
entropy

Article

A Comprehensive Evaluation of Graph Kernels for
Unattributed Graphs

Yi Zhang 1,*, Lulu Wang 2 and Liandong Wang 1

1 State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information
System, Luoyang 471003, China; CEMEE@vip.163.com

2 National Innovation Institute of Defense Technology, Academy of Military Science, Beijing 100071, China;
wanglulu@nudt.edu.cn

* Correspondence: zhangyinudt@nudt.edu.cn; Tel.: +86-137-8713-6328

Received: 25 September 2018; Accepted: 16 December 2018; Published: 18 December 2018 ����������
�������

Abstract: Graph kernels are of vital importance in the field of graph comparison and classification.
However, how to compare and evaluate graph kernels and how to choose an optimal kernel for a
practical classification problem remain open problems. In this paper, a comprehensive evaluation
framework of graph kernels is proposed for unattributed graph classification. According to the
kernel design methods, the whole graph kernel family can be categorized in five different dimensions,
and then several representative graph kernels are chosen from these categories to perform the
evaluation. With plenty of real-world and synthetic datasets, kernels are compared by many criteria
such as classification accuracy, F1 score, runtime cost, scalability and applicability. Finally, quantitative
conclusions are discussed based on the analyses of the extensive experimental results. The main
contribution of this paper is that a comprehensive evaluation framework of graph kernels is proposed,
which is significant for graph-classification applications and the future kernel research.

Keywords: graph kernel; unattributed graph; time complexity; classification accuracy; graph dataset

1. Introduction

Graphs are important structures for information representation, in which nodes and edges
respectively represent the entities and the relationships in the real world. Graph processing has
been widely used in many scientific fields such as image processing [1], biochemical research [2],
social network [3] and natural language processing [4]. Meanwhile, graph comparison plays a core
role in data mining and target recognition in these fields. For instance, two molecules with the same
chemical properties usually have similar topological structures [5]. Thus people can successfully
perform a prediction for an unknown molecule via topology comparison with known ones.

It has been reported that exact graph comparison is equivalent to sub-graph isomorphism
detection, which is a well-known NP-hard problem [6]. Inexact substitutions have to be explored,
such as approximate graph edit distance [7], topological descriptors [8] and graph kernels.

The construction of graph kernels has been extensively investigated in the past decades. Through
a well-defined kernel function, two samples in the graph space could be mapped into a real number,
which represents the quantitative similarity between two graphs. Moreover, extracting the graph
features explicitly is unnecessary in this procedure.

However, as stated in [9], an exact graph kernel can locate the dissimilarity between two arbitrary
and non-isomorphic graphs. Thus it has the same time complexity with graph isomorphism detection,
which is NP-hard but has been neither proven as NP-complete nor found to be solved by any
polynomial-time algorithm. By now, all the existing graph kernels are actually inexact, paying the
distinct tradeoffs among classification accuracy, applicability and runtime performance.

Entropy 2018, 20, 984; doi:10.3390/e20120984 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20120984
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/12/984?type=check_update&version=2

Entropy 2018, 20, 984 2 of 19

Unfortunately, the problem of how to make a qualitative comparison of graph kernels has not been
solved in the current literature. According to [10], “There is no theoretical justification on why certain
types of kernels are better than the others”. Therefore, almost all existing approaches only utilize a few
real-world datasets to test the classification performance of the proposed kernels. However, this kind
of weak evaluation cannot give an effective guidance when we need an optimal method for a practical
graph-classification application.

In order to alleviate this problem, a comprehensive evaluation framework of graph kernels is
discussed in this paper. According to the design details of the kernel method, the whole graph kernel
family can be grouped in five different dimensions. We choose several popular graph kernels to
perform a comprehensive evaluation. Through classification tests on plenty of real-world and synthetic
datasets, these graph kernels are compared by many criteria such as classification accuracy, F1 score,
runtime cost, scalability and applicability. Finally, quantitative conclusions on the graph kernel groups
are discussed based on the analyses of the experimental results.

In this paper, we mainly focus on the classification evaluation for unattributed graphs, all the
nodes and vertices of which have no attributes [11,12]. The reasons are twofold. Firstly, unattributed
graph is more common in the real world because the attributes of entities and relationships are usually
difficult and expensive to capture. Secondly, the design of kernel methods for unattributed graphs is
more challenging owing to the lack of information. Some researches based on graphs with continuous
or high-dimension attributes [13,14] are not considered in our evaluation.

