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Abstract

Background and Aims: Recent studies have highlighted the biological significance of

pyroptosis in cancer development. Nevertheless, it is still uncertain if pyroptosis also

plays a part in immune modulation and the creation of the tumor micro-

environment (TME).

Methods: The pyroptosis regulatory genes (PRGs) were comprehensively assessed in

1938 head and neck cancer samples, and systematically correlated these

modification patterns with the infiltration characteristics of TME cells. The

unsupervised consensus analysis method was used to identify specific pyroptosis

clusters. The single‐sample gene set enrichment analysis and CIBERSOFT algorithms

were used to evaluate the infiltration levels of various immune cell subsets. A

principal component analysis algorithm was used to construct the pyrolysis potential

index (PPI) to quantify the pyrolysis regulation patterns in head and neck squamous

cell carcinoma (HNSC).

Results: Pyrophosphate regulatory genes (PRGs) are often upregulated in tumors

due to mutations. PRGs relate to various clinical outcomes and pathways. Molecular

subtyping identified pyroptosis patterns, which align with three tumor immunophe-

notypes: immune‐inflamed, immune‐excluded, and immune‐desert. The PPI mea-

sures pyrolysis roles, showing higher PPI in tumor samples linked to subtypes and

clinical characteristics. Lower PPI correlates with longer survival, increased immune

activity, more tumor mutations, high PD‐L1 expression, and mutations in significant

genes like PIK3CA. Such patients also experience enhanced immune responses in

immunotherapy trials.

Conclusion:We conducted a comprehensive examination of pyroptosis in HNSC and

developed a PPI indicator that shows a strong correlation with the variety and

intricacy of the TME.
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1 | INTRODUCTION

Human head and neck squamous cell carcinoma (HNSC) is a

prevalent form of cancer, affecting more than 500,000 individuals

worldwide annually.1–3 Even with surgical intervention, radiation

treatment, and chemotherapy, approximately 50% of patients

succumb to the illness. Stage III/IV tumors are the main subgroup

of HNSC.4 Patients diagnosed with Stage III/IV have a bleak outlook,

as indicated by a 40% recurrence‐free survival rate and a 60% overall

survival (OS) rate over 5 years.5,6 Hence, there is a requirement for

new therapeutic approaches, either through single‐drug treatment or

a combination of therapies, to enhance the outlook for primary

advanced HNSC. Considering the limitations of HNSC treatment,

new treatment targets are crucial to improve the clinical efficacy of

HNSC. Therefore, there is an urgent need for new reliable prognostic

models for more feasible targeted therapies. According to recent

research, it has been found that genes associated with pyroptosis

(PRGs) are frequently disrupted in cases of head and neck cancer.7,8

Nevertheless, as far as we know, there has been no systematic

analysis conducted on the carcinogenic impacts of PRGs in head and

neck cancer.

Regulated cell death, a pathway of programmed cell death, has a

significant impact on the development, maintenance of balance, and

disease progression in organisms. Pyroptosis, a recently identified form of

programmed cell death, is involved in the pathogenesis of several

conditions, such as autoimmune disorders, diseases related to immuno-

deficiency, neurodegenerative disorders, ischemia–reperfusion injuries,

and cancer. CD4+ T lymphocytes (immune cells of HIV infection) exhibit

resistance to cellular scorching,9 a process implicated in the development

of acute liver injury and acute lung injury.10,11 Classical cellular scorching

of NLRP1 inflammatory vesicles12 is a significant process that plays a

crucial role in the neurodegeneration observed in Alzheimer's disease.

With the increasing understanding of pyroptosis, its complex biological

function has been uncovered. Drug resistance has also been shown to be

linked with pyroptosis and PRGs. According to a previous report by Guo

et al.,13 the regulation of GW4064 was found to trigger pyroptosis in

colorectal cancer cells, leading to enhanced chemosensitivity both in vivo

and in vitro. In a recent study, it was discovered that BIX‐01294 can

boost the effectiveness of chemotherapy in gastric cancer through the

stimulation of GSDME‐mediated pyroptosis.14 Hence, pyroptosis might

have a significant impact on the progression and management of cancer.

Exploring the systematic examination of pyroptosis and its disruption in

HNSC may prove beneficial for clinical intervention.

Studying the correlation between cell pyroptosis and disease

could offer fresh perspectives on the clinical management of the

condition. Pyroptosis has been found to have a significant impact on

tumor development and antitumor mechanisms, according to the

current research. Nevertheless, the examination of its particular role

in head and neck cancer remains unexplored. Hence, an organized

investigation was carried out to ascertain the levels of expression of

PRGs in tissues of head and neck tumors. In addition, the predictive

significance and the association between pyroptosis and the immune

microenvironment of tumors were investigated. Furthermore, a

pyroptotic potential index (PPI) was developed to measure the

pyroptosis alteration patterns of individual tumors and forecast the

immune therapy response of patients.

2 | MATERIAL AND METHODS

2.1 | Source of data and pre‐processing

Seven publicly accessible datasets (GSE27020,15 GSE31056,16

GSE30784,17 GSE39366,18 GSE41613,19 GSE65858 [LHNG

cohort],20 and TCGA‐HNSC cohort) were utilized to gather messen-

ger RNAs and clinical information. Data of TCGA‐HNSC datasets

obtained from The Cancer Genome Atlas (TCGA) website were

downloaded, specifically RNA sequencing (RNA‐seq; fragments per

kilobase million value) data. The R package GEOquery.21 was used to

download the microarray data for GSE27020, GSE31056, GSE30784,

GSE39366, GSE41613, and GSE65858 from Gene Expression

Omnibus (GEO). To remove nonbiological technical biases, the sva

package utilized the “ComBat” algorithm.22 The OS data were

available for TCGA‐HNSC, GSE27020, GSE31056, GSE41613, and

LHNG cohorts. Data on somatic mutation and copy number variation

(CNV) were obtained from the TCGA database. To depict the CNV

pattern of 33 genes involved in pyroptosis on human chromosomes,

the R package “Rcircos” was utilized. The quantification of tumor

mutation burden (TMB) involved calculating the number of somatic

alterations per megabase within the genome, as stated by Hellmann

et al. in 2018.23

2.2 | Unsupervised clustering analysis using a
consensus algorithm

To identify differentially expressed PRGs, a collection of 33 PRGs

was extracted from six integrated GEO datasets. Pyroptosis modifi-

cation patterns were identified using unsupervised clustering analy-

sis, which was based on the 33 genes regulating pyroptosis. This

analysis classified patients into three distinct clusters. To ensure

classification stability, the “Pam” method underwent unsupervised

clustering analysis using the “ConsensuClusterPlus” R package,24

which was repeated 1000 times.

2.3 | Functional enrichment analysis and gene set
variation analysis

To examine the diversity in biological processes among various

pyroptosis modification patterns, we utilized the gene set variation

analysis (GSVA)25 technique with the R package “GSVA.” For GSVA

analysis, the MSigDB database was used to download the gene sets

labeled as “c2.cp.kegg.v6.2.‐symbols.” The R package “clusterProfiler”

was used to perform KEGG annotation for genes relevant to

pyroptosis, with a threshold of FDR < 0.05.26
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2.4 | Assessment of the infiltration of cells in the
tumor microenvironment

Quantification of the infiltration levels of various immune cells in

HNSC was conducted through a single‐sample gene set enrich-

ment analysis (ssGSEA) as described by Barbie et al. in 2009.27

Recently published studies27,28 provided gene panels specifically

designed for 28 different types of immune cells. The ssGSEA

analysis was used to calculate enrichment scores, which repre-

sented the relative abundance of tumor microenvironment

(TME)‐infiltrating cells in each sample.

2.5 | Differential expression analysis between
distinct phenotypes

Using the “Limma” R package,29 differential expression analysis was

conducted to identify differentially expressed genes (DEGs) among

different subtypes.

