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Abstract. The objective of the present study was to identify 
differential modules in ankylosing spondylitis (AS) by inte-
grating network analysis, module inference and the attract 
method. To achieve this objective, four steps were conducted. 
The first step was disease objective network (DON) for AS, 
and healthy objective network (HON) inference dependent on 
gene expression data, protein-protein interaction networks and 
Spearman's correlation coefficient. In the second step, module 
detection was performed by utilizing a clique-merging algo-
rithm, which comprised of exploring maximal cliques by clique 
algorithm and refining or merging maximal cliques with a high 
overlap. The third part was seed module evaluation through 
module pair matches by Jaccard score and module correla-
tion density (MCD) calculation. Finally, in the fourth step, 
differential modules between the AS and healthy groups were 
identified based on a gene set enrichment analysis‑analysis of 
variance model in the attract method. There were 5,301 nodes 
and 28,176 interactions both in DON and HON. A total of 20 
and 21 modules were detected for the AS and healthy group, 
respectively. Notably, six seed modules across two groups were 
identified with Jaccard score ≥0.5, and these were ranked in 
descending order of differential MCD (ΔC). Seed module 1 
had the highest ΔC of 0.077 and Jaccard score of 1.000. By 
accessing the attract method, one differential module between 
the AS group and healthy group was identified. In conclusion, 
the present study successfully identified one differential module 
for AS that may be a potential marker for AS target therapy and 
provide insights for future research on this disease.

Introduction

Ankylosing spondylitis (AS) is an immune-mediated arthritis 
and is the prototypic member of a group of conditions known as 

spondyloarthropathies, which also includes reactive arthritis, 
psoriatic arthritis and enteropathic arthritis (1). Several 
features, such as synovitis, chondroid metaplasia, cartilage 
destruction and subchondral bone marrow changes, are 
commonly observed in the joints of patients with AS (2). Due 
to the complex progression of the joint remodeling process, 
clinical research has not systematically evaluated histopatho-
logical changes (3), and no clear sequence of the pathological 
mechanism has been obtained for this disease.

With the development of high throughput technology and 
gene data analysis over the past decade, rapid progress has been 
made in the discovery of genetic associations with AS, which 
has provided novel insights on the aetiopathogenesis of the 
disease (4). It had been demonstrated that ~90% of patients with 
AS expressed the human leukocyte antigen-B27 genotype (5). 
A study by Lin et al (6) investigated the pathophysiological 
significance of interleukin‑27 and vascular endothelial growth 
factor in AS. In addition, the Wnt pathway was revealed to 
have a critical contributing role in the unique pathology and 
bony fusion in AS (7). However, these studies did not identify 
an effective clinical target therapy or the underlying molecular 
mechanism of AS.

Therefore, the aim of the present study was to identify differ-
ential modules between AS and healthy controls by integrating 
network analysis, module inference and the attract method, 
and provide insights on the pathological mechanism and future 
studies of AS. Here, network analysis may provide significant 
instructions for mining unknown connections in incomplete 
networks. Although the data of large-scale protein interactions 
continue to accumulate, a certain number of significant interac-
tions are not tested (8). This type of difficulty may be resolved to 
some extent by utilizing sub-network or module inferences of the 
complex network (9). Meanwhile, attract is a knowledge-driven 
analytical approach for identifying and annotating the gene sets 
that best discriminate between cell phenotypes (10), and thus 
the present study utilized this to identify differential modules 
between the AS and healthy groups.

Materials and methods

Identification of differential modules between AS patients and 
healthy controls. The identification of differential modules 
between AS patients and healthy controls comprised four 
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steps (Fig. 1): Disease objective network (DON) and healthy 
objective network (HON) inference dependent on gene expres-
sion data using the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING, https://string-db.org/), the 
protein-protein interaction network (PPIN) and Spearman's 
correlation coefficient (SCC); module detection by using the 
clique‑merging algorithm; seed module evaluation through 
module correlation density (MCD) calculation and module 
pair match; and differential module identification based on the 
attract method.