2. Graph Kernel

2.1. Graph Definition

An unattributed graph G = (V, E) is a set of unlabeled vertices and links. v1, v2 . . . vn ∈ V is
the set of vertices. E is the adjacency matrix. If there is a link between vi and vj, then E

(
vi, vj

)
= 1.

Otherwise, E
(
vi, vj

)
= 0.

A graph Ĝ =
(
V̂, Ê

)
is an (induced) subgraph of graph G = (V, E), if and only if V̂ ⊆ V and

∀v1, v2 ∈ V̂, Ê(v1, v2) = E(v1, v2). For an unattributed graph, a subgraph is also called as a pattern of
a graph.

A (sub)graph G = (V, E) is isomorphic to H = (V′, E′), if there exists as least one bijective
function f : V → V′ so that ∀v1, v2 ∈ E⇔ (fv1 , fv2) ∈ E′ . We denote it as G ∼= H.

A graph alignment ΦG = (Gα, ϑ) is defined by a set of several subgraphs Gα(α = 1, . . . , p) and a
special order of the nodes

{
vα

1 , . . . , vα
k
}

in each subgraph [15]; this joint order is denoted by ϑ. Therefore
ΦG = ΦH means that the two graphs G and H are aligned.

2.2. Kernel Method

Kernel method is an important concept in machine learning. Through a mapping φ from the input
space S into the reproducing kernel Hilbert space H (RKHS), the kernel function is defined as:

k
(

x, x′
)
=
〈
φ(x), φ

(
x′
)〉

H (1)

where x, x′ ∈ S and 〈·, ·〉H is the inner product operation in RKHS. An illustration of kernel method is
shown in Figure 1. The most obvious advantage of graph kernel is that a problem which cannot be
linearly separated is changed into a linear separable problem through a kernel mapping.

Specifically, we call the method as graph kernel if the input space is the graph space.
From Equation (1), it is clear that via a feature extraction method φ, graphs can be mapped into
vectors in a RKHS, and the inner product of two vectors can represent the graph similarity.

Usually, the graph similarity can be computed directly, without the explicitly definition of the
feature extraction method φ. In the real world, it is quite difficult to compute an explicit embedding
representation of structured data. Therefore, compared to topology descriptors and other graph
comparison methods, graph kernel could achieve a smart and accurate similarity measurement

Entropy 2018, 20, 984 3 of 19

because of the implicit feature extraction. In the field of machine learning, it has been witnessed that
graph kernels can bridge the gap between graph-based data and a large group of kernel-based machine
learning algorithms including support vector machines (SVM), kernel regression, and kernel principle
component analysis (kPCA) [9].

Entropy 2018, 20, x FOR PEER REVIEW 3 of 20

Specifically, we call the method as graph kernel if the input space is the graph space. From
Equation (1), it is clear that via a feature extraction methodφ , graphs can be mapped into vectors in
a RKHS, and the inner product of two vectors can represent the graph similarity.

Usually, the graph similarity can be computed directly, without the explicitly definition of the
feature extraction methodφ . In the real world, it is quite difficult to compute an explicit embedding
representation of structured data. Therefore, compared to topology descriptors and other graph
comparison methods, graph kernel could achieve a smart and accurate similarity measurement
because of the implicit feature extraction. In the field of machine learning, it has been witnessed that
graph kernels can bridge the gap between graph-based data and a large group of kernel-based
machine learning algorithms including support vector machines (SVM), kernel regression, and kernel
principle component analysis (kPCA) [9].

()xφ

Figure 1. Example of kernel method.

According to the Mercer's theorem [16], a valid graph kernel must be symmetric and positive
semi-definite (p.s.d.):

Symmetric. Obviously, for two graphs AG and BG , () (), ,A B B Ak G G k G G= .

p.s.d. For a dataset with n graphs, any finite sequences of graphs 1 2, , ng g g and any choices of

arbitrary real numbers 1 2, , nc c c , we have ()
1 1

, 0
n n

i j i j
i j

k g g c c
= =

≥ , .i.e., all the eigenvalues of the

kernel matrix (),n n i jK k g g×
 = for the dataset are nonnegative.

Note that although the learning ability of valid graph kernels has been proven, there is no
theoretical research which demonstrates that invalid graph kernel could not support the learning
algorithms. Actually, there exist discussions of how similarities (i.e., non-p.s.d. kernels) can support
learning [17,18]. Therefore, some graph kernels are not proved to be p.s.d. in the literatures.