2.6 | Principal component analysis dimensionality
reduction and establishment of the PPI index

The PPI, known as the pyroptosis gene signature, was developed

as a scoring system to assess the pyroptosis patterns in patients

with head and neck cancer. To begin with, we chose the shared

DEGs obtained from various pyroptosis clusters and employed a

univariate Cox regression model to conduct prognostic analysis

for each gene. Afterward, principal component analysis (PCA) was

employed to extract the first and second principal components as

the signature score. In conclusion, a technique resembling prior

research30,31 was utilized to establish the PPI index for every

individual.

∑ ∑PPI score = PCiA + PCiB.

I represent the manifestation of genes related to the m6A

phenotype.

2.7 | Somatic alteration data

Data on genetic mutations in patients from the TCGA‐HNSC group

were obtained from the TCGA site (https//www.cancer.gov/tcga/).

The calculation of TMB in HNSC was determined by considering the

overall count of non‐synonymous mutations. HNSC driver genes

were analyzed using the ComplexHeatmap package's “oncoplot”

function between high and low immune cell infiltration (ICI) scores.32

We identified the 25 most frequently altered genes with the highest

mutation rate.

2.8 | Prediction of response to chemotherapy/
immunotherapy

While immune checkpoint blockade therapies that inhibit T‐cell

suppressor molecules in cancer treatment have demonstrated

remarkable outcomes and the ability to enhance the advancement

of advanced cancers, they may not be appropriate for every

patient.33,34 The therapeutic benefit of the PPI score was further

analyzed in two immunotherapy cohorts: the IMvigor 2100 cohort,

which involved the intervention of advanced urothelial cancer with

the anti‐PD‐L1 antibody atezolizumab,35 and the GSE78220 cohort

from GEO, which focused on the treatment of metastatic melanoma

with the anti‐PD‐1 antibody pembrolizumab.36

To forecast clinical responses to immune checkpoints, the TIDE

algorithm37 and Subclass mapping38 were employed for the estima-

tion of tumor immune dysfunction and exclusion. Predictions of the

response to chemotherapy were also made for every sample using

the most extensive pharmacogenomic database accessible to the

public (Genomics of Drug Sensitivity in Cancer [GDSC], https//www.

cancerrxgene.org/).39 Table S1 listed a total of 149 medications with

the capability to address cancer. The R software's “pRRophetic”

package was utilized for making predictions. The package utilized

ridge regression to calculate the IC50 values of the samples and

evaluated the prediction accuracy through 10‐fold cross‐validation

using the GDSC training set.40

3 | RESULTS

3.1 | The genetic variation of PRGs in head and
neck cancer is reflected in the landscape

In this study, a total of 33 PRGs were ultimately discovered. Out of

the 506 samples, a total of 127 exhibited mutations in m6A

regulatory genes, accounting for a prevalence rate of 25.10%. In

HNSC samples (Figure 1A), CASP8 displayed the highest mutation

frequency, with NIRP3 following closely. Notably, TNF, PJVK, and

GSDME, which are involved in prognosis regulation, exhibited no

mutations. In the examination of CNV modification occurrence, a

dominant CNV modification was observed in 33 regulatory genes,

with the majority of genes being linked to copy number amplification.

However, cysteinyl aspartate protease (caspase or CASP) family

genes like CASP8, CASP4, and CASP1 exhibited a widespread

occurrence of CNV deletion (Figure 1B). Figure 1C displays the

position of CNV modification of PRGs on chromosomes. Figure 1D

clearly showed that HNSC samples were completely differentiated

from normal samples based on the expression of the 33 PRGs. An

abnormal elevation of most PRGs was observed in tumor samples

when compared to normal samples, except for CASP9, ELANE, IL18,

and IL6 (Figure 1E). To assess the reciprocal control among the PRGs,

a Spearman correlation analysis was conducted (see Figure S1). Other
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PRGs exhibited a notable and positive correlation with CASP5. In

general, the findings indicated that there is significant diversity in the

genetic and expression patterns of PRGs between normal and HNSC

samples, suggesting that the expression of PRGs plays a crucial part

in the onset and progression of HNSC.

3.2 | Identification of pyroptosis‐related molecular
subtypes

In the meta‐GEO cohort, we deemed six GEO datasets (LHNG

cohort/GSE65858, GSE41613, GSE39366, GSE31056, GSE30784,

and GSE27020) as suitable, as they had clinical data available. The

prognostic values of the 33 PRGs in patients with HNSC were

revealed using a univariate Cox regression model and the

Kruskal–Wallis test (Figure S2A,B; Table S2). The PRG network

(Figure 2A) demonstrates the synthesis of the connections, interac-

tions, and prognostic importance of the 33 PRGs in HNSC patients.

The discovery indicated that the interaction among PRGs might have

a significant impact on the development of pyroptosis alteration

patterns and the characterization of TME cell infiltration in distinct

tumors. Using the aforementioned assumptions, the consensus

cluster analysis was employed to categorize samples into distinct

groups with varying pyroptosis alterations, depending on the 33

PRGs' expression. Figures 2B and S3A–C revealed the identification

of three separate clusters of modification patterns, consisting of 197

patients in Cluster I, 727 samples in Cluster II, and 286 cases in

Cluster III. The three clusters were compared using Kaplan–Meier

survival analysis, and the log rank test was employed to determine

the significant disparity in survival time. The study revealed that

individuals belonging to gene cluster III exhibited a more favorable

prognosis, whereas those in gene cluster I had an unfavorable

prognosis for OS (based on the log rank test, with a significance level

of p < 0.05; as shown in Figure 2C). In addition, the TCGA‐HNSC

group was confirmed and yielded comparable outcomes (log rank

analysis, p < 0.05; Figure 2D). Using PCA, the expression profiles of

the 33 PRGs were analyzed to identify three subgroups in the meta‐

GEO cohort (Figure 2E).

F IGURE 1 Landscape of genetic and expression variation of pyroptosis‐related genes (PRGs) in head and neck cancer. (A) The mutation
frequency of 33 PRGs in 502 patients with head and neck cancer from the TCGA‐HNSC cohort. The number on the right indicated the mutation
frequency in each PRG. Each column represented an individual patient. (B) The CNV variation frequency of PRGs in the TCGA‐HNSC cohort. The
height of the column represented the alteration frequency. The deletion frequency, blue dot; the amplification frequency, red dot. (C) The
location of the CNV alteration of PRGs on the chromosomes. (D) Principal component analysis of PRGs to distinguish tumors from normal
samples. (E) The difference of messenger RNA expression levels of 33 PRGs between normal and HNSC samples.
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3.3 | The infiltration properties of immune cells
from the TME in the three clusters associated with
pyroptosis

To reveal the biological role of the pyroptosis‐related clusters, an analysis

of GSVA enrichment was performed. According to GSVA, Cluster A

showed significant enrichment in pathways associated with energy

metabolisms, such as CITRATE_CYCLE_TCA_CYCLE, PEROXISOME, and

FATTY_ACID_METABOLISM. On the other hand, Cluster B exhibited

significant enrichment pathways linked to cancer activation and stromal

pathways, including the NOD_LIKE_RECEPTOR_SIGNALING_PATH-

WAY, RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY, T_CELL_RE-

CEPTOR_SIGNALING_PATHWAY, and NATURAL_KILLER_CELL_ME-

DIATED_CYTOTOXICITY. Interestingly, Cluster C exhibited a significant

enrichment in metabolic regulation and signaling pathways related to the

stroma (Figure 3A–C).

Using the ssGSEA algorithm, we systematically assessed the

TME cell infiltration models and TME signatures in the three ICI

clusters. Figure 3D displayed the heatmap of 28 subpopulations of

immune infiltrating cells within pyroptosis‐associated clusters.

Cluster A exhibited a significant presence of B cells that were

extremely inexperienced, CD8 T cells, follicular helper T cells,

regulatory T cells (Tregs), activated natural killer (NK) cells,

monocytes, M0 macrophages, and resting mast cells among the

three subtypes. Group B patients exhibited a notably elevated

abundance of T cells CD4 memory resting, M1 and M2 macro-

phages, dendritic cells resting, stromal score, and immune score.

