
ORIGINAL RESEARCH
published: 03 September 2020

doi: 10.3389/fncom.2020.00079

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 79

Edited by:

Pei-Ji Liang,

Shanghai Jiao Tong University, China

Reviewed by:

Robert Rosenbaum,

University of Notre Dame,

United States

Lianchun Yu,

Lanzhou University, China

*Correspondence:

Si Wu

siwu@pku.edu.cn

Received: 27 June 2020

Accepted: 27 July 2020

Published: 03 September 2020

Citation:

Tian G, Li S, Huang T and Wu S (2020)

Excitation-Inhibition Balanced Neural

Networks for Fast Signal Detection.

Front. Comput. Neurosci. 14:79.

doi: 10.3389/fncom.2020.00079

Excitation-Inhibition Balanced Neural
Networks for Fast Signal Detection

Gengshuo Tian 1, Shangyang Li 1,2, Tiejun Huang 1 and Si Wu 1,2*

1 School of Electronics Engineering and Computer Science, Peking University, Beijing, China, 2 IDG/McGovern Institute for

Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking

University, Beijing, China

Excitation-inhibition (E-I) balanced neural networks are a classic model for modeling

neural activities and functions in the cortex. The present study investigates the potential

application of E-I balanced neural networks for fast signal detection in brain-inspired

computation. We first theoretically analyze the response property of an E-I balanced

network, and find that the asynchronous firing state of the network generates an optimal

noise structure enabling the network to track input changes rapidly. We then extend the

homogeneous connectivity of an E-I balanced neural network to include local neuronal

connections, so that the network can still achieve fast response and meanwhile maintain

spatial information in the face of spatially heterogeneous signal. Finally, we carry out

simulations to demonstrate that our model works well.

Keywords: E-I balanced network, optimal noise structure, Fokker-Planck equation, fast tracking, asynchronous

state

1. INTRODUCTION

To survive in natural environments, animals have developed, through millions of years evolution,
the ability to process sensory inputs rapidly. For instance, studies have shown that human subjects
can perform complex visual analyses within 150 ms (Thorpe et al., 1996), and the response latency
of neurons in the visual cortex of monkeys is as short as tens of milliseconds (Raiguel et al., 1999;
Sugase et al., 1999).

Meanwhile, many artificial engineering systems have high demands for real-time processing
of rapidly varying signals. This is exemplified by the recently developed Spike Camera (Dong
et al., 2017), which has a sampling rate of up to 40, 000 frames per second (fps), far surpassing
conventional cameras’ 60 fps. This allows it to capture high-speed objects and their textual details,
which can be used on real-time motion detection, tracking, and recognition if we have the
appropriate algorithms and computing platforms. However, the processing speed of traditional
algorithms often cannot meet such demands.

The balance of excitation and inhibition is a general property of neural systems. The excitation-
inhibition (E-I) balanced neural network was first proposed to explain the irregular firing of cortical
neurons widely observed in the cortex (Softky and Koch, 1993; Shadlen and Newsome, 1994),
and was later confirmed by a large amount of experimental data (Haider et al., 2006; Okun and
Lampl, 2008; Dorrn et al., 2010; Graupner and Reyes, 2013). Theoretical studies have found that the
asynchronous irregular firing state spontaneously emerges in a network of excitatory and inhibitory
neurons with random connections satisfying some very loose balancing conditions (van Vreeswijk
and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998; Renart et al., 2010). The effects
of this chaotic state on optimal coding (Denève and Machens, 2016), working memory (Lim and
Goldman, 2014), and neuronal tuning (Hansel and van Vreeswijk, 2012), as well as its coexistence
with attractor dynamics (Litwin-Kumar and Doiron, 2012) have been widely studied.
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In the present study, we focus on the fast tracking ability
of E-I balanced networks, where the population firing rate
of the network is proportional to the input amplitude and
tracks input changes rapidly (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010), and investigate how E-I balanced
neural networks can be used for fast signal detection in
brain-inspired computation. Neuromorphic computing, which
mimics the structures and computational principles of the neural
system, is receiving increasing attention in artificial intelligence
(AI), as it has the potential to overcome the von Neumann
bottleneck in modern computers that limits their processing
speed (Indiveri and Liu, 2015). The fast response property of the
E-I balanced network makes it a naturally compatible candidate
to be implemented in neuromorphic systems to achieve rapid
information processing.

