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Abstract

With 214 source vocabularies, the construction and maintenance process of the UMLS 

(Unified Medical Language System) Metathesaurus terminology integration system is costly, 

time-consuming, and error-prone as it primarily relies on (1) lexical and semantic processing for 

suggesting groupings of synonymous terms, and (2) the expertise of UMLS editors for curating 

these synonymy predictions. This paper aims to improve the UMLS Metathesaurus construction 

process by developing a novel supervised learning approach for improving the task of suggesting 

synonymous pairs that can scale to the size and diversity of the UMLS source vocabularies. We 

evaluate this deep learning (DL) approach against a rule-based approach (RBA) that approximates 

the current UMLS Metathesaurus construction process. The key to the generalizability of our 

approach is the use of various degrees of lexical similarity in negative pairs during the training 

process.

Our initial experiments demonstrate the strong performance across multiple datasets of our DL 

approach in terms of recall (91-92%), precision (88-99%), and F1 score (89-95%). Our DL 

approach largely outperforms the RBA method in recall (+23%), precision (+2.4%), and F1 

score (+14.1%). This novel approach has great potential for improving the UMLS Metathesaurus 

construction process by providing better synonymy suggestions to the UMLS editors.
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1 INTRODUCTION

Motivation.

Developed by the National Library of Medicine, the UMLS (Unified Medical Language 

System) Metathesaurus [4] is a terminology integration system constructed by integrating 

biomedical terms from over 200 source vocabularies and organizing them into concepts 

consisting of clusters of synonymous terms from the source vocabularies. The basic building 

block of the Metathesaurus, also known as an “atom,” is a term from a source vocabulary.

In practice, synonymous atoms are assigned the same concept unique identifier (CUI). 

Such concepts can be thought of as equivalent mappings from an ontology alignment 

perspective. In fact, a subset of three source vocabularies from the Metathesaurus (NCI, 

FMA, and SNOMED CT) have been used by the Ontology Alignment Evaluation Initiative 

(OAEI) since 2011 [2] and in related efforts [18, 21]. The OAEI aims to compare ontology 

matching systems on defined test cases. The OAEI organizers have used UMLS synonymy 

information from the Metathesaurus concepts as reference mappings for biomedical 

ontologies integrated in the UMLS. Although the Metathesaurus construction process may 

have similarities to ontology alignment, not all source vocabularies in the Metathesaurus 

are well-defined ontologies formally represented in OWL. Therefore, in order to avoid 

any misunderstanding especially in the context of the Semantic Web, we will continue to 

use the term vocabulary instead of ontology when referring to source vocabularies in the 

Metathesaurus.

The Metathesaurus construction process is based on the assumption that specially trained 

human experts can determine synonymy among atoms with high accuracy from the 

candidates obtained from a lexical similarity model and semantic pre-processing. However, 

manual curation is error-prone as pointed out by [7, 8, 19, 30, 31]. Given the current size 

of the Metathesaurus with 15.5 million atoms from 214 source vocabularies grouped into 

4.28 million concepts, its maintenance process is costly, time-consuming, and extremely 

demanding on the human expert editors. On the other hand, with the enormous knowledge 

accumulated over 30 years of manual curation, the existing Metathesaurus provides ample 

material for supervised learning.

Supervised learning approaches with word embeddings have shown promising results 

in previous Metathesaurus-related experiments confirming that they have reasonably 

good performance for the alignment of a selected subset of source vocabularies in the 

Metathesaurus [21, 45, 47, 48]. In this work, we propose to use these techniques to 

predict synonymy from all source vocabularies in the Metathesaurus. Aligning over 214 

vocabularies with their large size and vast diversity introduces new challenges compared to 

the OAEI task of aligning a few vocabularies.

In this work, we are mostly interested in assessing the feasibility of using deep learning 

(DL) techniques for terminology integration at scale in the UMLS Metathesaurus. Therefore, 

this investigation is not primarily technical and does not have the usual features of a DL 

benchmarking study. Instead, we investigate whether a simple DL approach can outperform 

the editorial rules established for building the UMLS Metathesaurus.
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Objectives.

Our primary objective is to develop a scalable supervised learning approach to improve 

synonymy predictions compared to the current lexical and semantic processing in the 

Metathesaurus. While existing ontology alignment approaches [2, 18, 21, 47] have been 

successful on small subsets of 3 to 8 source vocabularies, our goal is to develop an approach 

that scales not only to large numbers of source vocabularies, but also to diverse source 

vocabularies, such as those in the Metathesaurus. We expect such a supervised learning 

approach to outperform a rule-based approach (RBA) that approximates the lexical and 

semantic processing used in the current Metathesaurus construction process. We will explain 

the rule-based approximation in Section 3.2.

Our secondary objective is to investigate the extent to which lexical similarity between the 

atoms used for training influences the performance of our algorithm. Intuitively, it seems 

more difficult to predict the absence of synonymy between lexically-similar atoms than 

between lexically-different atoms. We hypothesize that learning from pairs with different 

degrees of lexical similarity will help improve the performance and generalization of the 

algorithm.

Contribution.

Our contributions include:

• The first attempt to define and address terminology integration at the full scale 

and diversity of the UMLS Metathesaurus using a learning-based approach.

• A reusable rule-based baseline approximating the current lexical and semantic 

processing used in the UMLS for comparing the performance of our algorithm 

against the current UMLS building process.

• A generalizable supervised learning approach that is shown to largely outperform 

the current lexical and semantic processing used in the UMLS Metathesaurus 

construction process.

• A confirmed hypothesis that the variety of degrees of lexical similarity in 

negative pairs from the training set is the key to the generalizability of the 

algorithm.

The remainder of the paper is organized as follows. Section 2 provides relevant background 

knowledge about the Metathesaurus. Section 3 describes the synonymy prediction and the 

rule-based approximation as a proxy to the current Metathesaurus construction process. 

Section 4 describes our supervised learning approach. In section 5, we present our 

experiments and discuss their results. In section 6, we discuss related work. Section 7 

concludes the paper.

2 BACKGROUND: KNOWLEDGE REPRESENTATION IN THE UMLS 

METATHESAURUS

This section presents background knowledge about the UMLS Metathesaurus [4] necessary 

for describing and understanding the synonymy prediction task, as well as the rule-based 
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approximation of the Metathesaurus building process. We will use the examples in Table 1 

to illustrate the concept structure in the Metathesaurus.