Cluster C subjects exhibited a notable rise in the infiltration of

plasma cells. In addition, CIBERSORT, an algorithm that employs

support vector regression to assess immune cell subpopulations in

the TME, was employed to provide further insights into immune

infiltration within the three subpopulations. Figure S4 also showed

similar findings. Hence, there is speculation that the activation of

stroma in Cluster B hinders the immune cells' ability to suppress

tumor growth. The additional examination also verified that stromal

stimulation in the Cluster B subtype was greatly intensified, and the

mechanisms associated with cell death, the pathway of signaling

through toll‐like receptors, and the pathway of signaling through T

cell receptors were demonstrated, providing further validation of

our supposition.

F IGURE 2 Patterns of pyroptosis modification in HNSC. (A) The interaction between 33 PRGs in head and neck cancer. The size of circles
represented the effect of each PRG on the prognosis, and the range of values calculated by the lo rank test was p < 0.001; p < 0.01; p < 0.05;
p < 0.1, respectively. Green dots in the circle, risk factors of prognosis; black dots in the circle, protective factors of prognosis. The lines linking
PRGs showed their interactions, and thickness showed the correlation strength between PRGs. A negative correlation was marked with blue and
a positive correlation with red. (B) Unsupervised clustering of 33 PRGs in five independent HNSC cohorts. (C) Kaplan–Meier curves of overall
survival (OS) for 939 HNSC patients in the meta‐GEO cohort with different pyroptosis clusters. (D) Kaplan–Meier curves of OS for 394 HNSC
patients in the TCGA HNSC cohort with three pyroptosis clusters. (E) Principal component analysis of three pyroptosis clusters to distinguish
tumors from each other.
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Spearman's correlation analyses (Figure 3E) were conducted to

investigate the precise association between every type of TME

infiltration cell and each PRG. Enhanced ICI showed a significant

correlation with the high expression of several PRGs like CASP family

members and NOD2, while neutrophil infiltration levels were

negatively correlated with the expression of GPX4, CASP3, and

CASP6. NLRC4 caught our interest among these PRGs due to its

notable association with prognosis and immune infiltration, as

depicted in Figure 3F.

3.4 | DEGs associated with pyroptosis in head and
neck cancer

The “limma” package of the R software was used to determine the

transcriptomic variation between different pyroptosis pheno-

types. The empirical Bayesian approach (Figure 4A) was used to

analyze the 1276 DEGs that were common to the three clusters.

Figure 4B,C illustrates that DEGs were concentrated in immune‐

related Gene Ontology categories, such as T cell stimulation,

F IGURE 3 Pyroptosis modification and relevant biological pathway. (A–C) GSVA enrichment analysis showing the activation states of
biological pathways in three pyroptosis clusters. The heatmap was used to visualize these biological processes; yellow represented activated
pathways and blue represented inhibited pathways. HNSC cohorts were used as sample annotations. (A) Pyroptosis cluster A versus pyroptosis
cluster B; (B) pyroptosis cluster B versus pyroptosis cluster C; (C) pyroptosis cluster A versus pyroptosis cluster C. (D) Differences in
tumor‐infiltrating immune cells between the three clusters. (E) Cellular interaction of tumor‐infiltrating immune cell types. (F) NLRC4 has a
significant positive correlation with prognosis and immune infiltration.
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release of neutrophil contents, immune receptor function, and

neutrophil activation in immune response. In addition, they were

also found in pathways associated with immune/cancer interac-

tions, including the TNF signaling pathway, the IL‐17 signaling

pathway, the NF‐kappa B signaling pathway, the PI3K‐Akt

signaling pathway, and the differentiation of Type 17 T helper

cells (Th17).

Out of these DEGs, a total of 545 DEGs were recognized as

prognostic genes according to Table 1. The prognostic DEGs were

then analyzed by the unsupervised clustering method. In the meta‐

GEO cohort, three genomic clusters, specifically gene Clusters A, B,

and C, were discovered. Figure 5A displayed the transcriptome

profiles of the DEGs within the three genomic clusters, as depicted

by the heat map. In gene cluster C, among the 33 PRGs, AIM2,

CASP1, CASP4, CASP8, GSDMD, GSDME, IL1B, IL6, NLRP1, NOD1,

PLCG1, and TNF showed significant upregulation. On the other hand,

gene cluster A exhibited upregulation of CASP3, CASP6, CASP9,

GPX4, GSDMB, and PRKACA. Aberrant expression of GSDMA,

GSDMC, IL18, NOD2, PYCARD, and SCAF11 was observed in gene

Cluster B (Figure 5B). Next, the examination focused on the particular

association between every type of TME infiltration cell and each

PRG. Gene Cluster A exhibited elevated levels of stimulated B cell,

eosinophil, stimulated CD8 T cell, and regulatory T cell. Figure 5C

showed that Gene cluster C exhibited enrichment of activated CD4 T

cell, activated dendritic cell, CD56 bright NK cell, CD56 dim NK cell,

gamma delta T cell, immature B cell, MDSC, macrophage, mast cell,

monocyte, NK T cell, NK cell, regulatory T cell, Th1 cell, Th17 cell,

and Th2.

According to survival analysis, patients with gene cluster C

exhibited a more favorable prognosis, whereas those with gene

cluster A showed an unfavorable prognosis for OS (log rank test,

p < 0.001; Figure 5D). Furthermore, it was noted that individuals

with a progressed clinical phase were characterized by the gene

Cluster B subgroup, while those exhibiting decreased PD‐L1

expression were predominantly found in gene Cluster B and C

subgroups (Figure 5E). The results also indicated that stratifica-

tions exhibited distinct clinicopathologic characteristics and were

identified as gene Clusters A, B, and C (Figure 5F,G,I). The

regulatory genes showed notable variations among the three

subgroups of PRGs signature, aligning with the anticipated

outcomes of the pyroptosis modification pattern.

3.5 | Establishment of the PPI index and
exploration of its clinical relevance

While our results validate the involvement of pyroptosis in

prognosis and regulation of immune invasion, it is important to

note that these analyses were solely conducted on patient

populations and did not provide an accurate prediction of the

alteration of pyroptosis in an individual tumor. Hence, an

indicator of future outcomes score was formulated and desig-

nated as the PPI index relying on the PCA algorithm. The meta‐

GEO cohort patients were divided into two categories based on

their PPI scores, using the most accurate threshold values.

Figure 6A illustrates the allocation of patients among the three

gene clusters. Figure 6B also assessed the correlation between

established immune signatures and the PPI score to provide a

clearer depiction of the PRG signature's characteristics. In

Figure 6C, pyroptosis Cluster A exhibited a greater PPI compared

to Cluster C and Cluster B, while in Figure 6D, gene Cluster A

displayed a higher PPI than Cluster C and Cluster B. Spearman's

correlation analysis was utilized to investigate the association

between identified biological traits and PPI scores. The scatter

diagram indicated a significant positive correlation between PPI

scores and cell cycle regulators (Figure 6E) as well as the WNT

pathway (Figure 6F) while displaying a negative correlation with

mismatch repair (Figure 6G) and angiogenesis (Figure 6H).

F IGURE 4 Construction of pyroptosis‐related differentially expressed gene (DEG) signatures and functional annotation. (A) Venn diagram of
1276 pyroptosis‐related DEGs between three pyroptosis clusters. (B) Functional annotation for PRGs using Gene Ontology GO enrichment
analysis. (C) Functional annotation for PRGs using the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis.
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TABLE 1 Prognostic genes of pyroptosis‐related DEGs in the
meta cohort.