In the following sections, we show that the asynchronous
firing state of the network generates an optimal noise
structure which enables the network to track input changes
rapidly. We then extend the homogeneous connectivity of
the classical E-I balanced neural network to include local
neuronal connections, so that the network can achieve fast
response and meanwhile maintain the spatial information
when presented with spatially heterogeneous signals. Finally,
we carry out simulations to demonstrate the performance of
our model.

2. FAST RESPONSE OF A HOMOGENEOUS
E-I BALANCED NETWORK

To illustrate the mechanism of the fast response property,
we first investigate a homogeneously connected E-I
balanced network.

2.1. Intuition on the Mechanism of Fast
Response
The fast response property of an E-I balanced network is at
the population level. To understand this, let us consider a
non-leaky linear integrate-and-fire neuron, whose dynamics is
given by

τ
dv

dt
= I, (1)

where τ is the integration time constant of the neuron, v the
membrane potential, and I the input current. When v reaches the
threshold θ , the neuron generates an action potential, and v is
reset to the reset potential v0. Thus, for a constant input I0, the
time it takes for a neuron to generate a spike starting from v0 is

T = τ
θ − v0

I0
.

It can be seen that the response time of a single neuron is limited
by τ (Figure 1A).

However, when a neural population receives a signal,
if the noise in the system keeps membrane potentials of
different neurons at different levels, there will always be a
few neurons whose potentials are near the threshold that

can quickly respond to input changes. In such a case, the
network as a whole can respond to input changes very fast,
whose reaction time is only restricted by insurmountable
factors such as axonal conduction delays, rather than the
membrane time constant τ of individual neurons (Figure 1B).
The key of this mechanism is to prevent synchronous firing
of neurons and maintain a stable distribution of membrane
potentials in the neural population, and asynchronous firing
happens to be one of the hallmarks of an E-I balanced
network (Renart et al., 2010), which we shall discuss in more
detail below.

2.2. The Balancing Condition
We first present the conditions for maintaining an E-I balanced
neural network and the stationary population firing rates under
those conditions in the large N limit, where N is the number
of neurons (van Vreeswijk and Sompolinsky, 1998; Rosenbaum
et al., 2017). Consider a network of size N, with NE = qEN
being excitatory and NI = qIN inhibitory, where qE + qI =
1. The input current received by neuron i in population a
(a = E being excitatory and a = I being inhibitory) can be
written as

Iai (t) = Fai (t)+ Rai (t), a = E, I, (2)

where Fai is the feedforward (i.e., external) input, and Rai is the
recurrent input from other neurons in the network with the form

Rai (t) =
∑

b=E,I

∑

j

Jabij

∑

k

1

τb,s
e−(t−tj,k)/τb,s , a = E, I, (3)

where j indexes presynaptic neurons, τb,s is the synaptic time
constant of the presynaptic population b, and tj,k is the spike time
of the k’th spike of neuron j.

Since in both the cortex and industrial applications, the
number of neurons in a network is large, we may examine the
balanced network in the N → ∞ limit. Expressing the relevant
quantities in orders of N can help elucidate the mechanism.
Neurons in the network are connected randomly, with the
connection probability determined solely by the neuron types.
The probability that neuron j in population b connects to
neuron i in population a is pab for all i, j. Note that here pab is
constant, and does not tend to 0 as N → ∞. This regime is
usually referred to as dense connectivity, in contrast to sparse
connectivity where the number of presynaptic neurons for each
postsynaptic neuron is kept constant as N → ∞ (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000). If a connection exists,
its strength is set to be Jabij = jab/

√
N; otherwise Jabij = 0.

Here jab ∼ O(1). (O denotes scaling with respect to N → ∞
throughout this paper.) This scaling is a hallmark of balanced
networks. Note that in some earlier works, especially those
that employ a sparse connectivity regime (van Vreeswijk and
Sompolinsky, 1996), this scaling is often written as J ∼ O(

√
Kab),

where Kab is the average number of presynaptic inputs from
population b for a neuron in population a. Here, since we have
Kab = pabN and pab ∼ O(1), these two scalings are essentially
the same.
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FIGURE 1 | An illustration of the mechanism of fast response for a neural population. (A) The integration and firing process of a neuron receiving a noiseless input.

The integration time is constrained by the membrane time constant. (B) A distribution of membrane potentials across a neural population enables it to respond to

input changes rapidly. Red dots represent neurons whose potentials are close to the firing threshold, which are the first ones to respond to input changes.