As mentioned earlier, key to the UMLS Metathesaurus are the notions of atom (a term 

from a specific source vocabulary, identified with a specific source concept identifier) 

and concept (grouping of synonymous atoms). While the Metathesaurus preserves source 

concept identifiers (SCUI), it also assigns its own identifiers to atoms (AUI), unique strings 

(SUI), normalized strings (LUI) and concepts (CUI). Table 1 shows examples of atoms and 

the various types of identifiers they were assigned. Additionally the Metathesaurus editors 

assign semantic types to each UMLS concept to denote the broad semantics of each concept. 

Of note, semantic types are not assigned to AUIs, but to CUIs instead. However, it is 

possible to approximate the semantics of an atom by inferring it from that of the source 

vocabulary (for semantically homogeneous vocabularies, such as anatomy ontologies), or the 

top-level subdivisions of a vocabulary (for broad-coverage vocabularies).

Let us consider three tuple pairs (t1, t3), (t4, t5), and (t1, t5) from Table 1 with

t1 = (“Headache”, “MSH”, “M0009824”, “Disorders”)

t3 = (“Cranial Pains”, “MSH”, “M0009824”, “Disorders”)

t4 = (“Cephalodynia”, “MSH”, “M0009824”, “Disorders”)

t5 = (“Cephalodynia”, “SNOMEDCT_US”, “25064002”, “Disorders”).

In the UMLS Metathesaurus, the information available to the construction process are input 

tuples in the form of (str, src, scui, sg) where str is the original string from the source src, 

and scui is the optional identifier of that str string from the source src, and sg is a semantic 

group reflecting the semantics of the string in the source. Of note, for this experiment, we 

manually assigned one semantic group to each vocabulary and to the top-level subdivisions 

of heterogeneous vocabularies. Each atom inherits its semantic from its source or from its 

high-level ancestor(s).

Let T = (SSTR, SSRC, SSCUI, SSG) be the set of all input tuples in the Metathesaurus 

where SSTR is the set of all strings, SSRC is the set of all sources, SSCUI is the set of all 

source concept unique identifiers, and SSG is the set of all semantic groups. The tuples 

t1 = (“Headache”, “MSH”, “M0009824”, “Disorders”) and t3 = (“Cranial Pains”, “MSH”, 

“M0009824”, “Disorders”) are instances of T. Given the input tuple pairs (sfr, src, scui, 
sg) and (str′, src′, scui′, sg′) as instances of T = (SSTR, SSRC, SSCUI, SSG) from source 

vocabularies, the Metathesaurus defines several identifier types for characterizing atoms 

during the integration process.

AUI and ma link mapping function.

The basic building blocks or “atoms” from which the Metathesaurus is constructed are 

the concept names or strings from each of the source vocabularies. Every occurrence of 

a string in each source vocabulary is assigned a unique atom identifier (AUI). When the 

same string appears in multiple source vocabularies, for example, “Cephalodynia” appearing 

in both MSH and SNOMEDCT_US, they are assigned different AUIs “A26628141” and 

“A2957278” as shown in Table 1.
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(D1) Let SAUI be the set of all AUIs in the Metathesaurus. Let ma be the function that maps 

concept string str ∈ SSTR from source vocabulary src ∈ SSRC to a new AUI a ∈ SAUI such 

that a = ma (str, src).

SUI and ms.

These AUIs are then linked to a unique string identifier (SUI) to represent occurrences of 

the same string. Any lexical variation in character set, upper-lower case, or punctuation will 

result in a separate SUI. For example, the strings “Headache” and “Headaches” are linked to 

two different SUIs.

(D2) Let SSUI be the set of all SUIs in the Metathesaurus. Let ms be the function that maps 

an AUI a ∈ SAUI to a new SUI s ∈ SSUI such that s = ms(a).

LUI and ml.

All the English lexical variants of a given string (detected using the Lexical Variant 

Generator tool [26]) are associated with a single normalized term (LUI). The LVG tool 

recognizes that the two strings “Headache” and “Headaches” only differ by minor lexical 

variation and associates them with the same LUI “L0018681”.

(D3) Let SLUI be the set of all LUIs in the Metathesaurus. Let ml be the function that maps a 

SUI s ∈ SSUI to a new LUI l ∈ SLUI such that l = ml(s).

CUI.

Lexical similarity forms the basis for suggesting synonymy in the UMLS Metathesaurus. 

However, all atoms that share the same LUI are not necessarily synonymous. For example, 

the string “nail” can denote both an anatomical structure and a surgical device. Table 1 

illustrates how synonymous terms are clustered into the same concept (CUI = “C0018681”). 

Note that we do not define the link mapping from AUI to CUI here because this link is 

unavailable to the task and cannot be used in the prediction function.

SCUI and mu.

Each AUI is optionally associated with one identifier providedby its source (SCUI). 

Several strings including “Headache”, “Headaches”, “Cranial Pains”, and “Cephalodynia” 

are associated with the same SCUI, “M0009824”, from the source vocabulary MSH. SCUIs 

play an important role in the Metathesaurus construction process because source synonymy 

is very often conserved in the Metathesaurus.

(D4) Let SSCUI be the set of all SCUIs in the Metathesaurus. Let mu be the function that 

maps a concept string a ∈ SAUI to a new SCUI u ∈ SSCUI such that u = mu(a).

Semantic Group and mg.

As mentioned earlier, semantic groups (or semantic types) are assigned to CUIs, not AUIs, 

by the Metathesaurus editors. For this reason, this information is unavailable to the task 

and cannot be used in the prediction function. Instead, we manually assigned semantic 

groups to source vocabularies or to their top-level subdivisions. All the atoms from a source 
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vocabulary (or top-level subdivision thereof) inherit the semantic group of the source (or 

top-level subdivision). Most of the atoms have a single semantic group. Semantic group 

information is used to determine semantic compatibility among atoms defined as sharing one 

semantic group.

(D5) Let SSG be the set of all semantic groups in the Metathesaurus. Let mg be the function 

that maps concept string a ∈ SAUI to a set of semantic groups g ⊂ SSG such that g = mg(a).

So far we have defined the constraint mappings for each AUI to be linked to other identifier 

types. Every AUI is linked to a single string STR, a single SCUI (optionally), a single 

SUI, a single LUI, and, most often, a single Semantic Group. Next we will show how 

these identifiers and mapping links can be leveraged in the rule-based approximation of the 

Metathesaurus construction process to derive synonymy predictions.