DON and HON inference
Gene expression data. Gene expression data of 
E‑GEOD‑25101 for AS patients and healthy controls was 
recruited from the ArrayExpress database (https://www.ebi.
ac.uk/arrayexpress/). E‑GEOD‑25101 consisted of 16 AS 
samples and 16 healthy samples in total, and was presented 
on an A-MEXP-1171-Illumina HumanHT-12 v. 3.0 Expression 
BeadChip Platform (Illumina, Inc., San Diego, CA, USA). 
Subsequently, the following standard procedures were 
conducted to control the quality of the data: Background 
correction based on the Robust Multi-array Average (RMA) 
algorithm (11); normalization according to the quantile based 
algorithm (12); probe correction by the Micro Array Suite 
(MAS) algorithm (13); and expression summarization using 
the median polish method (11). By converting the prepro-
cessed data on probe level into gene symbol measures, a total 
of 11,587 genes were obtained in the gene expression data for 
further exploitation.

Background protein‑protein interaction network (BPPIN) 
extraction. A dataset of literature-curated human PPIN from 
the STRING database was utilized, comprising 16,730 genes 
and 1,048,576 interactions (14). Genes or interactions without 
an expression value or duplicated self-loops were removed. The 
remaining largest connected component with a score >0.8 was 
kept as the global PPIN, which was composed of 5,665 nodes and 
28,176 edges. To make the global PPIN more confident and reli-
able, intersections between the global PPIN and gene expression 
data were taken, and the intersected network was termed BPPIN.

DON and HON construction. For the purpose of re-weighting 
gene interactions in the BPPIN of the AS and healthy condi-
tions, SCC was implemented (15). SCC is a measure of the 
correlation between two variables, giving a value between 
-1 and +1, inclusive. The SCC (x, y) was calculated using the 
following formula:

Where n was the number of samples of the gene expression 
data; g (x, i) or g (y, i) was the expression level of gene x or 
y in the sample i under a specific condition; and g(x) or g(y) 
represented the mean expression level of gene x or y.

If SCC (x, y) had a positive value, there was a positive 
linear correlation between x and y. For an interaction between 
gene x and y, the absolute SCC value was denoted as its weight 
value. Only the interactions with P<0.05 were selected to 
construct the objective network. DON was for disease (AS 
group) and HON was for the healthy group.

Module detection. Identifying modules from DON and HON 
for the disease and healthy groups was conducted using the 
clique-merging algorithm (16,17). This process predominantly 
included two steps: Exploring maximal cliques using the 
clique algorithm and refining or merging maximal cliques 
with high overlap.

Maximal clique exploration. The cliques algorithm proposed 
by Tomita et al (18) was applied to search maximal cliques. It 
utilized a depth‑first search strategy to enumerate all maximal 
cliques and effectively removed non-maximal cliques during 
the enumeration process. The score of a clique, C, was defined 
as its weighted interaction density (WID):

Where w (x, y) represented the weight of the interaction 
between gene x and y. Due to cliques with a too small or 
large number of genes was difficult and meaningless to study; 
therefore, cliques with node amount <4 were discarded (19). 
Furthermore, maximal cliques were obtained by ranking the 
cliques on the basis of WID in descending order.

Maximal clique refinement. Various maximal cliques may 
overlap with one another as thousands of them were generated 
from a DON or HON. The highly overlapped maximal cliques 
must be merged to reduce the result size. For every clique Ci, 
it was checked whether another clique Cj existed such that Cj 
had a lower score than Ci and |Ci∩Cj|/|Cj| ≥t, where t=0.5 was 
a predefined threshold for overlapping (20). If such Cj existed, 
the inter-connectivity scores between Ci and Cj were used to 
decide whether to remove Cj or merge Cj with Ci. The refined 
maximal cliques were denoted as modules. Notably, modules 
were identified based on DON and HON for the disease group 
and healthy group, respectively.

Seed module evaluation. In the present study, AS and healthy 
modules were matched, which ensured that the module pairs 
had the same or similar gene composition but different interac-
tions. The Jaccard index (21), which is the ratio of intersection 
over union for two sets, was applied to evaluate the matching 
degree. The modules with Jaccard score ≥0.5 were considered 
to be seed modules.

Meanwhile, the set of disease modules was expressed as 
Di, and Hj was used for the healthy module set. In order to 
further evaluate the relationships among seed modules, MCD 
was utilized. For disease module set Di, MCD was computed 
according to following equation:

Of which M was a similarity graph to perform a maximum 
weight bipartite matching (22). MCD of healthy modules, 
MCD(Hj), was calculated similarly. The modules were ranked 
in non-increasing order of their absolute differential density, 
∆C = |MCD(Dj)-MCD(Hj)|.