Using the mean-field approximation, the time- and
population-averaged input current received by a neuron in
population a can be written as,

Ia = Fa + Ra =
√
N(faµ0 + waErE + waIrI), a = E, I, (4)

where rb is the mean firing rate of population b, b = E, I, and
wab = pabjabqb ∼ O(1). Here, we have written Fa as Fa =√
Nfaµ0, where fa,µ0 ∼ O(1), because if we notice that long-

distance projections are mainly excitatory, and assume that the
feedforward inputs originated from another neural population of
size O(N) and that the feedforward synaptic strength is also of
order O(1/

√
N), then Fa ∼ O(

√
N) is a natural consequence.

This is exactly the case in the Spike Camera data scenario that we
shall examine later in section 3.

Therefore, to keep I (and thus r) bounded when N → ∞, we
must have

waErE + waIrI + faµ0 ∼ O(
1

√
N
), a = E, I.

Letting N → ∞, we get approximate firing rates in the large
N limit

lim
N→∞

rE =
fEwII − fIwEI

wEIwIE − wEEwII
µ0,

lim
N→∞

rI =
fIwEE − fEwIE

wEIwIE − wEEwII
µ0.

(5)

To keep the above limits positive and yield a stable solution, it is
necessary and sufficient to let (van Vreeswijk and Sompolinsky,
1998)

fE

fI
>

wEI

wII
>

wEE

wIE
.

This is the condition for the balanced firing state.
It is worth noting that whatever the neuronal transfer function

is, the population firing rate in the large N limit is always

linearly proportional to µ0. That is, Equation (5) always holds.
This is a direct result of Equation (4), where the total input
current is the linear sum of the three O(

√
N) order terms. The

balanced firing state is a stable solution dynamically formed
by the network (van Vreeswijk and Sompolinsky, 1998; Renart
et al., 2010), and therefore requires no fine tuning of parameters
such as jab, which is different from some other models that
also try to recreate the asynchronous irregular firing state
(e.g., Brunel, 2000).

It should be pointed out that Equation (5) only gives the
O(1) order term of ra. To satisfy the specific transfer function
of neurons while maintaining the balance of the O(1) order
term, the firing rates are adjusted by an O(1/

√
N) term,

which results in a O(1) order correction to I (Equation 4).
We will come back to this in the specific case presented in
the next section.

2.3. The Mechanism of Fast Response
As previously mentioned, the asynchronous firing of neurons is
the key for fast response of the network. When the balancing
conditions presented in the previous section are met, the
network can achieve asynchronous irregular firing (Renart et al.,
2010). We next use a network of non-leaky linear integrate
and fire neurons to study the mechanism of fast response in
more detail. Notably, this simple neuron model has already
been implemented in a neuromorphic system (Fusi and Mattia,
1999). While not biologically realistic, this model captures
the key characteristics of integrate-and-fire neurons crucial for
neuromorphic computing.

The neuronal dynamics is given by Equation (1). For
simplicity, let v0 = 0. It can be easily seen that the transfer
function of this neuron is threshold-linear, i.e.,

r =







I

θτ
, I > 0,

0, I < 0.

(6)
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Substituting this into Equation (4) yields the population firing
rates of excitatory and inhibitory neurons

rE =
(fEwII − fIwEI)− 1√

N
fEθτI

(wEIwIE − wEEwII)+ 1√
N

θ(wEEτI + wIIτE)− 1
N θ2τIτE

µ0,

rI =
(fIwEE − fEwIE)− 1√

N
fIθτE

(wEIwIE − wEEwII)+ 1√
N

θ(wEEτI + wIIτE)− 1
N θ2τIτE

µ0.

(7)

Comparing the above result with Equation (5), we can see that
they are indeed O(1/

√
N) order corrections to the N → ∞

limit, as stated at the end of the last section. Note that the firing
rates still linearly encode the external input, which is a result of
the threshold-linear transfer function. We also check that even
when the external input is small or the number of neurons is
not large, the linear encoding property still holds, which expands
the dynamic range of the network. However, for other non-linear
neuron models, this linear encoding property may not hold.