2.3. Kernel Groups

In the literature, the existing graph kernels are usually designed based on the distinct topological
analysis of graph structure. According to five different dimensions of kernel design details, the whole
family of graph kernels can be categorized as follows:

1. Framework: R-convolution kernels vs. Information theoretic kernels

In 1999, Haussler proposed R-convolution kernels [19], which discover the relationship between
graph similarity and the appearances of same or similar substructures of two graphs. As the formal

definition in [20], for two graphs 1G and 2G , { }
1 11;1 1; 1;, , , ,n NS S S and { }

2 22;1 2; 2;, , , ,n NS S S are

Figure 1. Example of kernel method.

According to the Mercer’s theorem [16], a valid graph kernel must be symmetric and positive
semi-definite (p.s.d.):

1. Symmetric. Obviously, for two graphs GA and GB, k(GA, GB) = k(GB, GA).
2. p.s.d. For a dataset with n graphs, any finite sequences of graphs g1, g2, · · · gn and any choices of

arbitrary real numbers c1, c2, · · · cn, we have
n
∑

i=1

n
∑

j=1
k
(

gi, gj
)
cicj ≥ 0, i.e., all the eigenvalues of the

kernel matrix Kn×n =
[
k
(

gi, gj
)]

for the dataset are nonnegative.

Note that although the learning ability of valid graph kernels has been proven, there is no
theoretical research which demonstrates that invalid graph kernel could not support the learning
algorithms. Actually, there exist discussions of how similarities (i.e., non-p.s.d. kernels) can support
learning [17,18]. Therefore, some graph kernels are not proved to be p.s.d. in the literatures.

2.3. Kernel Groups

In the literature, the existing graph kernels are usually designed based on the distinct topological
analysis of graph structure. According to five different dimensions of kernel design details, the whole
family of graph kernels can be categorized as follows:

1. Framework: R-convolution kernels vs. Information theoretic kernels

In 1999, Haussler proposed R-convolution kernels [19], which discover the relationship
between graph similarity and the appearances of same or similar substructures of two graphs.
As the formal definition in [20], for two graphs G1 and G2,

{
S1;1, · · · , S1;n1 , · · · , S1;N1

}
and{

S2;1, · · · , S2;n2 , · · · , S2;N2

}
are sub-graph sets of G1 and G2 respectively. A standard R-convolution

kernel K for these two graphs is defined as:

K(G1, G2) =
N1

∑
n1=1

N2

∑
n2=1

δ
(
S1;n1 , S2;n2

)
(2)

where δ denotes a Dirac kernel shown as:

Entropy 2018, 20, 984 4 of 19

δ
(
S1;n1 , S2;n2

)
=

{
1, if S1;n1

∼= S2;n2

0, otherwise
(3)

where S1;n1
∼= S2;n2 indicates the substructure S1;n1 is isomorphic (or approximately isomorphic)

to S2;n2 .
So far, most existing kernels [9,10,21–23] belong to this group. Intuitively, two similar graphs

should have many common substructures. However, the main drawback of the R-convolution kernels
is that they neglect the relative locations of substructures. This is because R-convolution kernels cannot
establish reliable structural correspondences among substructures [21]. Meanwhile, the teeter-totter
problem and the complexity issue of the graph decomposition challenge the development of
R-convolution kernels [6].

Recently, Bai et al. utilized information theory methods to compute the probability distribution
diffusion of two graphs as the similarity measurement [20,24–28]. By mapping all the data points of
the input space into a fitted distribution in a parametric family S, a kernel for the distributions can
be defined. This group of kernels for the data points in terms of distributions can be automatically
induced in the original input space. Therefore, this framework provides us an alternative way of
defining kernels that maps graphs into a statistical manifold. In real-world applications, these kernels
outperform the linear kernels using SVM classifiers. Some of them create a bridge between kernel
methods and information theory, and thus have an information theoretic interpretation. These methods
are called information theoretic kernels. However, its high computational complexity of the information
entropy is the bottleneck of this group.