Differential module identification using the attract method. 
To identify altered modules between AS patients and healthy 
controls more accurately than seed modules, differential 
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modules were identified utilizing the attract method, which is 
a knowledge-driven analytical approach for identifying and 
annotating gene sets (10). The method may be summarized in 
four steps (23): Determining core modules that discriminated 
most strongly between cell types or experimental groups of 
interest; finding different synexpression groups that were 
present within a core attractor module; identifying sets of 
genes that demonstrated highly similar profiles to the synex-
pression groups within an attractor module; and testing for 
functional enrichment for each of the synexpression groups 
to detect any potentially shared modules.

In the present study, each seed module was regarded to an 
attractor. Based on the attract method, a gene set enrichment 
analysis‑analysis of variance (GSEA‑ANOVA) model was 
utilized to assess module level data and investigate differential 
modules between the AS group and healthy group. The core 
module was identified through the F-statistic, for gene x, F(x) 
was computed as follows:

Where v represented the corresponding expression value in 
each replicate sample; rk represented each cell type k = 1, …, 
K; u represented the mixed effect model; and N represented the 
total number of samples. Large values of the F-statistic indi-
cated a strong association, whereas a small F-statistic suggested 
that the gene demonstrated minimal cell type‑specific expres-
sion changes. To make the F-statistic more reliable, t-tests were 
used to correct the log2-transformed F-statistics and obtain 
P-values for each potentially shared module that originated 
from synexpression groups. By adjusting their P-values on the 
basis of false discovery rate (24), the modules with P<0.05 
were defined as differential modules between AS and controls.

Results

DON and HON. By integrating gene expression data, STRING 
PPIN and SCC‑related analysis, the DON and HON that 
displayed an equal number of nodes (5,301) and interactions 
(28,176) for the disease group and healthy group were identi-
fied. However, the weight distributions for the two networks 
were different, as demonstrated in Fig. 2. Results indicated 
that there were marked differences between the healthy and 
disease groups in the section of 0-0.1 and 0.6-1.0. When exam-
ining these interactions more carefully, the average weight for 
DON and HON was 0.332 and 0.317, respectively.

Module detections. In the present study, a clique-merging 
algorithm was implemented to identify modules from DON and 
HON separately. A total of 4,601 and 4,841 maximal cliques were 
detected for the disease group and healthy group, respectively, 

Figure 1. Flow chart of differential module inference. DON, disease objective network; HON, healthy objective network; STRING, Search Tool for the 
Retrieval of Interacting Genes/Proteins; PPIN, protein‑protein interaction network; BPPIN, background protein‑protein interaction network; SCC, Spearman's 
correlation coefficient; AS, ankylosing spondylitis; MCD, module correlation density; GSEA‑ANOVA, gene set enrichment analysis‑analysis of variance. 

Figure 2. Weight distribution of interactions in disease objective network and 
healthy objective network, according to Spearman's correlation coefficient.
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based on the fast depth‑first method of the clique algorithm. With 
the thresholds of node amount> 4, 677 disease maximal cliques 
and 910 healthy maximal cliques were obtained. Subsequently, 
these cliques were refined by merging algorithm with t≥0.5 to 
form modules. A total of 21 modules were gained for the disease 
group, while 20 modules were identified for the healthy group. 
The compositions for modules were demonstrated in Tables I 
(disease group) and II (healthy group).

Seed module evaluation. A seed module was defined as the 
modules between two groups with a Jaccard score ≥0.5. Based 
on this, six seed modules were obtained (Table III). To further 
explore the correlations of the seed modules across the AS 
and normal groups, MCD and differential density ΔC was 
computed. Seed module 1 had the highest ΔC of 0.077 and 
Jaccard score of 1.000, followed by seed module 2 (ΔC=0.056; 
Jaccard score=0.667), seed module 3 (ΔC=0.024; Jaccard 
score=0.500), seed module 4 (ΔC=0.017; Jaccard score=0.572), 
seed module 5 (ΔC=0.016; Jaccard score=0.545) and seed 
module 3 (ΔC=0.007; Jaccard score=1.000). Seed module 1 
was composed of six genes, including CEBPZ, WDR12, NIP7, 
RSL24D1 and BRIX1, and seed module 6 included NDUFAB1, 
NDUFAB3, NDUFB2, NDUFB5 and NDUFA4.