3 PROBLEM FORMULATION AND RULE-BASED APPROXIMATION 

BASELINE

3.1 Problem Formulation

We define the synonymy prediction task as follows. T is the set of all input tuples (SSTR, 
SSRC, SSCUI, SSG) from source vocabularies.

Let t = (str, src, scui, sg) ∈ T, and t′ = (str′, src′, scui′, sg′) ∈ T. Let p: T × T → {0,1} 

be the prediction function mapping a pair of input tuples to either 0 or 1. The two strings str 
from t and str′ from t′ are synonymous if p(t,t′) = 1.

Note that here we consider the whole tuple for the prediction task instead of using the 

string str only. A string itself does not carry sufficient information for the task at hand; 

we need to know which source the string comes from and which semantics it has. This is 

especially useful for processing homonyms (e.g., depending on the source, “nail” can denote 

an anatomical structure or a surgical device, which will be indicated by the semantic group, 

“Anatomy” or “Device”).

As ground truth for the prediction task, we use the groupings of strings into concepts in the 

Metathesaurus. If two strings from two different tuples are assigned the same CUI, they are 

synonymous. Otherwise, they are not.

A synonymy prediction task will decide if each of the tuple pairs is synonymous (or, more 

precisely, if the atoms in each pair are synonymous). Finding the prediction function p is the 

problem we address in this paper. We will describe the rule-based approach in Section 3.2 

and the supervised learning approach in Section 4.

3.2 Rule-based Approximation of the Metathesaurus Construction Process

Here we formalize an approach that approximates the current Metathesaurus construction 

process that takes as input tuple pairs from source vocabularies. (We have confirmed with 

the UMLS Metathesaurus editors at the National Library of Medicine that this formalization 

of the Metathesaurus editorial guidelines accurately reflects the Metathesaurus construction 
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process.) We use this approximation as a baseline in the evaluation of our supervised 

learning approach. We use the concepts/identifiers and functions/links described in Section 2 

to show how the identifiers and links can be combined into rules for synonymy predictions.

We have defined SSTR, SSRC, SSCUI, SAUI, SSUI, SLUI, SCUI, and SSG to be the set of all 

strings, sources, SCUIs, AUIs, SUIs, LUIs, CUIs, and semantic groups in the Metathesaurus, 

respectively. We also have the link mapping functions ma, ms, ml, mu, and mg defined from 

(D1), (D2), (D3), (D4), and (D5) above. Next we will derive the editorial rules from the 

identifiers and mapping links in the Metathesaurus.

The rule-based approach reflects the following Metathesaurus construction principles:

• Synonymy asserted between atoms in a source vocabulary tends to be conserved 

in the Metathesaurus

• Lexical similarity is used to identify candidates for synonymy

• Atoms that do not share a common semantics are prevented from being 

recognized as synonymous and grouped into the same concept

These principles are formalized into two rules, “source synonymy” and “lexical similarity 

and semantic compatibility”. These rules can be combined into a disjunction and amplified 

through transitivity.

To illustrate the rule-based approach, we will evaluate the tuple pairs (t1, t3), (t4, t5), and (t1, 

t5) from Table 1 against each rule with

t1 = (“Headache”, “MSH”, “M0009824”, “Disorders”),

t3 = (“Cranial Pains”, “MSH”, “M0009824”, “Disorders”),

t4 = (“Cephalodynia”, “MSH”, “M0009824”, “Disorders”),

t5 = (“Cephalodynia”, “SNOMEDCT_US”, “25064002”, “Disorders”).

Source synonymy (SS) rule.—The two input tuples are synonymous if they have the 

same identifier in a given source (SCUI). Formally, given a tuple pair t = (sfr, src, scui, sg) 

∈ T and t′ = (str′, src′, scui′, sg′) ∈ T, let pss be the prediction function for the source 

synonymy rule: if scui = scui′ then pss (t, t′) = 1.

For the example at hand, pss (t1, t3) = 1, pss (t4, t5) = 0, pss (t1, t5) = 0. t1 and t3 are predicted 

to be synonymous because they share the same SCUI “M0009824” from MSH.

Lexical similarity and semantic compatibility (LS_SC) rule.—The two input tuples 

are synonymous if they have the same lexical terms and semantic groups derived from the 

input tuples using the set of identifiers and links in the Metathesaurus. In practice, given the 

input as a pair of tuples, included in the lexical similarity and semantic compatibility rule 

are: (1) a set of axioms to derive the lexical term (lui, lui′) and semantic groups (sg, sg′) for 

each input tuple, and (2) the assertions that they have the same lexical term and a common 

semantic group. We formalize this rule using the Metathesaurus notions as follows.
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Given a tuple pair t = (str, src, scui, sg) ∈ T and t′ = (str′, src′, scui′, sg′) ∈ T, let plssc be 

the prediction function for the lexical and semantic similarity rule: plssc(t,t′) = 1 if

(1) aui = ma(str, src), sui = ms(aui), lui = ml(sui), sg = mg(aui), (deriving lui and sg)

aui′ = ma (str′, src′), sui′ = ms (aui′), lui′ = ml(sui′), sg′ = mg (aui′),

(2) lui = lui′ and sg ∩ sg′ ≠ ∅ (asserting lui and sg).

For the current example, plssc(t1, t3) = 0, plssc (t4, t5) = 1, plssc (t1, t5) = 0, t4 and t5 are 

predicted to be synonymous because they share the same LUI “L0380797” and semantic 

group “Disorders”.

Rule combination (SS_LS_SC).—For the three tuple pairs at hand, the two pairs (t1, 

t3) and (t4, t5) are predicted to be synonymous by the source synonymy rule and the lexical 

and semantic similarity rule. The last pair (t1, t5) is predicted to be non-synonymous by both 

rules. However, all these pairs share the same CUI and are considered synonymous in the 

Metathesaurus (ground truth). Therefore, the rule-based approach can only correctly predict 

two out of the three pairs above.

Since both source synonymy preservation and lexical and semantic similarity are principles 

used in the Metathesaurus construction process, it is legitimate to create a disjunction of the 

corresponding rules (i.e., SS or LS_SC).

Given a tuple pair t = (str, src, scui, sg) ∈ T and t′ = (str′, src′, scui′, sg′) ∈ T, let psslssc be 

the prediction function for the source synonymy and the lexical and semantic similarity rule: 

psslssc (t, t′) = 1 if p_ss(t, t′) = 1 or p_lssc(t, t′) = 1.