Equation (7) is derived from the mean-field approximation,
that is, it is the result of averaging over time and neurons when
the system reaches a stable state. To study how the instantaneous
firing rate of the population changes with time when external
input changes, we need more detailed analysis. We shall use the
Fokker-Planck equation (Risken, 1996) to study the membrane
potential distribution pa(v, t) (Brunel and Hakim, 1999; Fusi and
Mattia, 1999; Brunel, 2000; Huang et al., 2011).

First, we examine the input received by a single neuron as
described in Equation (2). We consider an external input signal
with additive white Gaussian noise

Fai (t) =
√
NfaµF(t)+ σaF(t)ξ

aF
i (t), a = E, I, i = 1, · · · ,Na,

(8)
where ξaFi is a Gaussian white noise of magnitude 1 that is
independent across neurons. Note that the signal mean is of order
O(

√
N), while the variance is of order O(1). This is because if

we continue to use the settings considered before, and view the
feedforward input as coming from Poisson spike trains generated
by O(N) neurons firing at rates of order O(1), and transmitted
through synapses with the strength of order O(1/

√
N), then the

resulting input’s variance is the sum of O(N) number of terms
with the same order as the square of synaptic strengths (O(1/N)),
and is therefore of order O(1). This characteristic is also present
in the later analysis of recurrent inputs.

Next, we examine the recurrent inputs. When the network
enters the balanced state, since the neurons fire asynchronously
(Renart et al., 2010), and the effect of each spike is small, we
could use Gaussian white noise to approximate the variations of
recurrent inputs, and rewrite the second term in Equation (2) as
(Brunel, 2000)

Rai (t) =
√
NµaR(t)+ σaR(t)ξ

aR
i (t), a = E, I, (9)

where

µaR = waErE + waIrI , σ 2
aR = jaEwaErE + jaIwaIrI , (10)

and ξaRi is Gaussian noise of magnitude 1. The terms ξaRi and ξaFi
are independent due to the asynchronous firing state, and can
therefore be merged into one noise source. Thus, we transform
Equation (2) into

Iai (t) = µa(t)+ σa(t)ξ
a
i (t), a = E, I, (11)

where

µa =
√
N(waErE + waIrI + faµF)

σ 2
a = jaEwaErE + jaIwaIrI + σ 2

aF ,
(12)

and ξai is Gaussian white noise of magnitude 1. Also note that the
mean of the signal is consistent with Equation (4), and the mean
and variance are both of orderO(1).

Since the balanced state implies asynchronous firing (Renart
et al., 2010), the noise ξai of different neurons can be seen as
independent. Then, the excitatory (inhibitory) population can
be viewed as i.i.d. samples of the same random process. The
membrane potential distribution of population a, pa(v, t), can
thus be derived from Equation (11). We obtain the Fokker-
Planck equation (Brunel, 2000; Huang et al., 2011)

τa
∂pa(v, t)

∂t
= −µa

∂pa(v, t)

∂v
+

σ 2
a

2τa

∂2pa(v, t)

∂v2
, a = E, I. (13)

A few boundary conditions can be naturally imposed (Brunel and
Hakim, 1999; Brunel, 2000):

pa(v, t) = 0, ∀v > θ . (14)

pa(0
−, t) = pa(0

+, t), (15)

∂pa(0
+, t)

∂v
−

∂pa(0
−, t)

∂v
=

∂pa(θ , t)

∂v
. (16)

∫ θ

−∞
pa(v, t)dv = 1. (17)

In Equation (13), letting ∂pa/∂t = 0, and using the above
boundary conditions, we get the stationary solution

pa0(v) =



























1

θ
[1− exp(−2τaβa)] exp

(

2τav

βa

)

, v < 0

1

θ

[

1− exp

(

−2τa(θ − v)

βa

)]

, 0 6 v 6 θ

0, v > θ

(18)
where βa := σ 2

a /µa is the variance-to-mean ratio (VMR). This
result is confirmed by simulations (Figure 2A).

The population firing rate, i.e., the flux at θ , is

ra = −
σ 2
a

2τ 2a

∂pa0(v)

∂v

∣

∣

∣

∣

θ

=
µa

θτa
. (19)

which is consistent with Equation (6).
It can be seen from Equation (18) that the membrane

potential distribution is determined by the VMR βa. The ideal
noise structure is thus obtained when VMR stays constant
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FIGURE 2 | Simulation results of an uncoupled neural population. (A) The

membrane potential distribution of a neural population receiving independent

white noise-corrupted signals with a constant VMR of 1. The red curve is the

theoretical prediction given by Equation (18), and the blue histogram is the

actual simulation result. (B) The tracking performance of a neural population

depends on the input noise structure. The blue curve is the theoretical

prediction of steady-state firing rate given by Equation (19). The red curve is

the network performance when the VMR is constant (β = 1), which tracks the

input change almost instantaneously. The green curve is the network

performance when the noise variance, rather than the VMR, is constant

(σ ≡ 1), where a significant delay is present. Other parameters are:

N = 2, 500, τ = 1, θ = 1, and µ changing from 1 to 5 at time t = 5.

