TCGA eRNA enhancers

(42391/63479) matched a predicted enhancer

(Supplementary Figures S4). These results support the

hypothesis that the AT subtype has active enhancers, as

measured by eRNA expression, enriched for signaling

pathways that have been demonstrated to confer resistance

to BET inhibition across cancer types.

To assess the enhancer-promoter contacts in our HNSCC cell

lines, we performed HiChIP for H3K27ac-marked histones to

capture the E-P looping involving this enhancer mark

(Supplementary Figure S5) (Mumbach et al., 2016). Consistent

with the previous enhancer analyses, we discovered that the AT

subtype has the highest ratio of H3K27ac-mediated loops to

H3K27ac anchors across all 4 HNSCC subtypes, indicating the

AT subtype may have more redundancy in its enhancer

architecture than the other subtypes (Figure 4D). To assess if

these loops are related to enhancer function, we overlapped our

PRO-seq called eRNA enhancer regions with the H3K27ac

HiChIP anchor data and performed differential expression

analysis of this subset of eRNAs. We identified 48 of

57 differentially transcribed eRNAs as upregulated, and these

eRNAs were associated with genes involved in MAPK signaling

and lipid metabolism, such as MAP3K8, EGFR, and AGPAT4

(Figure 4E). Inspection of genes identified by this integrative

analysis revealed increased contact formation between respective

gene promoters and H3K27ac-marked enhancers, supporting the

association of eRNA expression with active enhancers and

enhancer-promoter loop formation (Figures 4F,G). Further,

we compared our HiChIP data for MAP3K8, EGFR, and

AGPAT4 to the Cao et al. (Cao et al., 2017) predicted

enhancers, which, while demonstrating variable numbers of

overlaps depending on the gene queried, maintained the

enrichment of enhancer looping in the AT subtype

(Supplementary Tables S5, S6). Increasing the loop call

stringency by increasing the number of required paired-end

tags (PETs) further exaggerated the enrichment of E-P

looping in the AT subtype (Supplementary Table S6).

Overall, insights from the eRNA expression and HiChIP data

support a model in which the AT subtype has more active

enhancers regulating genes associated with lipid metabolism

and MAPK signaling, and AT enhancers have, on average, a

higher level of redundancy in their control of gene expression

than non-AT enhancers by forming larger numbers of enhancer-

promoter contacts.

Discussion

Here, we have demonstrated that HNSCC cell line molecular

subtypes have largely similar mutational backgrounds,

mutational burden, and anatomic sites of origin. In contrast,

the enhancer landscapes, marked by histone H3K27 acetylation,

are distinct among subtypes. In particular, we discovered the AT

subtype has the highest number of enhancers and super-

enhancers, as well as the most enhancer signal at common

enhancer regions and a global increase in enhancer-promoter

loop formation. We also demonstrate that the AT subtype is

more resistant to BET inhibition and that, upon treatment with

BET inhibitors, the AT subtype is able to uniquely upregulate

genes associated with cell growth and BET inhibitor resistance

pathways (MAPK signaling, WNT signaling, and lipid

metabolism) (Rathert et al., 2015; Kurimchak et al., 2016;

Iniguez et al., 2018; Cochran et al., 2019; Loganathan et al.,

2019; Tonini et al., 2020; Yan et al., 2020). Further, we

demonstrate a significant baseline upregulation of eRNA

transcription from the enhancers of genes involved in BET

inhibitor resistance pathways such as lipid metabolism and

hedgehog signaling in the AT subtype (Cochran et al., 2019).

Interestingly, many of these genes with increased eRNA

expression in their enhancers were also found to have baseline

increased enhancer-promoter looping. Together, our findings

suggest that the AT subtype of HNSCC is characterized by high

enhancer activity, which likely drives the expression of pathways

known to confer resistance to BET inhibition.

Delineation of HNSCC into 4 subtypes was originally

proposed by Walter et al. and the TCGA HNSCCC study

(Walter et al., 2013; Perez Sayans et al., 2019). These two

manuscripts largely focus on genomic alterations, such as

copy number alterations and somatic mutations, and only one

epigenetic element, in the form of DNA methylation, was

assessed in the TCGA paper. As such, limited epigenomic

data for HNSCC is available (Serafini et al., 2020). Despite

these limitations, interest in therapies that target the

epigenome continues to grow, indicating a need for more

studies that focus on the epigenome of HNSCC (Alsahafi

et al., 2019; Bates, 2020). The work presented here is, to our

knowledge, the first to characterize the enhancer landscape of

HNSCC based on the Walter/TCGA molecular subtypes.

Interestingly, we identified HPV-negative samples belonging

to AT subtype, which has traditionally been associated with

HPV-positive or “HPV-like” samples, have increased enhancer

activity compared to the non-AT subtypes. This activity is

measured by increased H3K27ac peak counts, increased

H3K27ac signal at common enhancer peaks, global increases

in enhancer-promoter looping, and significant upregulation of

eRNA expression compared to non-AT samples. This finding

suggests that defining features of the AT subtype are enhancer

architecture and activity - two key epigenomic aspects of HNSCC

subtypes that were not previously explored. Clinical and

translational significance of enhancer-based classification was

shown by our recent studies in other tumor types like colorectal

cancer (Orouji et al., 2021) and MPNST (Kochat et al., 2021).

Unfortunately, BET inhibitors have shown limited promise

in clinical studies in solid tumors (Shorstova et al., 2021).