Transitivity.—The combination rule SS_LS_SC can be further amplified by considering its 

transitive closure. Given t1, t2, t3 ∈ T, let ptrans be the prediction function for the transitivity 

rule: P = {pss, plssc, psslssc, ptrans} is the set of prediction functions, ptrans (t1, t3) = 1 if ∃ p1, 

p2 ∈ P such that p1 (t1, t2) = 1 and p2 (t2, t3) = 1.

Note that all prediction functions in P are commutative. Changing the order of the 

parameters does not change the results. Section 5 will describe our experiments and evaluate 

this approach against the supervised learning approach described in Section 4.

4 SUPERVISED LEARNING APPROACH

This section introduces our supervised approach for learning and predicting synonymy 

among Metathesaurus atoms. The general idea is to learn similarities between pairs of atoms 

within a concept and dissimilarities between pairs of atoms across concepts. We present the 

model formulation, dataset generation and neural network architecture. Table 2 provides a 

list of abbreviations used in the paper for a quick reference.
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4.1 Problem Formulation

Supervised deep learning (DL) is a learning function that maps an input to an output based 

on examples of input-output pairs through layers of dense networks [39]. The Metathesaurus 

comprises approximately 10 million English atoms, each of which is associated with a 

concept. One can simply train a supervised classifier to predict which concept should be 

assigned to a given atom. However, this approach is considered an extreme classification 

task [3] due to the very large prediction space of 4.28 million concepts. However, the 

concept is simply a “mechanism” to cluster synonymous atoms together. We are primarily 

interested in assessing whether two atoms are synonymous and should be labeled with the 

same concept regardless of whether this concept already exists in the Metathesaurus. Hence, 

we formulate this problem as a similarity task. Ideally, we would like to to assess similarity 

based not only on the lexical features of an atom, but also on its context (e.g., represented by 

neighboring concepts in this source vocabulary). However, in this preliminary investigation, 

we only rely on the term itself to determine synonymy among atoms. In practice, a fully­

trained model should identify and learn scenarios where

• Atoms that are lexically similar in nature but are not synonymous, e.g., “Lung 

disease and disorder” versus “Head disease and disorder”, and

• Atoms that are lexically dissimilar but are synonymous, e.g., “Addison’s 

disease” versus “Primary adrenal deficiency”.

Moreover, such a model should outperform the current Metathesaurus building process, 

approximated by the rule-based approach described earlier.

4.2 Dataset generation

The input data for supervised learning is the same as for the rule-based approach, with the 

difference that supervised learning only relies on the terms, while the rule-base approach 

also uses some elements of context (source synonymy and semantic group). In both 

cases, we use the active subset of the 2020AA UMLS. Only atoms from English source 

vocabularies are used, excluding atoms marked as suppressible synonyms. The final dataset 

consists of 8.7M strings from 168 sources grouped into 4.2M concepts.

Ground truth.—Labeled data are taken from the pairs of atoms that are linked to the same 

(positive) or different (negative) concepts. Let POS be the set of positive pairs and NEG 
be the set of negative pairs. Given a pair of tuples t = (str, src, scui, sg) and t′ = (str′, 
src′, scui′, sg′), aui = ma(str, src), aui′ = ma (str′, src′), let mc be the mapping function 

respectively linking aui, aui′ ∈ SAUI to cui, cui′ ∈ SCUI such that cui = mc (aui) and cui′ = 

mc (aui′), if cui = cui′ then (aui, aui′) ∈ POS else (aui, aui′) ∈ NEG.

The number of positive pairs in POS is approximately 27.9M, and the number of 

negative pairs in NEG is approximately 1014 since most atoms do not share a CUI. It is 

computationally impossible for us to generate all of the negative pairs in NEG. Even if we 

could overcome resource limitations, training with extreme class imbalance towards negative 

is unlikely to yield accurate predictions. Therefore, we drastically reduce the negative 

sample space so that the datasets have a better class balance.
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Data generation principles.—We follow two principles to generate the experimental 

datasets: (1) provide different degrees of lexical similarity in the negative pairs, and (2) 

maximize the coverage of AUIs in the training datasets.

We hypothesize that neural networks can predict more efficiently if they can learn from 

interesting negative pairs that are lexically similar. However, since most negative pairs 

have no (or low) lexical similarity, it is particularly important for the algorithm to learn 

from lexically-similar negative pairs. Therefore, we created various negative sets with 

different levels of lexical similarity so that we can assess how lexical similarity influences 

performance.

We also hypothesize that neural networks can generalize better if they can learn from both 

positive and negative pairs for every string in the Metathesaurus. We would also like to 

maintain the class balance (i.e., keep the maximum ratio between positive and negative pairs 

at about 1:3). Therefore, every atom in the Metathesaurus will have n positive pairs and 

approximately ≤ 3n negative pairs.

We use the Jaccard index (1) as a measure for the similarity between atoms. To ignore minor 

variation among atoms (e.g., singular/plural differences), we assess the lexical similarity of 

normalized strings rather than original strings. Let norm be the normalizing function that 

maps a sui to its normalized string, and ms be the function mapping an AUI to its SUI. The 

JACC score assessing the similarity between two AUIs is computed as follows.

JACC(aui, aui′) = norm(ms(aui)) ∩ norm(ms(aui′))
norm(ms(aui)) ∪ norm(ms(aui′)) (1)

For example, using normalized words from atoms from Table 1, JACC(“A0066000”, 

“A0066008”) = 1/1 = 1.0 (1 word total; 1 word in common). JACC(“A0066000”, 

“A1641924”) = 0/3 = 0 (3 words total; no words in common). JACC(“A0066000”, 

“A3487586”) = 1/3 = 0.33 (3 words total; 1 word in common).

Degrees of similarity in negative pairs.—We can divide all of the negative pairs in 

the Metathesaurus into two mutually exclusive sets: (1) SIM, the negative pairs with some 

similarity (JACC > 0) between the two atoms, and (2) NOSIM, the negative pairs that have 

no similarity (JACC = 0) between the two atoms. We can formally define these sets as 

follows.

Given a pair of tuples t = (str, src, scui, sg) and t′ = (str′, src′, scui′, sg′), with aui = ma(str, 
src), aui′ = ma(str′, src′), and (str, str′) ∈ NEG, if JACC(aui, aui′) > 0, then (aui, aui′) ∈ 
SIM, else (aui, aui′) ∈ NOSIM.