(Huang et al., 2011), because it ensures that when the external
input µF changes, the system remains in a stationary state where
Equation (19), and thus Equation (7), always holds. In this way,
the population rate can track input changes instantaneously and
linearly encode µF at all times. Figure 2B illustrates how the
response time of the population rate is determined by input
noise structure.

From Equations (12) and (19), we know that when the
network is at the stationary state,

βa =
σ 2
a

µa
=

jaEwaErE + jaIwaIrI + σ 2
aF

θτara
, a = E, I.

From Equation (7), we know rE, rI ∝ µF . For the σ 2
aF term,

if we continue to assume that the external input comes from
the Poisson spike trains of another population of neurons, and
the changes in µF are due to the firing rate of that population,

FIGURE 3 | Simulation results of a homogeneous E-I balanced network

tracking a time-varying input. The network receives a sinusoidal input centered

at µF = 0.1 with an amplitude of 0.05. σ 2
aF/µF = 0.1 remains constant. The

blue curve is the theoretic prediction given by Equation (7). The red curve is the

instantaneous average firing rate of excitatory neurons. The parameters are:

N = 1× 104,qI = 0.2,pab = 0.25, θ = 15, τE = 15, τI = 10, τE,s = 6, τI,s =
5, fE = 3, fI = 2, jEE = 0.25, jEI = −1, jIE = 0.4, jII = −1.

then we have σ 2
aF ∝ µF . Thus, when µaF changes, βa remains

constant. This is the ideal noise structure, and the population
rate of the network can track the external input instantaneously.
In reality, the ideal noise structure can only be approximately
satisfied, but the tracking speed of the network is still reasonably
fast, as confirmed by Figure 3.

It should be pointed out that the neuron model we used in this
section does not have a lower bound to its membrane potential. In
real applications, a reflecting barrier can be imposed at the reset
potential v0 (Fusi and Mattia, 1999). We verify that this does not
affect our main results. The neuron model used in the following
sections has a reflecting barrier.

3. PROCESSING SPATIALLY
HETEROGENEOUS INPUT WITH LOCAL
CONNECTIVITY

In the above, we have studied an E-I balanced neural network
with homogeneous connectivity, which is able to track input
changes rapidly. However, when the external input is spatially
heterogeneous, that is, when different neurons receive inputs of
different magnitudes, this homogeneous connectivity generates
statistically equivalent recurrent inputs for each neuron that
cannot balance the external inputs. The same Ria’s cannot balance
different Fia’s, causing neurons to receive inputs of order O(

√
N)

and fire pathologically. In addition, the random long-range
connections between neurons spread out local activities to the
entire network, which blurs the spatial location of inputs. In
applications, however, we often need to know not only when the
signal occurs but also where it occurs. To solve this problem,
we need to introduce local connectivity in the network. Previous
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studies have shown that if appropriate local connectivity is
included, the network can maintain the balanced firing state as
well as retain the spatial information of the input (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017), which enables
the network to achieve both fast tracking and spatial location
encoding. Below, we briefly introduce the balancing conditions
and the response property of an E-I balanced neural network with
local connectivity.

Here, each neuron is assigned a location (x, y) on the plane,
and local connectivity is achieved by a connection probability
that decays with the spatial distance between pairs of neurons
instead of being homogeneous as in the previous sections, so that
neurons closer to each other have higher probabilities to connect
with each other. Specifically, the probability of a connection
between neurons i and j follows

P(j connects to i) ∝ Gb

(

dij
)

, (20)

where Gb is a 2-dimensional Gaussian shaped function whose
spatial spread is determined by the presynaptic population b, and
dij is the distance between the neurons.