2. Graph Pre-processing: Aligned Kernels vs. Unaligned Kernels

Graph alignment can locate the mapping relationship between the node sequences of two graphs.
It is a pre-processing procedure for the original graphs. Common substructures will be pinned in the
same position in these two graphs after the alignment. Through assigning parts of one object to parts
of the other, the most similar parts of the two objects can be found out. Finding such a bijection is
known as the assignment problem and well-studied in combinatorial optimization. This approach has
been successfully applied to graph comparison, e.g., in general graph matching as well as kernel-based
classification. In contrast to convolution kernels, assignments establish structural correspondences,
thereby alleviating the problem of diagonal dominance at the same time. And then it can achieve
an accurate similarity computation without false positive. The research on optimal assignment
kernels was reported in [29], in which each pair of structures is aligned before comparison. However,
the similarities derived in this way are not necessarily positive semi-definite (p.s.d.) and thus do not
give rise to valid kernels, severely limiting their use in kernel methods [30]. Kriege et al. discussed the
condition for guaranteeing an optimal assignment kernel to be positive semi-definite [31].

The performance of the aligned kernel depends on the alignment accuracy. During graph
alignment, every node/subgraph in a graph could only map to one node/subgraph in another graph,
which will lead to information loss. Therefore, unaligned kernels are more common in the literature.

3. Matching Pattern: Global kernels vs. Local kernels

A novel choice of matching pattern is usually the core of designing a new graph kernel.
The similarity computation of a kernel mainly depends on the exploration of the matching patterns.

Most existing graph kernels belong to the group of local kernels, which focus on local patterns
of data structure, such as walks [22], paths [23], sub-trees [21] and limit-sized sub-graphs [10].
For example, the random walk kernel will embed graph into a feature space, in which the feature
vector consists of walk numbers with different lengths.

A few studies changed to explore the global characteristics of graphs such as the Lovász
number [32] and the whole probability distribution [11]. The kernels based on these methods are called
global kernels. In this kernel group, all the members directly obtain the similarity among graphs based
on the whole structure information. Therefore, the graph decomposition is not necessary.

Entropy 2018, 20, 984 5 of 19

In the most recent research, some hybrid patterns were utilized to design a kernel [33].
Because graph matching is a special case of sub-graph matching, the kernels based on graph matching
are allocated in the group of local pattern in this paper.

4. Computing Models: Quantum kernels vs. Classical kernels

Quantum computation differs from its classical counterparts. It can store, process and transport
information using the peculiar properties of quantum mechanics such as the superposition and
the entangled state. These properties result in an exponential increase of the dimensionality of the
state-space, which is the basis of the quantum speedup.

As the quantum counterpart of random walk, quantum walk [34] becomes a novel computing
model to analyze graph structures. Because of the amazing properties of quantum parallel and
quantum interference, the quantum amplitude of quantum walks on a graph could represent more
complex structural information. For kernels based on the discrete-time edge-based quantum walk
(DTQW) [12,35] or the concrete-time node-based quantum walk (CTQW) [11,21], all of them are called
quantum kernels, and the others are called classical kernels. In fact, quantum walk is the only method
used to design the quantum kernels in literature.

Here we use DTQW as an instance. The discrete-time quantum walk is the quantum counterpart
of the classical random walk. We denote the state space of DTQW as E, which is the edge set of a
graph. And a general state of the quantum walk is:

|ϕ〉 = ∑
(u,v)∈E

αuv|uv〉 (4)

where the quantum amplitudes αuv are complex. Using the Grover diffusion matrix, the entries of the
transition matrix U is shown as follows:

U(u,v),(w,x) =

{
2

dx
− δux, v = w

0, otherwise
(5)

where U(u,v),(w,x) shows the quantum amplitude for the transition |uv〉 → |wx〉 , dx means the vertex
degree and δux is the Kronecker delta, i.e., δux = 1 if u = x, otherwise δux = 0.

Different from random walk where the probability propagates, what propagates during quantum
walk is the quantum amplitude. Therefore, the quantum interference will happen between two crossing
walks. In this paper, we only consider quantum computing as a novel computation model and evaluate
the quantum kernels by running on a classical computer to simulate quantum walk.

5. Methodologies: Topological kernels vs. Entropy kernels

Graph and sub-graph matching is the key procedure for all the kernels. For most of the
existing kernels, match mapping is computed via the topological analysis. In this kernel group,
graph isomorphism or sub-graph isomorphism is the main method. However, the pairwise matching
will cost a lot of time for the kernel computation. Therefore, adding some toy pattern constraints (e.g.,
edge, fixed-length walk, triangles) or constructing the product graph are the common methods to
locate the matching. The product graph is usually an auxiliary structure to locate common sub-graphs,
which is constructed by two graphs [22]. However, the product graph will be large if the two graphs
are big, which may still lead to unacceptable complexity.

In information theory, mutual information represents the diffusion of two probability distributions.
Utilizing the mutual information entropy of the probability distributions of substructures is a novel
trend to search the similar substructures. Therefore these methods are called entropy kernels in
this paper.