In practice, the size of the SIM set is significantly smaller than that of the NOSIM set.

Variants of the negative dataset.—Using the two principles described above, we create 

four variants of the negative dataset as follows. NEGTOPN(SIM): negative pairs with the 

highest similarity scores. NEGRAN(SIM): random negative pairs having some similarity. 
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NEGRAN(NOSIM): random negative pairs having no similarity. NEGALL = NEGTOPN(SIM) 

∪ NEGRAN(SIM) ∪ NEGRAN(NOSIM): include all of the above pairs.

Formally, the number of positive and negative pairs in each dataset variant is computed as 

follows. Let mc be the ground truth function mapping an AUI a to its concept CUI c, c = mc 

(a). Let mca be the function mapping a CUI c to its AUIs a, then mca(c) = {a : c = mc (a)}. 

Let n be the number of AUIs within a CUI, then n(a) = |mca(mc (a))| = |{a′ : c = mc(a′)}|. 

Let (a, a′) be an ordered pair of AUIs, then for every AUI a having k = (n(a) – 1) positive 

pairs (a,*). NEGTOPN (SIM) includes 2*k negative pairs (a,*) or only 1 negative pair if k = 

0. NEGRAN(SIM) includes 2*k negative pairs (a,*) or only 1 negative pair if k = 0. NEGRAN 

(NOSIM) includes 2*k negative pairs (a,*). NEGALL includes up to 6*k negative pairs (a,*).

If there is a single atom in a concept, no positive pairs can be created (k=0). In such cases, 

we will add a negative pair for this atom to NEGTOPN(SIM) and NEGRAN (SIM) if this atom 

shares at least some similarity with other atoms. Note that we select twice as many negative 

pairs as needed for training purposes in each set so that we can split each set of negative 

pairs equally between learning and generalization experiments.

Learning vs. generalization datasets.—We create two types of datasets: (1) learning 

datasets for training and validating the neural network models, and (2) generalization 

datasets for testing the generalization of the neural network models. The datasets of the 

two types are mutually exclusive.

In summary, as shown in Table 3, we create 4 dataset variants (TOPN_SIM, RAN_SIM, 

RAN_NOSIM, and ALL) for each dataset type. We split the set of positive pairs, POS, 

randomly into the learning and generalization datasets (80:20 ratio). The positive learning 

datasets (80% of POS) will be combined with the one half of the negative dataset for a given 

variant. Similarly, the positive generalization datasets (20% of POS) will be combined with 

other half of the negative datasets for a given variant. Therefore, the size of the learning 

datasets are bigger than the generalization datasets because they have more positive pairs. 

Hence, we have 8 datasets in total as shown in Table 3 for the experiments in Section 5.

4.3 Neural Network Architecture

Our model adopts the Siamese structure from [32] with BioWordVec embeddings as shown 

in Figure 1.

Word embeddings.—A pair of atoms are first transformed into their respective numerical 

word representations, i.e., word vectors. A word embedding is a language modeling and 

feature learning technique in NLP where words are mapped to vectors of real numbers 

with varying dimensions. These word vectors are positioned in the vector space such that 

words that share similar contexts in the corpus are situated close to one another in the 

space [28]. Word embeddings are often used to calculate sentence pair similarity. In the 

general domain, the SemEval Semantic Textual Similarity (SemEval STS) challenge has 

been organized for over five years, which calls for effective models to measure sentence 

similarity [20]. Averaged word embeddings are used as a baseline to measure sentence 

pair similarity in the challenges: each sentence is transformed into a vector by averaging 
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the word vectors for each word in the sentence, and sentence pair similarity is effectively 

measured by the similarity between the averaged vectors using common measures such as 

Cosine and Euclidean similarity.

Instead of training the word vectors from scratch, we leverage the pre-trained biomedical 

word embeddings (BioWordVec-intrinsic) that are trained on a PubMed text corpus and 

MeSH data [50]. The rationale is to “precondition” the Siamese network with prior 

knowledge of the inherent similarity between words in the UMLS vocabulary. Prior to 

generating the positive and negative pairs, we preprocess the lexical features of UMLS 

atoms similar to how the authors in [50] preprocessed their dataset (i.e., we removed all 

punctuation except hyphen, lowercased, and tokenized on space) to ensure conformity as we 

leverage their pre-trained BioWordVec embeddings in our downstream network.

Upon plotting a word length distribution, 97% of atoms in the UMLS have a word length of 

30 or less. Hence, we apply padding or truncation to restrict the word length of each atom to 

a maximum of 30 to ensure a uniformity in dimension to speed up the training process. The 

embeddings of the pair of atoms are fed to two LSTMs, each of which processing one of the 

atoms in the pair and consisting of 50 hidden learning units. These units learn the specific 

semantic and syntactic features based on word order of each individual atom through time.

Siamese-LSTM network.—Contrary to the traditional neural networks which accepts one 

input at a time, the Siamese network is an architecture that takes a pair of inputs and learns 

representations based on explicit similarity and dissimilarity information (i.e., the pairs of 

similar and dissimilar inputs) [5]. It was originally used for signature verification [5] and 

has since been applied to various applications such as face verification [6], unsupervised 

acoustic modeling [43], and learning semantic entailment [32], as well as text similarity 

[34].

A series of deep learning (DL) models can be incorporated within the Siamese architecture. 

RNNs (Recurrent Neural Networks) are a type of DL model that excel at processing 

sequential information due to the presence of memory cells to store and “remember” data 

read over time [40]. A particular variant of RNN is the Long Short-Term Memory (LSTM). 

It enhances the standard RNN to handle long-term dependencies and to minimize the 

inherent vanishing gradient problem of RNNs with the introduction of “gates” (input, output, 

and forget gates) to control the flow of and retain information better through time. It is 

more accurate in handling long sequences. However, it comes at the cost of higher memory 

consumption and longer training times compared to a standard RNN which is faster, but less 

accurate. Nonetheless, a combination of a Siamese network with RNN and LSTM have been 

successfully applied to various NLP tasks including similarity assessment [12, 32, 44]. On 

the other hand, CNNs (Convolutional Neural Networks) have also performed well in NLP 

due to their ability to extract distinctive features at a higher granularity [20]. A Siamese 

CNN model learns sentence embedding and predicts sentence similarity with features from 

various convolution and pooling operations [15].