Similar to Equation (4), we again utilize the mean-field
approximation. Only this time, we do not average over the
entire population, but rather approximate the neural activity of
population a near location x with the neural field

Ia(x) = Fa(x)+ Ra(x) =
√
N[fa(x)+ waE ∗ rE(x)− waI ∗ rI(x)],

a = E, I, (21)

where the feedforward input Fa(x) =
√
Nfa(x), wab(x) =

qbjabpabGb(x) is the mean connectivity a neuron in population
a receives from neurons in population b at location x, and ra(x)
is the firing rate. The symbol ∗ denotes the spatial convolution
against x.

Similar to section 2.2, we have

waE ∗ rE(x)− waI ∗ rI(x)+ fa(x) ∼ O(1/
√
N), a = E, I. (22)

Let N → ∞ and perform 2-dimensional Fourier transform
against x, and we get

w̃aEr̃E − w̃aI r̃I + f̃a = 0, a = E, I,

where the symbol ˜ denotes the spatial Fourier transform.
This gives

r̃E =
f̃Ew̃II − f̃Iw̃EI

w̃EIw̃IE − w̃EEw̃II
, r̃I =

f̃Ew̃IE − f̃Iw̃EE

w̃EIw̃IE − w̃EEw̃II
. (23)

To ensure that the above Fourier transform exists, it is necessary
that r̃a tends to 0 as the frequency tends to infinity. This requires
that the external input f be “wider” than recurrent input w. This
can be understood intuitively from Equation (22), where we see
convolution makeswab ∗ rb(x) wider thanwab(x), so for the terms
to balance each other, f has to be “wider” than w. Also, to get a
positive stable solution, the following condition has to be met:

f E

f I
>

wEI

wII
>

wEE

wIE
, (24)

where the bar represents spatial average. Also, to make the
solution stable, waE has to be “wider” than waI . For a more
detailed account of these conditions, see Rosenbaum andDoiron,
2014; Pyle and Rosenbaum, 2017.

Rosenbaum et al. (2017) proved the asynchronous firing
state of the network with local connections under the above
conditions. Thus, with the premise of asynchronous firing
satisfied, our results regarding the optimum noise structure in
section 2.3 still holds. Let the total input variance of the neuron in
population a at location x be σ 2

a (x), and the VMR be βa(x), and
we have

σ 2
a (x) = jaEwaE ∗ rE(x)+ jaIwaI ∗ rI(x).

The threshold-linear transfer function gives us Ia(x) = θτara(x),
so we have

βa(x) =
jaEwaE ∗ rE(x)+ jaIwaI ∗ rI(x)

θτara(x)
,

Here the division is point-wise at each x. If βa(x) is constant
at each x for arbitrary external input fa(x), it must be spatially
invariant, that is, βa(x) ≡ βa.We can thusmove the denominator
on the r.h.s. to the left, and perform Fourier transform to get

βaθτar̃a = jaEw̃aE ∗ r̃E(x)+ jaIw̃aI ∗ w̃I(x), a = E, I.

Substituting it in Equation (23), we get

−
jEEw̃EE

jEIw̃EI
=

f̃Ew̃IE − f̃Iw̃EE

f̃Ew̃II − f̃Iw̃EI

,

−
jIIw̃II

jIEw̃IE
=

f̃Ew̃II − f̃Iw̃EI

f̃Ew̃IE − f̃Iw̃EE

.

The above equations cannot be satisfied for all fa, so this network
structure cannot maintain an optimum noise structure and
track any input instantly. However, for input changes that only
concerns magnitude and not the spatial shape, βa(x) can remain
constant and allow instant tracking. For other kinds of input
changes, although instantaneous tracking is not possible, the
response speed of the network is still significantly smaller than
what the neuronal time constant allows, as we shall explore in the
next section.

4. SIMULATION RESULTS

One of the potential applications of the balanced network’s fast
response property is to process Spike Camera data in real time.
Spike Camera is a newly developed neuromorphic hardware that
encodes visual signals with spikes (Dong et al., 2017). It consists
of artificial ganglion cells, each corresponding to a pixel, that
linearly integrate the luminance intensity and fire a spike upon
reaching the threshold, converting continuous visual information
to discrete spikes. This event-based data transmission method
significantly reduces the data volume and allows for a sampling
rate of as high as 40,000 fps. Compared to another extremely
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FIGURE 4 | Schematic of the network structure in the context of processing Spike Camera data.

high-speed camera, the Dynamic Vision Sensor (DVS) (Serrano-
Gotarredona and Linares-Barranco, 2013), which only transmits
changes in light intensity, Spike Camera can directly encode the
absolute value of the luminance signal with its spiking rate while
having an even higher sampling rate. In this section, we explore
the tracking performance of our network under the setting of
processing Spike Camera-like data.