ID HR HR.95L HR.95H p Value

XYLT2 1.29691 1.076004 1.56317 0.006355

LARP6 1.266636 1.125973 1.424873 8.31E−05

NOX4 1.139376 1.026343 1.264857 0.014376

COL10A1 1.062942 1.008538 1.120282 0.02278

SULF1 1.077868 1.010165 1.150109 0.02348

ACVR1 1.159116 1.002066 1.34078 0.046839

FOXF2 1.14116 1.023744 1.272041 0.017146

EGLN3 1.086472 1.002792 1.177135 0.042544

P4HA1 1.476689 1.304708 1.67134 6.83E−10

STC2 1.271687 1.160355 1.3937 2.72E−07

HOXC6 1.113041 1.001791 1.236646 0.046232

GLG1 1.256676 1.03427 1.526907 0.021503

CDH11 1.098933 1.018988 1.185149 0.014362

TGM1 0.941318 0.895893 0.989046 0.016556

LAMB3 1.125807 1.030175 1.230318 0.008888

APP 1.25389 1.096859 1.433403 0.000919

ARL4C 1.146228 1.018068 1.29052 0.024072

NID1 1.164153 1.061618 1.276592 0.001233

SERPINE2 1.127064 1.044853 1.215743 0.001966

DKK3 1.181 1.068068 1.305873 0.001178

MAGEH1 1.139605 1.004257 1.293195 0.042784

MMP13 1.051916 1.012552 1.09281 0.009295

LHFPL2 1.166791 1.011219 1.346297 0.03462

GNA12 1.428293 1.209139 1.687169 2.73E−05

PTK7 1.193968 1.039851 1.370925 0.011932

KLK12 0.931325 0.888362 0.976367 0.003152

FARP1 1.14206 1.002505 1.301041 0.045761

LRP12 1.226166 1.089555 1.379907 0.000717

TMEM184B 1.330451 1.11395 1.58903 0.001628

TPST1 1.205569 1.078002 1.348231 0.001052

CSTB 0.861523 0.785539 0.944856 0.001556

TRAM2 1.161685 1.011715 1.333886 0.033577

MAP1B 1.130082 1.027339 1.2431 0.011918

CRNN 0.965201 0.934299 0.997124 0.032891

NEDD9 1.212145 1.081247 1.35889 0.000968

DSG2 1.113117 1.024583 1.209302 0.011268

HSP90B1 1.360787 1.118377 1.65574 0.002086

ETS1 1.147718 1.01515 1.297599 0.027802

TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

TGM3 0.947095 0.914268 0.981102 0.002528

DPY19L1 1.180051 1.021605 1.363073 0.024416

INHBB 1.18258 1.087874 1.285531 8.23E−05

NFE2L1 1.241567 1.049791 1.468376 0.011485

PPL 0.881535 0.819119 0.948707 0.000765

INHBA 1.184569 1.102599 1.272634 3.67E−06

MMP2 1.111267 1.015929 1.215552 0.021151

RAB25 0.868311 0.806203 0.935204 0.000192

PLAUR 1.228336 1.099381 1.372416 0.000279

LITAF 1.186823 1.00714 1.398562 0.040864

MSC 1.200947 1.094987 1.31716 0.000102

SOAT1 1.276423 1.096193 1.486287 0.001675

ATP2B4 0.832925 0.706825 0.981523 0.029063

CHPF 1.269965 1.110793 1.451945 0.000469

PTPRR 1.253903 1.026589 1.531549 0.026616

CSTA 0.853663 0.797013 0.91434 6.30E−06

PITX1 0.802528 0.73286 0.878818 2.05E−06

SLC16A6 0.870687 0.76798 0.98713 0.030601

ALS2CL 0.860694 0.756226 0.979593 0.02307

MICAL2 1.219536 1.080396 1.376596 0.001323

MSN 1.173952 1.018028 1.353757 0.027405

BCAT1 1.121793 1.030633 1.221017 0.007867

EVPL 0.85879 0.786391 0.937854 0.000704

GLTP 0.819513 0.741 0.906345 0.000107

TGFBI 1.120726 1.045805 1.201016 0.001244

ANXA5 1.535987 1.298945 1.816288 5.21E−07

FUT6 0.843177 0.767389 0.92645 0.000386

DENND2D 0.726704 0.626423 0.843038 2.51E−05

AXL 1.203911 1.078942 1.343355 0.000904

ZNF639 1.259112 1.06078 1.494527 0.008422

CYB5R3 1.260687 1.017797 1.561539 0.033878

PDIA6 1.221262 1.03442 1.441853 0.018304

CNIH3 1.209005 1.019001 1.434439 0.029575

APLP2 1.266795 1.075523 1.492083 0.004629

MAL 0.960304 0.923745 0.99831 0.040817

CALML5 0.877656 0.840766 0.916165 2.58E−09

SCEL 0.926024 0.876468 0.978382 0.006166

GABARAPL1 1.193956 1.0504 1.35713 0.006682

NRSN2 1.23226 1.062689 1.42889 0.005694
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TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