However, in specific solid tumor contexts, such as BRD4-NUT

midline carcinoma, BET inhibitors have had very encouraging
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results in clinical trials (Stathis et al., 2016; Piha-Paul et al., 2020;

Shorstova et al., 2021). Considering these findings, identifying

subsets of patients with tumor biology favorable or unfavorable

to BET inhibitor response could improve the clinical utility of

these compounds. Since BET inhibitors inherently rely on

modulating the reader protein of H3K27ac-marked enhancers

in target cells, understanding enhancer landscapes and their role

in BET inhibitor response becomes an important first step in

sorting patients into “favorable” or “unfavorable” groups (Stathis

and Bertoni, 2018; Cheng et al., 2019). In our work, we discovered

that the AT subtype is significantly more resistant to BET

inhibition than other HNSCC subtypes, and that this

resistance seems, at least in part, mediated by increased

enhancer activity on pathways associated with lipid and

cholesterol metabolism, MAPK signaling, and WNT-β-catenin
signaling. Accordingly, we expect that including compounds that

target these pathways in combination with BET inhibitors may

sensitize otherwise resistant tumors to BET inhibition and

expand the current chemotherapeutic repertoire for HNSCC

treatment. As such, other enhancer/transcription blocking

inhibitors, such as those against CDK9 (Zhang et al., 2018),

could be tested in such enhancer-based subtypes.

We acknowledge that a limitation of our work is the focus

on cell line models of HNSCC, which has certain limitations

compared to studying human tumors directly. In particular,

we noticed differences in BRD expression patterns between

our cell line RNA-seq data and the HNSCC TCGA dataset,

and the possibility of this being at least partially the result of

the sample sources cannot be excluded and warrants further

investigation in subsequent studies. However, given the

relative sparsity of data in the HNSCC enhancer regulation

space, our data can serve as a valuable resource as this field

continues to grow. The work presented in this manuscript

also serves as an early investigation into the enhancer

regulatory landscape of HNSCC using multiple methods

that can be technically challenging to perform in human

tissue because of the amount of sample required and the

associated difficulty of acquiring sufficient numbers of

human samples. Moving forward, it will be important to

perform similar studies in human tumor samples and

animal models to corroborate the findings from our work

in an in vivo setting.

While our work focused on HPV-negative HNSCC, our

findings suggest increased enhancer activity on genes

involved in lipid and cholesterol metabolism, MAPK

signaling, and WNT-β-catenin signaling may serve as a

general mechanism of baseline resistance to BET

inhibition. Since enhancer architecture is a critical

component of cell identity, it is possible that, moving

forward, an assessment of a tumor’s baseline enhancer

activity could serve as a potential epigenomic biomarker of

response to BET inhibition and aid in tailoring treatment in a

patient-specific manner (Hnisz et al., 2013; Kron et al., 2014).

This could be especially useful in the case of HNSCC, where

subtype-specific and tumor-specific treatments are generally

lacking (Alsahafi et al., 2019).

Data availability statement

Processed data is available from the Gene Expression

Omnibus under repositories GSE185531 (ChIP-seq),

GSE185532 (HiChIP), GSE185533 (PRO-seq), and GSE185534

(mRNA-seq). Please note that the raw sequence data cannot be

provided due to these being old cell lines without proper

consents. Please contact KR for the raw sequence data.

Relevant code for the manuscript can be found at: https://

gitlab.com/railab/hnscc_subtypes.

Author contributions

SCC conceived, conceptualized and designed the study,

planned and carried out experiments, performed data analysis,

prepared figures, and wrote the manuscript. VK planned and

carried out PRO-seq experiments. ZL planned and carried out

ChIP-seq experiments. ATR aided in study design and analysis.

MD assisted with manuscript preparation and formatting. JS, CJT,

AKG, and MT provided technical help. FMJ, JW, HDS, and CRP

contributed to study design and provided reagents and datasets.

JNM and KR conceived, conceptualized and designed the study

and wrote the manuscript. All authors edited the manuscript.

Funding

KR acknowledges support from the NIH/NCI (1RO1CA222214)

and start-up fromMDAnderson Cancer Center. JNM acknowledges

support from theNIH/NCI (5P30CA016672-44) and a grant from the

Kadoorie Charitable Foundation. CRP acknowledges support from

NIH/NIDCR (5R01DE028061). This work was additionally

supported by The University of Texas MD Anderson Cancer

Center’s HPV-Related Cancers Moon Shot Program.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

Frontiers in Cell and Developmental Biology frontiersin.org14

Callahan et al. 10.3389/fcell.2022.936168

https://gitlab.com/railab/hnscc_subtypes
https://gitlab.com/railab/hnscc_subtypes
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.936168


organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Acknowledgments

Figures were created with Biorender.com.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

936168/full#supplementary-material

SUPPLEMENTARY FIGURE S1
Boxplots demonstrating total number of mutations in each sample,
grouped by molecular subtype (p.adj = .031 for AT vs. MS, p.adj = NS for
all other comparisons).

SUPPLEMENTARY FIGURE S2
(A)CCLE-derived JQ1 AOC values grouped by individual HNSCmolecular
subtype. (B) Response of HNSC cell lines to the BET inhibitor OTX015,
reported as GRAOC to adjust for cell line growth rates and grouped by
molecular subtype (** adj.p < 0.01). (C) Box and whisker plot of
BRD4 expression in HNSCC cell lines (* = p.adj < 0.05, NS = not
significant). (D) Box and whisker plot of BRD7 expression in HNSCC cell
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and whisker plot of BRD4 expression in HNSCC cell lines (* = p.adj <
0.05, NS = not significant).
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and Cao et al. (Cao et al., 2017) predicted enhancers (blue).

SUPPLEMENTARY FIGURE S5
(A–D) HiC-Pro valid interaction and contact range metrics for HN4,
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SUPPLEMENTARY TABLE S1
List of cell lines used for H3K27ac ChIP-seq, their total H3K27ac peak
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SUPPLEMENTARY TABLE S5
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SUPPLEMENTARY TABLE S6
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