4.1. Network Structure
We use a feedforward layer consisting of 50×50 non-leaky linear
integrate-and-fire neurons to mimic the Spike Camera. Each
neuron in this layer receives visual signal from its corresponding
pixel location, and connects to the balanced network layer
through feedforward connections JaFij , a = E, I. The balanced

network layer consists of 80× 80 excitatory neurons and 40× 40
inhibitory neurons. The neurons of each population is placed
uniformly on a square area with a side length of 1. The neurons
in the feedforward layer obeys Equation (1), and have a neuronal
time constant of τF . To reflect the high sampling rate of Spike
Camera, τF is set to be very small. The connection probability of
the network obeys

P(Jabij = jab/
√
N) = pabGb(d

ab
ij ), b = F,E, I, a = E, I,

where F stands for the feedforward layer, Gb is a 2-dimensional
Gaussian distribution centered at 0 with scale parameter Ab. To
satisfy the balancing conditions, we let AF > AE > AI and make
sure that Equation (24) holds. Since spatial location is discretized
in the network, to keep the total connection probability from
population b to population a at pab, we normalize Gb by letting
∑

i Gb(d
ab
ij ) = 1,∀j. Figure 4 demonstrates this structure.

4.2. Tracking Time-Varying Stimuli
We test the tracking performance of our network with four
example input stimuli. The first stimulus is the sudden
appearance of an object, modeled as an abrupt change in input
magnitude at the object’s location. Figure 5A shows the network’s
response to this change summarized by the population rate of
the excitatory neurons corresponding to the location of interest.

We see that in this case, the network’s activity tracks the stimulus
change very quickly.

The second stimulus is similar to the previous one, except
that the input magnitude continuously changes in a sinusoidal
manner. Figure 5B shows the tracking performance of the
network. It can be seen that the network can track the
stimulus almost instantaneously, which is expected since βE is
constant here.

The third stimulus is an object moving quickly from left to
right in the field of vision, which can be seen as a model of a
typical motion tracking task.We use the coordinates of the center
of the circular object to represent the location of the stimulus.
The coordinates calculated from the Spike Camera data and the
balanced network activity are then compared in Figures 5C,D.
The network activity closely tracks the input, and the spatial
information is preserved.

The last stimulus is similar to the previous one, except
that the motion is circular instead of linear, which implies a
constantly changing velocity. The same method is used to locate
the stimulus, and the results are shown in Figures 5E,F. The
performance is again very good.

4.3. Trackable Speeds
To explore the extent of the network’s tracking ability, we next
evaluate the temporal and spatial lags of the response. We first
change the frequency of the sinusoidal signal in the second task
in the previous section (Figure 5B) and calculate the phase lag
of the balanced network’s response. As can be seen in Figure 6A,
while the phase lag |φ| increases when the signal frequency 1/T
is higher, the delay is still very small overall.

Next, we vary the speed of the object’s circular motion in the
fourth task in the previous section (Figures 5E,F) and evaluate
the spatial phase lag of the object location decoded from the
balanced network activity compared to that of the Spike Camera
layer. As shown in Figure 6B, the tracking error is small even
when the object is moving very quickly.

Since the encoding happens at the population level, input
changes have to be propagated through the population to be
successfully tracked, and this process is mediated by synaptic
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FIGURE 5 | Performance of the network with local connections in response to time-varying stimuli. (A) Network response to the sudden appearance of an object. The

Spike Camera layer receives a disc-shaped visual input centered at (0.25, 0.5) with a radius of 0.05, whose magnitude changes abruptly from 1.5 to 15 at t = 75. A

background noise is added. The blue curve is the firing rate of the area corresponding to the visual input in the Spike Camera layer. The red curve is the rate of the

excitatory neurons at the same area in the balanced network layer, which is normalized for better comparison with the blue curve. (B) Same as panel (A), except that

the input amplitude follows the sinusoidal function µ(t) = A(sin(B ∗ 2π t/T ))+C,A = 30,B = 3/2,C = 30. (C,D) The stimulus is an object moving across the visual field

in constant velocity. The object has the same shape as panels (A,B), with a magnitude of 10. Panels (C,D) show the tracking of the x and y coordinates, respectively.