DDOST 1.349804 1.071605 1.700226 0.010858

SPINK5 0.887729 0.845668 0.931881 1.52E−06

PTDSS1 1.277505 1.080392 1.51058 0.004179

NDRG1 1.11878 1.012763 1.235895 0.027131

TM7SF2 0.888298 0.813305 0.970206 0.008486

FUT3 0.882012 0.81581 0.953587 0.001612

CTSZ 1.141007 1.011762 1.286763 0.031508

TWSG1 1.204773 1.040692 1.394723 0.012634

TPM1 1.181625 1.076333 1.297218 0.000457

CLSTN2 1.127845 1.008545 1.261257 0.034934

SNX10 1.16279 1.043032 1.296298 0.006534

ERF 1.227076 1.02442 1.469822 0.026288

OLR1 1.186432 1.098566 1.281325 1.33E−05

ZNF281 1.407943 1.20498 1.645093 1.65E−05

TOR1A 1.654326 1.301684 2.102503 3.86E−05

RASAL1 0.866299 0.762803 0.983837 0.027037

SCG5 1.232138 1.148495 1.321872 5.88E−09

ARPC1B 1.163229 1.001602 1.350937 0.047598

TMED2 1.410183 1.151511 1.726962 0.000886

CYP2C18 0.875504 0.819944 0.934829 7.05E−05

EFEMP1 1.10013 1.001424 1.208565 0.046632

LY6G6C 0.927623 0.874811 0.983623 0.012002

STX2 1.35379 1.137977 1.610531 0.000629

LASP1 1.376742 1.118076 1.695251 0.002603

NMU 0.901952 0.844897 0.96286 0.001967

HOPX 0.873536 0.808728 0.943537 0.000587

ST3GAL2 1.22066 1.010487 1.474548 0.038624

JAM3 1.145645 1.005789 1.304948 0.040672

MT1F 1.298073 1.159978 1.452607 5.47E−06

PRKAB2 1.175324 1.011677 1.365442 0.03471

TNFRSF12A 1.240456 1.128225 1.363851 8.45E−06

SCG2 1.195768 1.110423 1.287672 2.22E−06

ALDH1B1 1.244187 1.108113 1.39697 0.000218

ALOX12 0.926048 0.863976 0.992579 0.029978

FAM135A 0.812141 0.706951 0.932984 0.003281

SIRT7 0.786733 0.630071 0.982347 0.034246

TREM1 1.151536 1.063599 1.246743 0.000499

NCF2 1.177597 1.051464 1.318861 0.004682

NLRX1 0.813027 0.700135 0.944122 0.006651

TTC9 0.841095 0.761679 0.928792 0.000627

TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

THBS1 1.31116 1.213337 1.41687 7.49E−12

SPRR3 0.932931 0.902859 0.964004 3.28E−05

RAPGEFL1 0.855302 0.786697 0.929891 0.000248

ATP6V1C1 1.442359 1.176376 1.768483 0.000429

ABLIM1 0.787821 0.701411 0.884876 5.74E−05

MPP1 1.226327 1.068634 1.407291 0.00367

KLF10 1.213793 1.060158 1.389691 0.005016

PIK3IP1 0.85421 0.747616 0.976001 0.020495

ALDH18A1 1.222674 1.021979 1.462781 0.027977

LLGL2 0.745525 0.639405 0.869256 0.000178

SLC39A8 1.136591 1.002131 1.289093 0.04625

KLK10 0.944836 0.893685 0.998913 0.04569

SLC25A10 0.745121 0.631843 0.878707 0.000471

CD63 1.514009 1.260224 1.8189 9.39E−06

TIAM1 0.787827 0.687622 0.902635 0.000591

NDFIP1 1.517489 1.195944 1.925486 0.000597

PSCA 0.924598 0.867642 0.985293 0.015662

KLK11 0.92953 0.879525 0.982379 0.009595

BSPRY 0.838713 0.771977 0.911218 3.21E−05

TINAGL1 1.21401 1.101211 1.338363 9.71E−05

GFPT2 1.178785 1.075027 1.292557 0.000467

PANX1 1.146005 1.00944 1.301045 0.035283

SFXN3 1.351727 1.147802 1.591883 0.000304

LYPD3 0.861532 0.804805 0.922257 1.80E−05

ERBB3 0.768161 0.670993 0.879399 0.000132

KBTBD2 1.283048 1.050985 1.566352 0.014346

LGALS1 1.23354 1.120066 1.35851 2.02E−05

ZNF750 0.87818 0.821586 0.938672 0.000132

FHL2 1.275099 1.130784 1.437832 7.32E−05

DBI 0.76199 0.645226 0.899884 0.00136

OVOL1 0.893804 0.812772 0.982914 0.020592

HSPA4L 0.859612 0.776346 0.951809 0.003613

EPHX2 0.858396 0.776478 0.948956 0.002847

MGAT1 1.371482 1.110695 1.6935 0.003329

DBNDD1 0.882103 0.78301 0.993737 0.039084

SCNN1A 0.87176 0.813248 0.934481 0.000108

ITGA3 1.1501 1.041548 1.269966 0.005697

CYP2C9 0.799505 0.669947 0.954118 0.013114

NUDCD3 1.413573 1.092916 1.828308 0.008368
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TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

GDPD5 1.218913 1.033698 1.437314 0.018568

CTSB 1.174501 1.026233 1.344191 0.019489

SH2B3 1.149417 1.006717 1.312344 0.039499

TSPO 0.705501 0.578377 0.860565 0.000579

CES3 0.825806 0.694592 0.981808 0.030165

SIL1 1.535338 1.250923 1.884419 4.10E−05

FNDC3A 1.242389 1.048914 1.471552 0.011975

HDAC9 1.413298 1.174284 1.700961 0.000253

GIPC1 0.785315 0.635383 0.970626 0.025366

CANX 1.348199 1.103924 1.646527 0.003396

GLS 1.209414 1.047557 1.396278 0.009493

HOXA1 1.330354 1.161726 1.523459 3.66E−05

RGS19 1.27153 1.053432 1.534783 0.012344

SAMD4A 1.278198 1.141071 1.431805 2.24E−05

DUOX1 0.881145 0.801205 0.969061 0.009117

PRSS12 0.807898 0.738412 0.883923 3.34E−06

ARHGEF7 1.290341 1.010404 1.647836 0.04106

KTN1 1.286827 1.095467 1.511616 0.002141

ENSA 0.733579 0.579666 0.928359 0.009918

NTAN1 1.278397 1.011764 1.615297 0.039594

NTRK2 0.930127 0.874504 0.989289 0.021321

EPN3 0.838107 0.742247 0.946347 0.004375

LCN2 0.931653 0.887539 0.97796 0.00423

MAPK13 0.864323 0.77396 0.965237 0.009655

CRYM 0.888664 0.800426 0.986629 0.02695

PSD3 0.876018 0.779679 0.984261 0.025957

ULBP1 1.188275 1.045271 1.350843 0.008371

ICAM1 1.101498 1.003607 1.208937 0.041772

NRIP1 1.137867 1.014004 1.27686 0.028058

CAMK2N1 1.329294 1.214886 1.454477 5.68E−10

MRAS 1.154194 1.022469 1.30289 0.020377

POMT2 1.356344 1.08254 1.699399 0.008065

SLC25A32 1.344068 1.118813 1.614675 0.00158

CEACAM1 0.90788 0.839326 0.982034 0.015842

PLCD1 0.789141 0.684276 0.910077 0.001133

FSTL3 1.21902 1.119181 1.327765 5.56E−06

ADA 1.451826 1.277885 1.649443 1.03E−08

RNF14 1.394559 1.092437 1.780236 0.007593

BCAR3 1.29701 1.167982 1.44029 1.15E−06

TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

RABGGTB 1.259644 1.013218 1.566003 0.037692

EMP3 1.14563 1.020103 1.286602 0.021669

SASH1 0.87454 0.786825 0.972034 0.01292

SPRR1A 0.929043 0.891527 0.968138 0.000466

TRIM32 1.516757 1.292418 1.780037 3.38E−07

CEBPB 1.275988 1.095249 1.486553 0.001763

RAB31 1.162093 1.027721 1.314034 0.01657

PAX9 0.883506 0.81241 0.960825 0.003808

CYP2C19 0.374608 0.157314 0.892044 0.026553

ATG12 1.377945 1.076558 1.763707 0.010905

IVL 0.929627 0.881849 0.979994 0.006715

TNPO1 1.297919 1.060612 1.588324 0.011368

WNT4 0.876398 0.79441 0.966848 0.00847

ILK 1.273212 1.069984 1.515041 0.006482

IL21R 0.808876 0.703571 0.929941 0.002876

SLC20A1 1.30057 1.126854 1.501066 0.000327

CD300C 1.213318 1.035551 1.421601 0.01675

B4GALT3 1.729395 1.369255 2.18426 4.27E−06

SPRR1B 0.946396 0.904443 0.990295 0.017241

CAV1 1.11067 1.024164 1.204484 0.011178

CHST11 1.193421 1.064028 1.338549 0.002529

IL2RB 0.884235 0.808694 0.966833 0.006929

PTPRE 1.221373 1.040914 1.433116 0.014224

DYSF 1.170588 1.046729 1.309103 0.005774

DLX5 0.889593 0.811969 0.974637 0.012023

STAP2 0.745028 0.649938 0.85403 2.39E−05

PTPN13 0.793361 0.716558 0.878396 8.36E−06

FUT2 0.786835 0.709738 0.872307 5.20E−06

PXN 1.392276 1.20364 1.610476 8.38E−06

CDS1 0.857526 0.756304 0.972296 0.016469

MTMR6 1.301271 1.059251 1.598588 0.012134

PEA15 1.351756 1.08901 1.677895 0.006272

CFL1 1.25947 1.025175 1.547312 0.028041

PGAP1 0.798501 0.688303 0.926342 0.00298

ACP2 1.220475 1.013312 1.469989 0.03579

HTR7 1.147172 1.031092 1.27632 0.011653

IGFBP2 0.923603 0.869325 0.98127 0.010116

DSE 1.220392 1.073382 1.387536 0.002356

SPCS3 1.419239 1.172052 1.718559 0.000336
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TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