The output of the model is a Manhattan distance similarity function, exp(−‖LSTMA − 

LSTMB ‖1) ∈ [0, 1], a function that is well-suited for high dimensional spaces [1]. We will 
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use the Siamese neural network architecture with LSTM and the datasets described above 

to train our models. Next, we describe our design for evaluating the supervised learning 

approach and comparing it with the rule-based approach.

5 EVALUATION

This section presents the experiments to evaluate the proposed supervised learning approach 

against the baseline from the rule-based approach.

The experiments are reproducible and the baselines are also reusable. The materials for 

reproducing the experiments are publicly available. A no-cost UMLS license1 is required to 

access and download the materials in this page.

5.1 Experimental Setup

We conducted two types of experiments on the same datasets and evaluated the performance 

of (1) the rule-based approximation baseline, and (2) the proposed supervised learning 

approach. The editorial rules are defined Section 3.2 and the neural networks are described 

in Section 4. We implemented our approaches using Python 3.8 and Tensorflow 2.0.

Both experiment types are executed by deploying batches of parallel jobs to the Biowulf 

high-performance computing cluster2 at the National Institutes of Health (NIH). We use the 

norm and gpu partitions for the corresponding CPU and GPU servers in this cluster with a 

limit of 10,000 CPU cores, 60 TB of RAM, and 56 GPUs per user. Our evaluation includes 

several steps organized into different pipelines. The execution of each step maximizes the 

resources allocated in Biowulf to reduce the runtime. Our settings for deployment are: 

(1) using multiple nodes, usually 500-625 nodes, (2) using multiple threadings with 16-20 

threads per node, (3) using about 95-125 GB of RAM per node, and (4) using Tesla V100 

GPUs for the training and testing tasks.

The implementation is highly configurable, reusable, and reproducible with scripts. 

However, note that these experiments make extensive use of computational resources. We 

reportedly used over 1.6 million CPU hours over 3 months for developing and deploying the 

models.

5.2 Data Generation

We used the active source vocabularies restricted to English terms (excluding suppressible 

synonyms) in the UMLS 2020AA release, which can be downloaded 3 with a no-cost UMLS 

license1.

Table 3 shows the statistics for the 8 datasets generated for the experiments with 4 dataset 

variants (TOPN_SIM, RAN_SIM, RAN_NOSIM, ALL). Each variant has one dataset for 

learning the models and one dataset for testing the generalization of the models as described 

in Section 4.2. The process of generating these datasets, especially for the TOPN_SIM 

1 https://uts.nlm.nih.gov/home.html 
2 https://hpc.nih.gov/ 
3 https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html 
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and RAN_SIM variants, involves the computation of lexical similarity scores for all pairs 

in the Metathesaurus, i.e, 7.6e+13 pairs. This number of pairs is extremely intensive to 

compute. We took advantage of the normalized word index in the Metathesaurus for 

reducing the workload. This index links each AUI to normalized words that form the basis 

for our similarity computation. Therefore, for every AUI, we only need to compute the 

similarity scores against a small fraction of all of the other AUIs (8.7M) sharing at least 

one normalized word and select a number of pairs with top scores for TOPN_SIM and 

RAN_SIM. This operation required approximately 10,000 CPU cores in the Biowulf cluster, 

but finished within 20 hours.

5.3 Rule-based Approximation Baseline

We implemented the editorial rules defined in Section 3.2. For evaluating how individual and 

combined rules influence the performance, we created four variants of the RBA baseline: 

(1) SS for the source synonymy rule, (2) LS_SC for the lexical similarity and semantic 

compatibility rule, (3) SS_LS_SC for the disjunction of the two SS and LS_SC rules (SS OR 

LS_SC), and (4) SS_LS_SC_TRANS for the transitive closure of the SS_LS_SC variant. 

We evaluate and compare the four RBA variants using the 4 variants of the generalization 

dataset. We will select the best RBA variant as our baseline for comparison against the 

supervised learning approach.

Results.—Table 4 shows the results of the evaluation. All the RBA variants consistently 

share the same pattern across all the generalization datasets, namely very high precision 

(0.8631 to 1), but very low recall (0.2026 to 0.6871). Comparing the performance of these 

RBA variants against the 4 variants of the generalization dataset, each RBA variant shares 

the same recall for all the generalization datasets, while precision and F1 score improve 

among ALL, TOPN_SIM, RAN_SIM, and RAN_NOSIM.

The SS_LS_SC_TRANS variant performed best in terms of accuracy, recall, and F1 score, 

but had the lowest precision among all the RBA variants across all the generalization 

datasets. Adding the transitive closure (SS_LS_SC_TRANS variant) significantly increased 

the performance with a 16% increase in recall and 19-23% in F1 score across all the 

generalization datasets. The SS rule yields higher precision and recall compared to the 

LS_SC rule. Combining the two rules with OR (SS_LS_SC variant) also brings significant 

improvements with a 18% increase in recall and 19% in F1 score. We will compare this 

SS_LS_SC_TRANS variant with the deep learning approach in Section 5.5.

5.4 Training

Training parameters.—For training the neural networks, we ran various experiments to 

select the most suitable hyper-parameters that can balance performance and speed for our 

models. We tried batch sizes from 64 to 65356 and learning rates from 0.00001 to 0.01. 

While a batch size of 64 can take at least 16 hours of training for an epoch with a single 

V100 GPU, a batch size of 8192 can finish an epoch in less than 10 minutes. Also, the 

experiments in [49] suggest to fit as many data samples as possible to the GPU memory, but 

not higher than 8192. This was consistent with our preliminary findings. Therefore, we used 

a batch size of 8192 in our experiments.
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Trained Model Variants.—We split each variant (ALL, TOPN_SIM, RAN_SIM, and 

RAN_NOSIM) of the dataset into a training dataset (75%) and a validation dataset (25%). 

We trained and evaluated each variant with 100 epochs and report the results in Table 5 with 

the usual metrics (accuracy, precision, recall, and F1 score).

Results.—As shown in Table 5, all the trained models can learn very effectively. Accuracy, 

precision, recall, and F1 score exceed 93% for training and validation. We observed that 

compared to other models, the TRAINED_RAN_NOSIM model was able to learn especially 

well with all the metrics near or above 99% and low loss. This was expected because its 

input pairs are highly dissimilar lexically and mostly non-synonymous. Training seems less 

effective when the negative input pairs were more lexically similar but non-synonymous, 

like the ones in TRAINED_ALL and TRAINED_TOPN_SIM. Of note, the excellent 

training scores from the TRAINED_RAN_NOSIM do not guarantee good generalization, 

as we show in the next section.