The blue curve is the object location decoded from the activity of the Spike Camera layer, and the red curve is that of the balanced network layer. (E,F) Same as

panels (C,D), except that the stimulus moves counterclockwise on a circle in constant speed. The network parameters are θ = 15, τF = 1, τE = 15, τI = 10,

τF,s = τE,s = 5, τI,s = 2.5,pEF = 0.05,pIF = 0.025,pEE = 0.02,pEI = 0.08,pIE = 0.06,pII = 0.08,AF = 0.05,AE = 0.02,AI = 0.02, jEF = 140, jIF = 93.3, jEE = 80,

jEI = −320, jIE = 40, jII = −320.

interactions. This lead us to suspect that the synaptic time
constants τb,s could be a limiting factor for tracking performance.
To study this, we varied τb,s in both the temporal and
spatial tracking tasks. Indeed, as can be seen in Figure 6, a
shorter synaptic time constant leads to better performance. In
practice, the shape of the synaptic current can be designed
to have a τb,s as small as possible. The real constricting
factor is the synaptic transmission delay, which corresponds

to the communication speed of the hardware, but this is
expected to be insignificant given the highly compact nature of
neuromorphic chips.

5. DISCUSSION AND CONCLUSION

This paper proposed an algorithm for fast response in
neuromorphic systems based on E-I balanced networks,
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FIGURE 6 | Quantifying the network’s performance with temporal and spatial phase lag. To examine the effect of the synaptic time constant on tracking performance,

we define τb,s = kτb,s0,b = F,E, I, where τb,s0 is the set of parameters used in Figure 5. (A) Temporal phase lag in the second task (Figure 5B) with different signal

periods. (B) Spatial phase lag in the fourth task (Figures 5E,F) with different circular motion periods. Ten trials for each data point. Error bars show standard deviations.

systematically analyzed its fast response mechanism, and
introduced local connections to maintain balance and retain
spatial information in the face of spatially heterogeneous inputs.
Simulations verified that the network indeed performs well with
rapidly changing input stimuli.

There are still some questions left to explore. For instance,
we have mentioned that the network cannot keep an optimal
noise structure at all times, and thus the membrane potential
distribution will change with the input. A study of the transient
dynamics during such changes could help us further improve the
network performance. As another example, notice that most of
the theoretical analyses in the paper were conducted in the limit
of N → ∞. In real-world applications, we often have to track
small objects, during which the number of neurons encoding it
usually does not exceed a few hundred. Studying the finite-size
effect could help us better understand the network dynamics.

Although we mainly discussed the case where the input comes
from Spike Camera, the network structure we proposed is not
limited to processing visual signal. The “location” of neurons can
also correspond to tuning to different variables or representation
of abstract features. To achieve real-time processing of high-
frequency data, the fast response property is required for
each computational process. There has been a lot of research
discussing how to implement various computations on top of
a balanced network (Barrett, 2012; Hansel and van Vreeswijk,
2012; Litwin-Kumar and Doiron, 2012; Lim and Goldman, 2014;
Denève and Machens, 2016; Pyle and Rosenbaum, 2017). The
asynchronous irregular state can be taken as a model of the
spontaneous state in the cortex. With the spontaneous state as
a global attractor, and the specific computations and memories
as input-sensitive local attractors (Amit and Brunel, 1997;
Litwin-Kumar and Doiron, 2012), the chaos in the network’s
balanced firing state can allow it to respond to specific inputs
very rapidly and initiate the required computation. Besides
the fast response property, the balanced state also has other
computational advantages such as stochastic resonance (Barrett,
2012).

Neuromorphic computing systems colocalize computation
and memory by mimicking neural structures like neurons

and synapses. This allows it to circumvent the von Neumann
bottleneck, granting it enormous potentials in processing speed
(Indiveri and Liu, 2015). There has been a lot of work
investigating possible mechanisms for fast neural response (e.g.,
Bharioke and Chklovskii, 2015; Yu et al., 2015) which could
potentially complement the processing speed of neuromorphic
systems, and the balance of excitation and inhibition we explored
here is one of them. The model we proposed here, with
its simple neuron model and connectivity structure, can be
readily implemented in hardware and serve as a fast-responding
module integrated in a general neuromorphic system for rapid
information processing. This paper thus lays the groundwork
for realizing various kinds of fast computation using balanced
networks, especially in neuromorphic systems.
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