LAD1 0.886266 0.788615 0.99601 0.042654

NOD1 1.35881 1.07148 1.723191 0.011421

APOE 1.085117 1.008283 1.167807 0.02925

TGM5 0.889898 0.81118 0.976254 0.013567

FLII 1.295056 1.044068 1.606381 0.018657

TACSTD2 0.82502 0.729514 0.93303 0.002182

SERPINA1 1.108649 1.017782 1.207629 0.018082

SLC9A3R1 0.829647 0.741314 0.928507 0.001148

CEACAM5 0.916182 0.87293 0.961577 0.000388

SPTBN2 0.835372 0.738075 0.945495 0.004413

BMP7 0.92411 0.856026 0.99761 0.043254

GNRHR 0.715716 0.547437 0.935722 0.014454

VASP 1.240091 1.014248 1.516224 0.035915

FGFR2 0.822351 0.732041 0.923801 0.000983

APPL2 0.805459 0.6805 0.953363 0.011896

PVR 1.495225 1.242913 1.798756 1.99E−05

POPDC3 1.134423 1.064587 1.20884 1.00E−04

PRUNE2 1.127257 1.03603 1.226518 0.005402

DUOX2 0.887911 0.822443 0.95859 0.002349

ACO1 1.241225 1.042726 1.47751 0.015076

RNF121 1.299652 1.096719 1.540135 0.00248

TRIM29 0.819545 0.74933 0.89634 1.33E−05

NTF3 0.774544 0.654953 0.915971 0.002829

DSG1 0.946231 0.909674 0.984258 0.005973

VEGFC 1.184812 1.104304 1.27119 2.32E−06

ARHGAP29 1.309174 1.138061 1.506014 0.000164

PLXNA2 0.808917 0.698084 0.937347 0.004794

FADS3 1.316445 1.181131 1.467262 6.76E−07

ECHDC2 0.793552 0.707792 0.889704 7.41E−05

STK10 1.214303 1.011303 1.458053 0.03749

ERBB2 0.730551 0.618231 0.863277 0.000228

SMAD6 0.786044 0.633583 0.975192 0.028647

SNAP23 1.283683 1.038469 1.586799 0.020945

MPZL2 0.862386 0.775985 0.958407 0.005983

SACS 1.238147 1.066606 1.437277 0.004994

HMGN3 0.806495 0.685501 0.948845 0.009511

FPR1 1.115472 1.017943 1.222346 0.019236

GNPDA1 1.448034 1.152205 1.819817 0.001498

ACTN1 1.34765 1.203247 1.509383 2.47E−07

SGPP1 1.206766 1.052015 1.384281 0.007271

TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

FLG 0.931548 0.873764 0.993153 0.029988

APOC1 1.071971 1.005067 1.143327 0.034542

TWISTNB 1.286094 1.048884 1.576951 0.015573

LTBP4 0.869115 0.762762 0.990296 0.035171

MRPL15 1.287125 1.073292 1.543561 0.006469

CYP4F12 0.791949 0.718075 0.873424 3.03E−06

MSMB 0.93112 0.883321 0.981506 0.007949

ALOX12B 0.912794 0.863835 0.964529 0.001179

NT5E 1.14313 1.058409 1.234632 0.000662

DLG3 0.799638 0.679232 0.941389 0.007246

DOCK2 0.880404 0.785188 0.987166 0.029172

CBR3 0.858993 0.777351 0.94921 0.002855

ZMAT5 0.789994 0.64945 0.960951 0.01835

ACTB 1.378478 1.112325 1.708315 0.003362

LRRC8D 0.860994 0.745888 0.993864 0.040951

CXADR 0.874655 0.792088 0.965828 0.008115

PLEKHH3 0.695225 0.55854 0.86536 0.001135

SERPINI2 0.652481 0.44222 0.962715 0.031443

VSIG4 1.134556 1.045978 1.230636 0.002336

PNMA1 1.362288 1.171819 1.583716 5.74E−05

ATP10B 0.814037 0.735359 0.901133 7.27E−05

PSEN2 1.411232 1.180407 1.687193 0.000157

DSP 0.874386 0.80356 0.951456 0.001842

TAF7 1.242086 1.011634 1.525036 0.038412

GCHFR 0.844993 0.758276 0.941628 0.002299

MRPL22 1.330421 1.050505 1.684923 0.017848

PELI1 0.848755 0.743583 0.968803 0.015119

BTG3 0.75541 0.649228 0.878957 0.000284

CALML3 0.866027 0.807416 0.928892 5.75E−05

GRB7 0.838471 0.740252 0.949722 0.00558

UFM1 1.568464 1.268364 1.939569 3.27E−05

YKT6 1.326238 1.11229 1.581337 0.001657

MS4A4A 1.104977 1.00836 1.210852 0.032493

FCF1 1.394169 1.144442 1.698388 0.000968

CYP3A5 0.903708 0.825195 0.989692 0.029006

POF1B 0.871354 0.815019 0.931582 5.39E−05

MAP4K4 1.357555 1.137793 1.619764 0.000692

DCUN1D4 1.381508 1.122628 1.700086 0.002269

HOOK1 0.800381 0.717044 0.893403 7.21E−05
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Following the assessment of the predictive significance of PPI

scores, the meta‐GEO cohort was examined to analyze immune

activity and tolerance conditions. In Figure 6I, the Wilcoxon test

indicated that the high PPI group exhibited significant over-

expression of the majority of genes related to immune check-

points and immune activity. Gene set enrichment analysis

(GSEA) revealed that GLYCEROPHOSPHOLIPID_METABOLISM,

FATTY_ACID_METABOLISM, and the ERBB_SIGNALING_

PATHWAY were significantly enriched in the higher PPI

score group, whereas ECM_RECEPTOR_INTERACTION, the

JAK_STAT_SIGNALING_PATHWAY, TOLL_LIKE_RECEPTOR_

SIGNALING_PATHWAY, NATURAL_KILLER_CELL_MEDIATED_

CYTOTOXICITY, and the B_CELL_RECEPTOR_SIGNALING_

PATHWAY were enriched in the lower PPI group (Figure 6J).

According to the Kaplan–Meier plotter, patients in the lower

PPI score group exhibited significantly reduced OS rates

compared to those in the higher PPI score group in the meta‐

GEO cohort (log rank test, p < 0.05; Figure 7A), as well as in

GSE31056 (log rank test, p < 0.05; Figure 7B), GSE41613 (log

rank test, p < 0.05; Figure 7C), GSE65858 (log rank test, p < 0.05;

Figure 7D), and TCGA HNSC (log rank test, p < 0.05; Figure 7E)

cohorts.

3.6 | Relationship between PPI scores and somatic
mutations

Increasing evidence suggests a link between genetic mutations in

the tumor genome and the response to immunotherapy. Apart

from the expression of PD‐L1, TMB serves as a separate

biomarker for the response to ICI.41,42 The presence of genetic

mutations in tumors is linked to the effectiveness of immuno-

therapy in various types of tumors and treatment methods, such

as CPIs and cellular‐based therapy.42,43 This is a metric for

genetic changes in a tumor and is a significant genomic indicator

that is strongly linked to immunotherapy and predicting sur-

vival.44,45 To understand the genetic impact of each PPI

subgroup, the relationship between TMB and PPI scores was

investigated, given the significant clinical significance of TMB.

According to Figure 8A, individuals belonging to the high PPI

score subgroup exhibited a notably greater TMB compared to

those in the low PPI score subgroup (Wilcoxon test p < 0.05).

Furthermore, the correlation analysis revealed a significant and

positive correlation between PPI scores and TMB (Spearman

coefficient R = 0.35, p < 0.05; Figure 8B). According to the

findings in Figure 8C, patients with a low TMB exhibited a

superior PPI compared to individuals with a high TMB (log rank

test, p < 0.05). The analysis of survival, stratified by TMB status,

revealed an association between predictions made using PPI

scores. Both the high and low TMB subgroups showed significant

differences in survival (log rank test, p < 0.05 for high TMB and

high PPI scores (HH) compared to high TMB and low PPI scores

(HL), and low TMB and high PPI scores (LH) compared to low TMB

and low PPI scores (LL); Figure 8D). In general, these discoveries

indicate that the PPI score could be unrelated to TMB and a

reliable gauge of possible factors that can determine the reaction

to immunotherapy.

Moreover, maftools32 were utilized to analyze significantly mutated

genes in HNSC samples, comparing the low and high PPI score

subgroups. Using a chi‐square test, Figure 8E and Table 2 helped identify

the 25 driver genes that had the most frequent alterations. Significant

differences were observed between the low and high PPI score

subgroups for NSD1, PTPRZ1, GRM1, ELMO1, FLNA, VPS13C, CUX2,

and PKD1L1 among these genes. The discovery of these findings could

TABLE 1 (Continued)

ID HR HR.95L HR.95H p Value

INPP4B 1.264711 1.124329 1.42262 9.15E−05

ITGB3 1.342908 1.110412 1.624085 0.002368

TOR1AIP2 1.46059 1.119275 1.905985 0.005275

ELK3 1.243723 1.060664 1.458377 0.007253

JMJD6 1.839798 1.385036 2.443876 2.57E−05

ANGEL1 1.462939 1.179326 1.814758 0.00054

POLR1E 1.2169 1.011817 1.46355 0.037095

CD177 0.905363 0.844974 0.970068 0.004761

ADAMTS6 1.280755 1.054227 1.55596 0.012713

PLA2G3 0.876249 0.811239 0.946468 0.000783

KRT24 0.925329 0.883956 0.968638 0.000883

TGFBR3 0.869409 0.792133 0.954223 0.003213

PTPRC 0.905981 0.82642 0.993201 0.035253

ZNF787 1.259758 1.001004 1.5854 0.049009

TFPI2 1.13683 1.07384 1.203514 1.04E−05

FHOD1 1.318062 1.117717 1.554317 0.001027

HIBCH 0.791832 0.668322 0.938169 0.006983

RIPK2 1.30418 1.095725 1.552294 0.002801

CD28 0.793107 0.670969 0.937478 0.006595

IL10RA 0.895269 0.809 0.990737 0.032356

PRPSAP1 0.7911 0.658708 0.950102 0.012151

HK3 1.148428 1.029546 1.281036 0.013056

TGFBR2 1.157698 1.023999 1.308853 0.01935

ARMC1 1.265347 1.038826 1.541263 0.019364

EYA2 0.93329 0.874759 0.995737 0.036686

DSC2 0.895156 0.830036 0.965384 0.004051

TMOD1 1.0859 1.008653 1.169063 0.028612

CEACAM6 0.925723 0.881357 0.972323 0.002069

SCNN1B 0.848823 0.785319 0.917463 3.61E−05
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offer fresh perspectives on the processes of tumor PPI composition and

gene mutation in immune checkpoint blockade treatment.