Here 15 popular graph kernels are chosen and shown in Table 1. Every kernel can be grouped
according to the above five dimensions. From the groups of these kernels, we find that:

Entropy 2018, 20, 984 6 of 19

• Most of these kernels are R-convolution, unaligned and local-pattern kernels.
• All the entropy kernels here utilize quantum walk model to compute the probability distribution.
• All of the information theory kernels here belong to the group of entropy kernels. Meanwhile,

some R-convolution kernels which detect the similar substructure via the computation of
information entropy also belong to this group.

Table 1. The 15 groups of chosen graph kernels.

Kernel Name Framework Aligned Matching Pattern Computing Model Methodology

SPK [23] R-convolution No Local (Path) Classical Topology
WLK [9] R-convolution No Local (Subtree) Classical Topology
AGK [10] R-convolution No Local (Graphlet) Classical Topology
GHK [36] R-convolution No Local (Path) Classical Topology
RWK [22] R-convolution No Local (Walk) Classical Topology
QJSU [11] Information Theory No Global CTQW Entropy
LTK [32] R-convolution No Global Classical Topology
ASK [21] R-convolution Yes Local (Subtree) CTQW Entropy

DQMK [35] R-convolution Yes Local (Edge) DTQW Entropy
QJSK [12] Information Theory No Global DTQW Entropy
BWK [6] R-convolution No Local(Walk) Classical Topology
JTK [25] Information Theory No Global CTQW Entropy

NSPDK [37] R-convolution No Local(Subgraph) Classical Topology
CPK [38] R-convolution No Local(Cycle) Classical Topology

MLGK [33] Information Theory No Mix Classical Topology

3. Complexity Analysis

The computation of graph kernel is erogic and complex. As the increase of graph size and dataset
size, the computational cost will increase. In this section, we will make a qualitative comparison on
the runtime cost of the 15 chosen graph kernels through the analysis of time complexity.

Table 2 shows the time complexities of all the 15 mentioned kernels. Suppose that the base dataset
has K graphs and each graph has N nodes (unattributed nodes) and E edges (undirected and unweight
edges). All the complexities are denoted by the three parameters.

Table 2. The time complexities of 15 chosen graph kernels.

Kernel Name Complexity P.S.

SPK O
(
KN4 + K3) -

WLK O
(
KN2 + K2N2)

AGK O
(
KN4 + K3) e.g., graphlet size is 4

GHK O
(
K2N2(E + log N + N2))

RWK O
(
K2N3) -

QJSU O
(
K2N3) -

LTK O
(
K2(EN2 + N3)) Gaussian Kernel as the base kernel

ASK O
(
K2N4)

DQMK O
(
K2NE3)

QJSK O
(
K2NE3)

BWK O
(
K2N3)

JTK O
(
K2N2 + KN3)

NSPDK O
(
K2N2E log E

)
CPK O

(
K
(

N2 + E
))

MLGK O
(
K2N5)

4. Quantitative Evaluation

In this section, plenty of graph datasets are utilized to perform a quantitative evaluation on
graph kernels in terms of many criteria such as classification accuracy, runtime cost, scalability and

Entropy 2018, 20, 984 7 of 19

applicability. From the aforementioned kernel methods, several graph kernels are evaluated using the
following tests.

4.1. Datasets

Both real-world datasets and synthetic datasets are used in this paper to evaluate these
graph kernels:

The real-world datasets. According to the main scope of graph classification, 31 graph datasets
from the real world are chosen, including 20 chemical datasets, five image datasets, two social network
datasets, three hand-writing datasets and one fingerprint dataset. Among the 31 datasets, some of them
are multi-class, such as COIL-DEL and so on. Others are binary class datasets (given in Table A1 in
Appendix A). For each object in these datasets, its topological structure is extracted as an unattributed
graph, and we try to find the relationship between the natural characteristic and the graph structure.
All the datasets can be downloaded from the benchmark website [39].

The synthetic datasets. In order to further evaluate the scalability and the applicability of these
kernels, some synthetic datasets are chosen or generated, including random graphs, cospectral graphs,
regular graphs and strong regular graphs.

Table 3 lists the random graph datasets used for scalability evaluation. According to different
node and edge levels, 100 sample graphs are randomly generated with the same size for each class
in these datasets. To test the set-based scalability, a dataset is generated which consists of different
numbers of random graphs with the same graph size.

Table 3. The random graph datasets for scalability evaluation.