Differential modules. To further investigate significant modules 
based on seed modules for AS, a GSEA‑ANOVA model in the 
attract method was employed, which also provided a way to 
gauge which genes were informative for a particular set of cell 
types. Unlike other GSEA implementations that only allow for 

two‑class comparisons, this ANOVA‑based approach tests for 
differences between multiple classes (24). Supposing that each 
seed module was an attractor, the differential modules were 
identified by combining the core module identified through 
the F‑statistic and P<0.05, of which the F-statistic captured the 
strength of the association observed in a gene's expression over 
the different groups and P evaluated the significant difference 
across the two groups. In the present study, a total of one differen-
tial module (P=0.015) was obtained between the AS and healthy 
groups, which was composed of four nodes (PSMA2, SHFM1, 
PSMA6 and PSMB1) and six edges (Fig. 3). The differential 
module and its composite genes may have a more significant role 
than the other modules and genes in the progression of AS and be 
potential biomarkers for targeted treatment for patients with AS.

Discussion

In the present study, firstly, the DON and HON from the BPPIN 
of the AS and healthy conditions based on gene expression 
data, STRING PPIN and SCC, respectively, were extracted. 
There were 5,301 nodes and 28,176 interactions both in DON 
and HON; however, the weight distribution of the two networks 
was different. Secondly, disease and healthy modules were 
detected from the DON and HON utilizing a clique‑merging 
algorithm. A total of 20 and 21 modules were detected for the 
AS group and healthy group separately, respectively. Thirdly, 
seed modules were identified on the basis of a Jaccard score 
≥0.5, and six seed modules were obtained. The seed modules 
were ranked in descending order of ΔC, and seed module 1 had 

Table I. Module properties of disease group.

Module Count Genes

  1 9 RPL35, RPS13, EEF1B2, RPS5, RPL6, RPL18A, RPL19, RPL27, RPLP0
  2 12 RPL35, RPS13, RPS20, RPL6, RPS5, RPS19, RPL18A, RPS16, RPL27, 
  RPL36, EIF3K, RPS6
  3 5 RPL35, RSL24D1, EEF1B2, EIF3E, RPL30
  4 8 PSMA4, PSMA2, PSMA3, PSMA6, PSMD5, PSMD10, RBX1, PSME3
  5 5 NDUFAB1, NDUFAB3, NDUFB2, NDUFB5, NDUFA4
  6 8 RPL35, RPS13, SRP54, SEC61B, RPL36, RPN2, RPS19, RPL23
  7 5 SF3A1, FUS, SRSF9, SRSF1, SNRPG
  8 5 PSMA2, SHFM1, PSMA6, PSMB1, PSMD1
  9 8 RPL35, RPS13, TRAM1, SEC61B, SPCS1, RPL36, RPL27, SRPR
10 6 PSMD10, PSMA2, PSMD11, PSMA6, SEC61B, PSMD1
11 8 PSMA4, PSMA2, PSMA3, PSMC4, PSMD5, PSMB1, SEC61B, UBC
12 8 EIF3D, RPL18A, EIF3G, EIF3E, EIF3K, RPL36, RPS19, RPL5
13 5 SNRNP70, SF3B6, FUS, SUGP1, SRSF4
14 6 PSMA3, PSMA2, PSMA6, CCND1, CDKN1B, PSMD1
15 5 AURKA, NUSAP1, NCAPG, GINS2, CCNB2
16 5 RBX1, SKP1, SARS2, FBXO44, FBXL3
17 6 PSMD8, PSMD10, PSMA2, PSMC3, CDKN1B, SKP1
18 5 POLR2I, SF3B6, FUS, SRSF1, YBX1
19 6 EIF3D, RPL18A, EIF3G, RPL18, EIF4B, RPS3
20 5 ARHGAP4, RHOQ, RAC2, ARAP3, ARHGEF2
21 5 CEBPZ, WDR12, NIP7, RSL24D1, BRIX1
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the highest ΔC of 0.077 and Jaccard score of 1.000. Finally, 
taking each seed module as an attractor, differential modules 
were identified using a GSEA‑ANOVA model in the attract 
method. A total of one differential module with P=0.015 was 
obtained between the AS and healthy group.

Traditionally, studies tend to regard differentially expressed 
genes (DEGs) between normal and disease samples as 
biomarkers and pathogenic genes; however, DEGs alone may 
lead to false positives while identifying key genes involved 
in a disease, as some genes are not involved in the pathway 
or module of pathogenic genes even though they demonstrate 
notable expression alterations (25). Studies have indicated that 
the most significant genes and modules obtained from different 
studies for a particular disease are typically inconsistent (26). To 

Table II. Module properties of healthy group.