3.7 | PPI score for response to immunotherapy

We assessed the correlation between clinical characteristics and

established PPI scores. The advanced TNM stage (Figure 9A,B) was

correlated with high PPI scores. The analysis of survival, stratified by

PPI scores, indicated a correlation with survival outcomes

(Figure 9C,D). Furthermore, there was a positive correlation between

higher PPI scores and objective response to therapy in the meta‐GEO

cohort, as depicted in Figure 9E,F. In the meantime, stratified survival

analysis indicated a correlation between the PPI and the outcome

success of the primary therapy. Among patients with partial/

complete response, high PPI scores were related to worse survival,

similar results were obtained among patients with stable/progressive

disease (Figure 9G,H).

Despite not being approved as a conventional treatment for

HNSC, immunological checkpoint medications were assessed using

the submap algorithm to estimate the probability of immunotherapy

response in the meta‐GEO cohort. The findings revealed that

individuals with high PPI scores were more likely to exhibit a

favorable response to immunotherapy compared to those with low

PPI scores (p < 2.2e−16). Furthermore, immunotherapy yielded more

favorable outcomes in individuals with high PPI scores as per the

TIDE algorithm (p < 0.05). The findings indicated that individuals with

elevated PPI scores exhibited strong responsiveness to programmed

cell death 1 (PD1) immunotherapy (p < 0.05 after Bonferroni

correction) (Figure 10A). Treating patients with HNSC often involves

the use of anticancer medication as a fundamental therapeutic

approach. The purpose of the PPI model was to evaluate the reaction

to antitumor medications in two molecular subcategories using the

GDSC cell line dataset. The accuracy of the method's prediction was

validated using 10‐fold cross‐validation, while the IC50 was utilized

to estimate the sensitivity of the response. Out of the 130 categories

of anticancer medication reactions, 74 drugs exhibited variances

among the two PPI clusters as indicated in Table 3. The findings

indicated that elevated PPI scores exhibited greater responsiveness

to 68 different types of medications in comparison to lower PPI

F IGURE 5 Hierarchical clustering of HNSC yields three gene clusters in the meta‐GEO cohort. (A) Unsupervised clustering of common DEGs
between the three pyroptosis clusters was performed to classify patients into three groups: gene Clusters A, B, and C. (B) Immune‐checkpoint‐
relevant genes (IDO1, CD274, HAVCR2, PDCD1, CTLA4, and LAG3) and immune‐activation‐relevant genes (CD8A, CXCL10, CXCL9, GZM A,
GZMB, PRF1, IFNG, TBX2, and TNF) were expressed in the three gene clusters. (C) Differences in tumor‐infiltrating immune cells between the
three gene clusters. (D) Kaplan–Meier curves of OS for 939 HNSC patients in the meta‐GEO cohort with different gene clusters. (E) Relative
distribution of PD‐L1 expression in the three gene clusters. (F–H) The distribution of clinical features in the three gene clusters. F, Age; G,
Gender; H, Pathological stage.
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scores. Figure 10B showed that temsirolimus, camptothecin, pazo-

panib, parthenolide, and docetaxel exhibited significant promise in

treating HNSC (p < 0.05). Specifically, camptothecin and docetaxel

have been extensively utilized as primary chemotherapy in clinical

settings.

4 | DISCUSSION

Pyroptosis, alternatively referred to as cellular inflammatory necrosis,

is initiated by the destruction of cell membranes resulting from the

functioning of the majority of CASP family genes.46 Cells undergoing

pyroptosis display cellular enlargement and multiple bubble‐shaped

protrusions. The activation of CASP‐1/4/5/11 is necessary for its

dependency. The GSDMD‐N protein creates minuscule openings

measuring 1.1–2.4 nm across the cellular membrane.47 Pyroptosis,

serving as a type of programmed cellular demise, functions as the

principal mechanism against infections. In addition, pyroptosis has

demonstrated significant involvement in the development of

tumors.48,49 Pyroptosis, a process linked to tumorigenesis, invasion,

and metastasis, involves the presence of inflamed vesicles, gastrin,

and proinflammatory cytokines as crucial elements. Furthermore,

pyroptosis significantly contributes to the innate immune response

against intracellular pathogens and is also implicated in the

F IGURE 6 Establishment of the pyroptotic potential index (PPI) score model and exploration of the relevance of the immune features. (A)
Alluvial diagram of pyroptosis clusters in groups with survival status, pyroptosis‐gene cluster, and PPI score. (B) Correlations between the PPI
score and known immune signatures in the meta‐GEO cohort using Spearman's correlation analysis. (C) Differences in the PPI score among the
three pyroptosis modification patterns in the meta‐GEO cohort. The Kruskal–Wallis test was used to compare the statistical difference between
the three gene clusters (p < 0.001). (D) Differences in the PPI score among the three gene clusters in the meta‐GEO cohort (p < 0.001,
Kruskal–Wallis test). (E–H) The scatter plot showed that PPI scores were significantly positively correlated with cell cycle regulators (E) and the
WNT pathway (F), but negatively correlated with mismatch repair (G) and angiogenesis (H). (I) Immune‐checkpoint‐relevant genes (IDO1,
CD274, HAVCR2, PDCD1, CTLA4, and LAG3) and immune‐activation‐relevant genes (CD8A, CXCL10, CXCL9, GZM A, GZMB, PRF1, IFNG,
TBX2, and TNF) were expressed between the high and low PPI groups. (J) Gene set enrichment analysis (GSEA) was conducted to evaluate the
difference between the high and low PPI groups.
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development of fatal infectious shock. Although cellular scorch death

plays an important role in tumor development and antitumor

processes, its specific role in HNSC has not been adequately

explored. Consequently, we carried out a comprehensive investiga-

tion to assess the levels of gene expression associated with scorch

death in both normal and HNSC tissues. In addition, the predictive

significance of these genes was investigated, along with examining

the association between scorch‐induced mortality and the immune

microenvironment of the tumor.

Initially, the expression levels of 33 presently recognized PRGs in

HNSC and normal tissues were assessed, revealing significant

differential expression in the majority of them. A meta‐study was

then conducted to analyze 1341 HNSC samples. The specimens were

categorized into three separate subcategories, distinguished by

varying immune characteristics, that were associated with diverse

antitumor immune responses. An immune‐inflamed phenotype was

observed in Pyroptosis‐C1, which was identified by the presence of

immune activation and infiltration of tumor‐infiltrating lymphocytes.

An immune‐excluded phenotype was observed in Pyroptosis‐C2,

which was identified by the existence of immune cells and stroma,

along with the activation of EMT, TGF‐β, and Wnt signaling

pathways. The immune‐desert phenotype was associated with an

immunosuppressive TME in Pyroptosis‐C3.