Dataset Name
Statistics

#Set #Nodes #Edges #Class

50-Node 3000 50 50:50:1500 30
200-Edge 2000 20:5:115 200 20

50-Node&150-Edge 100:100:1500 50 150 15

Table 4 collects three kinds of similar graphs. CosGraph includes 5048 pairs of 10-node graphs.
Each pair of graphs has the same graph spectrum, and is called a cospectral graph pair. RegGraph and
SRGraph consist of 31 classes of regular graphs and 11 classes of strong regular graphs respectively.
Within one class, each graph is regular or strong regular but not isomorphic with others.

Table 4. Three similar-graph datasets. In CosGraph, every cospectral graph pair is used as a test. In
RegGraph and SRGraph, paired compassions of the graphs in each class are done using kernel methods.

Dataset Name
Statistics

#set #Class Avg. #Nodes #Test Pairs

CosGraph 10,096 5048 10 5048
RegGraph 6490 31 16.34 885,128
SRGraph 7303 11 37.63 5,099,490

All the synthetic datasets can be downloaded from our github website [40].

4.2. Evaluation Criteria

In this paper, our evaluation of graph kernels will mainly focus on several criteria as follows:

1. Accuracy. Accuracy is the most important criterion for classification to compare the graph
kernels. In this paper, C-SVM [41] is utilized to do the 10-fold cross validation test. In particular,
for all the kernels, 10-fold division is the same for every single comparison, and 100 random

Entropy 2018, 20, 984 8 of 19

tests are repeated. Here we use the average probability of the correct-labelled test samples as the
accuracy result. Meanwhile, F1 score (macro F1) is used to compute the classification ability for
the multi-class problems.

2. Runtime. This criterion mainly focuses on the computational cost of a graph kernel for a graph
dataset. Because the training procedure belongs to the post-process, we only consider the runtime
cost of the computation of the kernel matrix.

3. Scalability. To evaluate the runtime cost clearly, scalability is further used to unveil the behavior
of the computational time with the increasing number of the graph sizes or graphs in the dataset.

4. Applicability. Theoretically, a complete graph kernel is fit for the general graph family, i.e.,
if graph GA is not isomorphic to graph GB, then k(· , GB) 6= k(· , GA). However, inexact graph
kernels may fail to distinguish some similar graphs„ especially the cases of cospectral graphs and
regular graphs. We utilize the failure rate as the applicability measurement for the graph kernels.

All the experiments were tested in Matlab R2010b on an Intel Xeon Core E5-1620 CPU with 8 GB
memory. All the runtime consumption tests are executed with a single thread.

4.3. Results

All the experimental results are shown and analyzed in this subsection.

4.3.1. Accuracy Results

For all the tests on real-world datasets, a single label is given for the graph under test to predict
which class the graph belongs to. It is considered to be correctly classified when the label for the graph
under test equals to its true label. The average classification accuracy results are shown in Figure 2,
where the real-world datasets used in the tests are given in Appendix A and the accuracy data is given
in Table A2 in Appendix B.Entropy 2018, 20, x FOR PEER REVIEW 9 of 20

Figure 2. The classification accuracies of the 10 mentioned kernels for the real-world datasets. The
detailed information about this test is shown in Table A2.

Considering the multi-class cases, macro F1 is used as another criterion to evaluate the accuracy
performance, which is the harmonic average result of the average precision and the average recall of
all the classes in the datasets. Figure 3 illustrates the macro F1 results. The datasets are the multi-class
cases in Appendix A, and the macro F1 results (in percentage) are given in Table A3 in Appendix B.

Figure 3. The F1 score of the 10 chosen kernels for the multi-class datasets. The detailed result of this
test is shown in Table A3.

The results show that most of the kernels only achieve over-50% accuracy and over-0.2 F1 score.
The reasons are threefold: (1) there are many multi-classes datasets such as COIL (100 classes) and
MSRC (20 classes), which are very difficult to correctly recognize; (2) unattributed graphs contain
limited information about real-world object, because they neglect the attributes of nodes and edges;
(3) compared to the novel multi-kernel method [42], it is more difficult for the single kernel method
to capture plenty of complex features of objects.

In addition, we apply statistical tests on the accuracy results. Since some of the accuracy results
cannot satisfy the normality assumption, a non-parametric test, the Kruskal-Wallis test, is used. After
the statistical test, the significance is 0.631 (the confidence level is 95%), which means that there is no
significant difference between the accuracy results of using different graph kernels. This result is
obvious since we admit that there is no best kernel for all the datasets, and precisely for this reason,
researchers have to design specific graph kernels for a specific given problem. Therefore, a
comprehensive kernel evaluation framework is quite useful to kernel comparison.