5.5 Generalization Test Results

This section provides a comprehensive performance comparison between the 

trained models (TRAINED_ALL, TRAINED_TOPN_SIM, TRAINED_RAN_SIM, 

and TRAINED_RAN_NOSIM), and the rule-based approximation baseline 

(SS_LS_SC_TRANS) using the same generalization datasets. Since each model is 

trained with a dataset corresponding to a specific variant in terms of lexical similarity 

between atoms in the negative pairs, we perform a generalization test by evaluating 

the model performance on generalization datasets for other variants of lexical similarity 

in negative pairs. Table 6 shows the results of the performance comparison. Here we 

compare the trained models with each other and against the rule-based approximation 

SS_LS_SC_TRANS.

Comparing DL-trained models.—As shown in Table 6, the TRAINED_RAN_NOSIM 
variant seemed to perform very well with its own generalization variant RAN_NOSIM 
with all of the metric scores being above 97.9%. However, it did not generalize well 

to other test variants, especially the ALL and TOPN_SIM, with very low precision 

20-22%. The TRAINED_RAN_SIM model had a performance pattern similar to the 

TRAINED_RAN_NOSIM model, but with 20-23% improvement in F1 score for the ALL 
and TOPN_SIM generalization variants.

In contrast, compared to the two RAN models above, the two models TRAINED_ALL 
and TRAINED_TOPN_SIM had exceptionally good performance in every measure across 

all the generalization variants. Of the two, the TRAINED_ALL model had consistently 

better results than the TRAINED_TOPN_SIM in every measure. Overall, the performance 

for the trained models ranked as follows from worst to best: TRAINED_RAN_NOSIM, 
TRAINED_RAN_SIM, TRAINED_TOPN_SIM, and TRAINED_ALL.

These experiments show that the degrees of lexical similarity (ALL, TOPN_SIM, 
RAN_SIM, RAN_NOSIM) between strings in negative pairs actually influence 

performance, thus confirming our hypothesis. Learning from one of the lexical similarity 

variants is necessary, but insufficient. The trained models without TOPN_SIM pairs perform 
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worse than the trained models with those pairs, which demonstrates the importance of the 

highest lexical similarity variant. The TRAINED_TOPN_SIM model without RAN_SIM 
and RAN_NOSIM pairs perform worse than the TRAINED_ALL model with those 

pairs, which demonstrates the importance of the RAN_SIM and RAN_NOSIM pairs. The 

TRAINED_ALL model combining all three degrees yields the best performance. Next, we 

will compare the TRAINED_ALL model with the best RBA variant.

Comparing the best trained model TRAINED_ALL with the best RBA variant 
SS_LS_SC_TRANS.—Overall, the TRAINED_ALL model consistently outperforms the 

rule-based SS_LS_SC_TRANS variant by a large margin in every measure. The best 

RBA variant has high precision and low recall, while the best DL-trained model has 

both high precision and high recall across all the generalization variants. While their 

accuracy and precision are quite close (1-3%), there are significant differences in their 

recall (21-22%) and F1 score (23-24% for ALL and TOPN_SIM, 11-14% for RAN_SIM 
and RAN_NOSIM).

Comparing prediction differences.—Here we analyze those cases where the DL and 

RBA approaches make different predictions in the ALL generalization dataset. Table 7 

shows the distribution of correct and incorrect predictions in the SIM and NOSIM sets. 

Overall, while the RBA approach makes a larger number of wrong predictions than the DL 

approach, both approaches tend to have more difficulty making accurate predictions for pairs 

with a some lexical similarity (SIM) compared to pairs with no lexical similarity (NOSIM). 

This is consistent with our assumption that highly similar but non-synonymous pairs are 

more difficult to predict.

5.6 Overall Discussion

Findings.—The experimental evaluation presented above has shown that a relatively 

simple DL approach largely outperformed the best variant of the rule-based approximation 

approach. It has also validated our hypothesis that lexical similarity degrees among negative 

pairs strongly influence the performance of the trained models. However, the DL approach 

did take longer time for prediction than the RBA approach. Particularly, the DL models took 

about an hour for predicting the generalization test sets with a single V100 GPU while the 

best RBA variant took 15-20 minutes with a CPU server.

Significance.—Compared to the rule-based approximation, the excellent performance 

of the TRAINED_ALL model is even more remarkable given that it only uses lexical 

information (e.g., terms) from the source vocabularies, while the rule-based approach 

uses both lexical information and contextual information (i.e., source synonymy and 

semantic group). These results suggest that the DL approach could be further improved 

by incorporating contextual information. Furthermore, the good performance of the DL 

approach on pairs with no lexical similarity (above 95% for F1 and 99% for accuracy) 

encourages us to perform more extensive experiments on the UMLS, where most pairs 

exhibit no lexical similarity.
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Limitations and Future Work.—There are several limitations to this preliminary 

investigation, which we plan to address in future work. As mentioned earlier we have not 

yet incorporated contextual information into the neural networks, which we could do by 

using additional vectors for the terms of neighboring concepts or by using Graph Neural 

Networks for representing relations among atoms, such as source synonymy and hierarchical 

relations. Also, we have not yet evaluated the approaches at the full-scale of the UMLS 

Metathesaurus. While a full-scale evaluation is extremely expensive computationally (1014 

pairs), we plan to perform larger evaluations in the future. We also need to perform an 

error analysis to better understand how learning could be improved. Finally, we deliberately 

used fairly simple and established DL techniques in this work. In the future, we plan to 

experiment with recent techniques, such as transformers (e.g., BioBERT), which we briefly 

discuss in the next section.

Generalization.—Beyond the confines of the UMLS project, our approach can be used in 

a variety of terminology integration and ontology alignment applications in biomedicine and 

healthcare. For example, BioPortal [37] is “the world’s most comprehensive repository of 

biomedical ontologies”. It uses lexical similarity to find equivalent terms among ontologies. 

It would be interesting to test our DL approach on this vast repository. Along the same 

lines, we plan to test our approach on biomedical ontologies in the ontology alignment 

evaluation organized by OAEI. We also expect that other researchers will be encouraged 

to try similar approaches for ontology alignment outside the biomedical domain, provided 

sufficient material is available for learning purposes.