In the meantime, we conducted a thorough examination of

the PRGs' expression and devised a technique for measuring the

PPI index in HNSC. The results indicate that the PPI score serves

as a reliable prognostic biomarker and predictor in evaluating the

response to immunotherapy. The alteration of pyroptosis in the

TME of HNSC has been documented to enhance immune

suppression, which is linked to the survival and advancement of

tumors.50 Nevertheless, it is important to take into account

molecular subcategories when implementing pyroptosis regula-

tion as a therapeutic approach. We hypothesized that patients

with a high PPI score may experience a favorable prognosis due

to the presence of an antitumor immune response, suggesting

potential benefits from immunotherapy. A negative outcome was

linked to the immune‐cold characteristic in the group with a low

PPI score. Our previous findings are consistent with the high

sensitivity of immunotherapy to high PPI scores, as predicted by

TIDE and submap. While the precise manner in which pyroptosis

controls the growth and proliferation of tumor cells is still

unknown, the correlation we witnessed between PPI and key

F IGURE 7 Kaplan–Meier survival curves of the high and low PPI groups. (A) GEO meta‐cohort; (B) GSE31056; (C) GSE41613; (D)
GSE65858; (E) TCGA HNSC cohort.
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F IGURE 8 Correlation between PPI scores and somatic mutation. (A) The difference in tumor mutation burden (TMB) between the high
and low PPI score groups (Wilcoxon test, p = 0.0071). (B) Scatter plots showed a positive correlation between the PPI scores and the mutation
load in the meta‐GEO cohort. There was a correlation between the PPI score and mutation load (p = 0.00017). (C) The Kaplan–Meier curve of
the high and low TMB groups in the meta‐GEO cohort (log rank test, p < 0.05). (D) The Kaplan–Meier curve of patients in the meta‐GEO cohort
stratified by TMB and PPI scores (log rank test, p < 0.05). (E, F) The oncoPrint was built using a high PPI score on the left (E) and a low ICI score
on the right (F). Each column represents a patient.

TABLE 2 Relationship between PPI score and somatic variation.

Gene H‐wild H‐mutation L‐wild L‐mutation p Value

NSD1 106 (79.7%) 27 (20.3%) 331 (92.2%) 28 (7.8%) 0.000179

PTPRZ1 125 (93.98%) 8 (6.02%) 354 (98.61%) 5 (1.39%) 0.011649

GRM1 122 (91.73%) 11 (8.27%) 349 (97.21%) 10 (2.79%) 0.015432

ELMO1 126 (94.74%) 7 (5.26%) 355 (98.89%) 4 (1.11%) 0.015467

FLNA 123 (92.48%) 10 (7.52%) 350 (97.49%) 9 (2.51%) 0.021506

VPS13C 122 (91.73%) 11 (8.27%) 348 (96.94%) 11 (3.06%) 0.025343

CUX2 126 (94.74%) 7 (5.26%) 354 (98.61%) 5 (1.39%) 0.032137

PKD1L1 126 (94.74%) 7 (5.26%) 354 (98.61%) 5 (1.39%) 0.032137

PCDHA6 126 (94.74%) 7 (5.26%) 354 (98.61%) 5 (1.39%) 0.032137

ASXL3 131 (98.5%) 2 (1.5%) 334 (93.04%) 25 (6.96%) 0.032441

PKHD1L1 115 (86.47%) 18 (13.53%) 334 (93.04%) 25 (6.96%) 0.034684

ERICH3 123 (92.48%) 10 (7.52%) 349 (97.21%) 10 (2.79%) 0.035363

GRIN2A 123 (92.48%) 10 (7.52%) 349 (97.21%) 10 (2.79%) 0.035363

FAT4 120 (90.23%) 13 (9.77%) 343 (95.54%) 16 (4.46%) 0.044565

EPHA2 132 (99.25%) 1 (0.75%) 340 (94.71%) 19 (5.29%) 0.044637
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characteristics of cancer has the potential to enhance our

comprehension of the function of pyroptosis. In the majority of

cancers, GSEA analysis revealed a strong correlation between the

extent of pyroptosis and tumor‐associated characteristics. In

cancer, pyroptosis genes can have both oncogenic and tumor‐

suppressive functions, while protein–protein interaction serves

as a safeguarding element in HNSC. Hence, the integration of the

PPI subgroup and immune‐related gene expression profiles may

offer a new strategy for creating personalized treatment plans

tailored to each patient.

To summarize, the results of this research not only enhanced our

understanding of the process involved in pyroptosis in the HNSC

TME but also introduced a new possible prognostic biomarker, the

PPI score, to assist in precision immunotherapy.

F IGURE 9 PPI scores correlated with clinical features. (A, B) PPI scores in groups with different pathological TNM stages (Wilcoxon test,
p < 0.0001). (C, D) Stratified survival analysis showed that PPI scores were associated with survival. Kaplan–Meier curves for patients with high and
low PPI scores and different TNM stages in the meta‐GEO cohort (log rank test, p < 0.05). (E, F) PPI scores in groups with a different clinical response
status (Wilcoxon test, p< 0.0001). (G, H) Stratified survival analysis showed that PPI scores were associated with survival. Kaplan–Meier curves for
patients with high and low PPI scores and different clinical response statuses in the meta‐GEO cohort (log rank test, p< 0.05).

F IGURE 10 Role of PPI scores in predicting the benefit of immunotherapy. (A) Differential putative chemotherapeutic and
immunotherapeutic response. The box plots of the estimated maximum inhibitory concentrations (IC50) for chemotherapeutic drugs are
shown for high and low PPI score subsets. (B) Submap analysis showed that a high PPI score could be more sensitive to immunotherapy
(Bonferroni‐corrected p < 0.05).
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TABLE 3 Screening of effective chemotherapeutic drugs for PPI
grouping through GDSC database.

Drug p Value

CEP.701 5.71E−42

Temsirolimus 3.14E−39

NU.7441 1.28E−38

AZD.2281 3.90E−32

WO2009093972 6.70E−29

GSK269962A 6.09E−27

Axitinib 3.60E−24

AZ628 1.57E−22

BX.795 3.44E−21

AZD7762 8.60E−21

Pazopanib 2.01E−20

AZD8055 4.31E−20

TW.37 6.08E−19

Parthenolide 7.90E−19

IPA.3 1.06E−18

Cytarabine 1.04E−17

GDC.0449 1.59E−16

PLX4720 4.32E−16

VX.702 4.90E−16

PD.173074 5.16E−15

NVP.BEZ235 1.61E−14

Camptothecin 1.75E−13

Sunitinib 2.01E−13

AP.24534 2.51E−13

Elesclomol 6.55E−13

NVP.TAE684 7.17E−12

JNJ.26854165 1.26E−11

AG.014699 2.96E−11

DMOG 5.73E−11

Midostaurin 8.20E−11

Pyrimethamine 4.23E−10

LFM.A13 2.50E−09

AZD6482 5.36E−09

Vorinostat 1.17E−08

ABT.888 1.99E−08

CGP.60474 2.71E−08

Bortezomib 1.09E−07

TABLE 3 (Continued)

Drug p Value

Docetaxel 2.20E−07

SB.216763 2.86E−07

PAC.1 3.07E−07

AMG.706 3.26E−07

BMS.754807 1.39E−06

OSI.906 1.69E−06

Gemcitabine 1.74E−06

JNK.Inhibitor.VIII 1.79E−06

CHIR.99021 1.80E−06

Dasatinib 3.92E−06

WH.4.023 8.50E−06

MS.275 3.96E−05

ZM.447439 4.32E−05

XMD8.85 0.000107

Imatinib 0.00011

BI.D1870 0.000121

BMS.509744 0.000199

Z.LLNle.CHO 0.000209

CMK 0.000213

PF.02341066 0.000248

GDC0941 0.00041

Cyclopamine 0.000563

BAY.61.3606 0.001202

Nilotinib 0.001397

AS601245 0.001475

KU.55933 0.002407

SL.0101.1 0.002917

Vinblastine 0.003376

PHA.665752 0.003836

SB590885 0.004598

Bexarotene 0.004692

Cisplatin 0.011966

A.770041 0.016861

RO.3306 0.017973

X681640 0.021013

Methotrexate 0.024357

Obatoclax.Mesylate 0.029282
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