Although not significant, there is still a slight advantage of the kernels QJSU, WLK and GHK
(which may be due to chance). It can be inferred that some distinguishing ability could be achieved
through quantum interference or sub-tree matching. The advantages may be more obvious if some

SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK40

42

44

46

48

50

52

54

56

58

60

A
cc

ur
ac

y(
%

)

SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK0.05

0.1

0.15

0.2

0.25

0.3

F1
Sc

or
e

Figure 2. The classification accuracies of the 10 mentioned kernels for the real-world datasets.
The detailed information about this test is shown in Table A2.

Considering the multi-class cases, macro F1 is used as another criterion to evaluate the accuracy
performance, which is the harmonic average result of the average precision and the average recall of
all the classes in the datasets. Figure 3 illustrates the macro F1 results. The datasets are the multi-class
cases in Appendix A, and the macro F1 results (in percentage) are given in Table A3 in Appendix B.

Entropy 2018, 20, 984 9 of 19

Entropy 2018, 20, x FOR PEER REVIEW 9 of 20

Figure 2. The classification accuracies of the 10 mentioned kernels for the real-world datasets. The
detailed information about this test is shown in Table A2.

Considering the multi-class cases, macro F1 is used as another criterion to evaluate the accuracy
performance, which is the harmonic average result of the average precision and the average recall of
all the classes in the datasets. Figure 3 illustrates the macro F1 results. The datasets are the multi-class
cases in Appendix A, and the macro F1 results (in percentage) are given in Table A3 in Appendix B.

Figure 3. The F1 score of the 10 chosen kernels for the multi-class datasets. The detailed result of this
test is shown in Table A3.

The results show that most of the kernels only achieve over-50% accuracy and over-0.2 F1 score.
The reasons are threefold: (1) there are many multi-classes datasets such as COIL (100 classes) and
MSRC (20 classes), which are very difficult to correctly recognize; (2) unattributed graphs contain
limited information about real-world object, because they neglect the attributes of nodes and edges;
(3) compared to the novel multi-kernel method [42], it is more difficult for the single kernel method
to capture plenty of complex features of objects.

In addition, we apply statistical tests on the accuracy results. Since some of the accuracy results
cannot satisfy the normality assumption, a non-parametric test, the Kruskal-Wallis test, is used. After
the statistical test, the significance is 0.631 (the confidence level is 95%), which means that there is no
significant difference between the accuracy results of using different graph kernels. This result is
obvious since we admit that there is no best kernel for all the datasets, and precisely for this reason,
researchers have to design specific graph kernels for a specific given problem. Therefore, a
comprehensive kernel evaluation framework is quite useful to kernel comparison.

Although not significant, there is still a slight advantage of the kernels QJSU, WLK and GHK
(which may be due to chance). It can be inferred that some distinguishing ability could be achieved
through quantum interference or sub-tree matching. The advantages may be more obvious if some

SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK40

42

44

46

48

50

52

54

56

58

60

A
cc

ur
ac

y(
%

)

SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK0.05

0.1

0.15

0.2

0.25

0.3

F1
Sc

or
e

Figure 3. The F1 score of the 10 chosen kernels for the multi-class datasets. The detailed result of this
test is shown in Table A3.

The results show that most of the kernels only achieve over-50% accuracy and over-0.2 F1 score.
The reasons are threefold: (1) there are many multi-classes datasets such as COIL (100 classes) and
MSRC (20 classes), which are very difficult to correctly recognize; (2) unattributed graphs contain
limited information about real-world object, because they neglect the attributes of nodes and edges;
(3) compared to the novel multi-kernel method [42], it is more difficult for the single kernel method to
capture plenty of complex features of objects.

In addition, we apply statistical tests on the accuracy results. Since some of the accuracy results
cannot satisfy the normality assumption, a non-parametric test, the Kruskal-Wallis test, is used.
After the statistical test, the significance is 0.631 (the confidence level is 95%), which means that there
is no significant difference between the accuracy results of using different graph kernels. This result
is obvious since we admit that there is no best kernel for all the datasets, and precisely for this
reason, researchers have to design specific graph kernels for a specific given problem. Therefore,
a comprehensive kernel evaluation framework is quite useful to kernel comparison.