Module Count Genes

  1 5 RPL35, RSL24D1, EIF3E, EEF1B2, RPL11
  2 5 CEBPZ, WDR12, NIP7, RSL24D1, BRIX1
  3 8 RPL35, RPL6, EEF1B2, RPS13, RPS5, RPL18A, EIF3E, RPL4
  4 7 PSMA4, PSMA6, PSMB1, PSMA2, PSMB7, RBX1, ANAPC10
  5 6 RPL35, RPL6, RPL8, EIF3D, EIF3E, RPL31
  6 10 RPL35, RPL6, RPL8, RPS16, RPL18A, RPS5, EIF3K, EIF3E, RPL18, RPL12
  7 6 PSMD10, PSMA2, PSMA6, PSMB1, SHFM1, PSMC6
  8 5 NDUFAB1, NDUFB2, NDUFB5, NDUFB3, NDUFA4
  9 7 RPL35, RPL6, RPL8, RPL39, RPS13, RPL27, RPS20
10 6 RPL19, RPS16, RPS5, RPL18A, RPL36, RPS6
11 6 PSMD10, PSMA2, CDKN1B, SKP1, PSMD11, PSMC6
12 6 AAAS, NUP37, NUP107, NUPL2, SRSF1, UPF3B
13 5 SSR1, RPS20, TRAM1, RPL27, RPL9
14 6 RPL35, RPL6, TRAM1, RPS20, SEC61B, RPL4
15 8 PSMA4, PSMA6, PSMB1, PSMA2, PSMD10, PSMA3, SEC61B, PSMC2
16 8 RPL35, RPS14, RPS5, RPS16, RPL8, RPS13, RPS20, RPL36
17 5 RPS19, RPL18A, RPL19, RPS12, RPS11
18 5 RPS19, RPL18A, RPL19, RPS12, RPS11
19 6 RBX1, PSMD3, PSMB1, PSMD10, PSMA2, SKP1
20 5 SF3B6, SRSF1, SNRPB2, SUGP1, SNRNP200

Table III. Properties of seed modules.

 Module MCD
 ----------------------------------------------- ------------------------------------------------
Seed module Disease Healthy Jaccard score Healthy  Disease ∆C

1 21   2 1.000 0.402 0.325 0.077
2   3   1 0.667 0.449 0.393 0.056
3 17 11 0.500 0.368 0.345 0.024
4   8   7 0.572 0.386 0.369 0.017
5   1   3 0.545 0.400 0.416 0.016
6   5   8 1.000 0.382 0.375 0.007

MCD, module correlation density; ∆C, differential module correlation density.

Figure 3. Network for the differential modules. Nodes represent genes and 
edges represent the interactions among any two genes.
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overcome this problem, one may evaluate pathogenic genes or 
modules for disease association using a network strategy (27). 
Therefore, in the present study, modules from DON and HON 
were identified, which made the results more stable and reliable. 
Following this, differential modules between the AS condition 
and healthy controls were identified, which provided potential 
target biomarkers for patients suffering from AS.

The differential module was composed of four nodes 
(PSMA2, SHFM1, PSMA6 and PSMB1) and six edges, 
of which PSMA2, PSMA6 and PSMB1 belonged to the 
proteasome subunit family. Proteasomes are protein 
complexes in eukaryotic cells and cleave peptides in an 
adenosine 5'‑triphosphate‑/ubiquitin‑dependent process in 
a non-lysosomal pathway, some of which are involved in 
presentation by major histocompatibility complex class I mole-
cules (28). Upregulation of proteins involved in inflammation 
and the ubiquitin proteasome pathway have been identified 
in AS (29), and may have an important role for B27 positive 
individuals in the development of AS (30). It had been demon-
strated that proteasome inhibition aggravated tumor necrosis 
factor-mediated bone resorption (31). Furthermore, a study by 
Zhao et al (32) reported that PSMA6 had the potential to be 
a biomarker for AS by utilizing bioinformatics approaches. 
Therefore, in the present study, the proteasome family was 
closely associated with AS, and it is possible to infer that the 
differential module had a notable role in the progression of AS.

In conclusion, the present study identified one differen-
tial module with four nodes (PSMA2, SHFM1, PSMA6 and 
PSMB1) between AS patients and healthy controls. The present 
findings may provide insight on the underlying pathological 
mechanism of AS. Further study should focus on the valida-
tion of these mechanisms.
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