Applications.—This research is directly applicable to improve the UMLS construction 

process. Two applications come to mind, which we will be exploring shortly. The first one 

is the insertion of new source vocabularies (or new terms from updated source vocabularies) 

into the Metathesaurus as part of the bi-annual Metathesaurus update process. Predictions 

from our DL approach could replace the rule-based predictions and be presented to human 

editors, hopefully saving them time compared to the current editing environment. Another, 

more ambitious application is to “rebuild the Metathesaurus from scratch”. What we 

envision is to use our pairwise synonymy prediction to cluster atoms in a manner to recreate 

the Metathesaurus concepts. The analysis of differences with the existing Metathesaurus 

could open interesting avenues for quality assurance.

6 RELATED WORK

The OAEI has been driving ontology matching research in the biomedical domain since 

2005. The largebio track uses the datasets extracted from a subset of source vocabularies 

in the UMLS Metathesaurus. A variety of matching techniques including rule-based and 

statistical methods have been developed. Among the top general-purpose matchers are 

AgreementMakerLight (AML) [10], YAM++ [35], and LogMap [17]. AML [10] uses a 

combination of different matchers, such as the lexical matcher, mediating matcher, and 

word-based string similarity matcher. YAM++ [35] implemented a decision tree learning 

model over many string similarity metrics but leaves the challenges of finding suitable 

training data to the user, defaulting to information retrieval-based similarity metrics for its 
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decision-making when no training data is provided. LogMap [17] is designed to efficiently 

align large ontologies, generating logical output alignments.

Similarity assessment between words and sentences, also known as Semantic Text Similarity 

(STS) task, is an active research area in Natural Language Processing (NLP) due to its 

crucial role in various downstream tasks such as information retrieval, machine translation, 

and in our case, synonym clustering. The STS task can be expressed as follows: given two 

sentences, a system returns a probability score of 0 to 1 indicating their degree of similarity. 

STS is a challenging task due to the inherent complexity in language expressions, word 

ambiguity, and variable sentence lengths. Traditional approaches rely on hand-engineering 

lexical features (e.g., word overlap and subwords [22], syntactic relationship [51], structural 

representations [42]), linguistic resources (e.g., corpora), bag-of-words and term frequency­

inverse document frequency (TF-IDF) models that incorporate a variety of similarity 

measures [11] for example string-based [13] and term-based [41]. However, most are 

syntactically and semantically constrained.

Recent successes in STS [29] in predicting sentence similarity and relatedness have been 

obtained by using corpus-based [23] and knowledge-based similarity, e.g. word embeddings 

for feature representation [27] with supervised DL approaches, e.g., Siamese Network 

with Recurrent Neural Network (RNN) [32] and Convolutional Neural Networks (CNN) 

[15] as well as hybrid approaches [16] to perform deep analysis of words and sentences 

to learn the necessary semantics and structure. Unsupervised attention and transformer­

based mechanisms that were pioneered by Google research [46] have also been widely 

applied to STS with great degree of success [38]. The (self)-attention mechanism adds 

attention, weights keywords, learns contextual relations between words (or sub-words) 

in a text, and finds the connection within the sequence of words [14]. One of such 

transformer-based computations is Bidirectional Encoder Representations (BERT) which 

has consistently triumphed in most NLP tasks including STS [9]. Other variants trained 

on different corpora include BioBERT, which was pre-trained on the PubMed text corpus, 

has outperformed many biomedical-related NLP tasks [24]. This form of two-step-learning 

(pre-training and fine-tuning), termed transfer learning, is a popular method where a 

model trained on general domain with large-scale well-annotated datasets is re-purposed 

as the starting point for a model on a second (related) task. In our DL approach, we 

employed this form of learning by using pre-trained biomedical word embeddings (from 

BioWordVec-intrinsic) and subsequently fine-tuned the network with Bi-LSTM(s). Since 

this is the first contribution (to the best of our knowledge) in applying DL to biomedical 

vocabulary alignment task at scale, we adopted a knowledge-based similarity approach 

(Siamese-BioWordVec-BiLSTM network) for its simplicity and effectiveness. We aimed to 

evaluate this approach on real-world data and against a rule-based approximation of the 

current Metathesaurus construction process, instead of benchmarking it against other forms 

of resource-intensive DL techniques, such as attention and transformer-based mechanisms in 

the future work.

Reminiscent of the UMLS are two projects that aim to discover and organize links among 

large knowledge resources, BabelNet [33] and LIMES [36]. Closest to our work is a recently 

published paper in which the authors used DL techniques to measure semantic relatedness in 
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the UMLS Metathesaurus [25]. There are, however, several major differences with our work, 

including the fact that they assessed semantic relatedness among concepts, while we assess 

synonymy among atoms. In addition, the scale of their work is limited to a few thousands of 

UMLS concept pairs, while the number of atom pairs involved in our experiments is several 

orders of magnitude larger.

7 CONCLUSION

We have presented our supervised approach for learning synonymy between biomedical 

terms in the UMLS Metathesaurus. The excellent performance of the supervised learning 

model compared to the rule-based approximation of the UMLS Metathesaurus construction 

process used as our baseline shows the great potential of this learning approach, especially 

because the learning approach only makes use of the lexical features (terms) from the source 

vocabularies, while the rule-based approach additionally uses contextual information (source 

synonymy and semantics). This approach has great potential for improving the UMLS 

Metathesaurus construction process by providing better synonymy suggestions to the UMLS 

editor.
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Figure 1: 
Neural network architecture with Siamese network and BioWordVec embeddings.
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Table 2:

List of abbreviations used in the paper

Notion Meaning Notion Meaning

SRC Vocabulary source T set of tuples

STR Atom string SSRC set of SRCs

AUI Atom unique ID SSTR set of STRs

CUI Concept unique ID SAUI set of AUIs

LUI Lexical unique ID ma SSTR x SSRC → SAUI

SUI String unique ID SSUI set of SUIs

SCUI Source CUI ms SAUI → SSUI

SS Source synonym SLUI set of LUIs

LS Lexical similarity ml SSUI → SLUI

SC Semantic compatibility SSCUI set of SCUIs

SG Semantic group mu SAUI → SSCUI

TRANS Transitivity SSG set of SGs

SIM Similarity mg SAUI → SSG

NOSIM No similarity mc SAUI → SCUI

RAN Random
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