Although not significant, there is still a slight advantage of the kernels QJSU, WLK and GHK
(which may be due to chance). It can be inferred that some distinguishing ability could be achieved
through quantum interference or sub-tree matching. The advantages may be more obvious if some
particular classification cases are considered. Therefore, for specific cases, the evaluation process should
be reproduced and it is suggested that statistical tests be performed to fully analyze the performance
of the kernels.

4.3.2. Runtime Results

Table 5 shows the runtime cost of the 10 chosen kernels for real-world datasets. For each kernel,
the runtime of all the 31 real-world datasets are computed. The maximal runtime, minimal runtime
and average runtime are listed in lines. Compared with the analyses in Table 2, the runtime evaluation
is approximately consistent with the theoretical time complexity comparison.

Generally, SPK is the fastest method because of the fast computation of the shortest path.
Meanwhile, WLK and AGK show outstanding runtime performance as well. However, the quantum
kernels consume more cost than the classical ones because the simulation of quantum walk costs much
runtime on a classical computer. Especially for the case of using DTQW, the runtime cost is nearly
the square of that of using RWK, which may be owing to the computation of the evolution of the
quantum state.

The Kruskal-Wallis test is applied to the runtime results. When taking 95% degree of confidence,
the significance is 0, which means that there are significant differences between the runtime results
when using different graph kernels.

Entropy 2018, 20, 984 10 of 19

Table 5. The runtime cost of graph kernels for real-world datasets.

Kernel Name Minimum Runtime Maximum Runtime Average Runtime

SPK 0.19 s 11.81 s 2.97 s
WLK 2.42 s 2.01 m 26 s
AGK 3.09 s 6.38 m 1.50 m
GHK 14.02 s 4.42 h 27.93 m
RWK 22.40 s 4.27 h 45.6 m
QJSU 18.02 s 3.95 h 50.3 m
LTK 67.99 s 4.86 h 1.05 h
ASK 84.82 s 14.71 h 2.55 h

DQMK 85.50 s 47.17 h 7.85 h
QJSK 62.54 s 70.44 h 10.6 h

4.3.3. Scalability Results

To further explore the scalability, we generate some random graph sets to test the runtime trend
with the increasing of the number of node, edge and set size.

• Node-based Scalability

The dataset 200-Edge is designed to test the node-based scalability of graph kernels. All the
graphs in the dataset have 200 edges. Therefore, the graph density descends as the graph size increases.
Figure 4 shows the runtime comparison of kernels for node-based scalability test. Note that the
size range of most of the concerned graphs is not large. The x-axis is not changed by the orders of
magnitude. In Figure 4a, QJSK, DQMK and AGK have the best scalabilities because the runtime costs
of these kernels nearly maintain the same when the graph size increases. These kernels mainly focus
on the local patterns which are relative to graph edges. QJSK utilizes DTQW which is quantum walk
among edges. Therefore, when the edge number maintains, these kernels are nearly unaffected.Entropy 2018, 20, x FOR PEER REVIEW 11 of 20

20 30 40 50 60 70 80 90 100 110
-2

0

2

4

6

8

10

#node

lo
g(

R
un

tim
e(

s)
)

Graphs with 200 edges

QJSK DQMK AGK

20 30 40 50 60 70 80 90 100 110
-2

0

2

4

6

8

10

#node

lo
g(

R
un

tim
e(

s)
)

Graphs with 200 edges

RWK WLK SPK QJSU ASK GHK LTK

Figure 4. The runtime comparison of kernels for node-based scalability test. (a) The runtime costs of
QJSK, DQMK and AGK maintain when the graph size increases. (b) the ascending runtime trends of
other kernels.

• Edge-based Scalability

The dataset 50-Node is generated to test the edge-based scalability of graph kernels. All the
graphs have 50 nodes. Unlike the dataset 200-Edge, the graph density increases as the edge number
of graphs increases.

Figure 5 shows the runtime comparison of kernels for edge-based scalability test. Most kernels
show good scalabilities when graph density increases (see Figure 5a), except AGK, QJSK and DQMK
in Figure 5b. RWK locates the walk pattern of the graphs therefore it is sensible to the graph density.
QJSK and DQMK utilize the edge-based discrete-time quantum walk to compute the similarity,
which is a high complexity operation when the graph is dense. Therefore, the runtime costs of these
3 kernels increase significantly when the edges increase (see Figure 5b). It is found that this
observation is nearly opposite with the result of the above Node-based Scalability experiment.

50 200 400 600 800 1,000 1,200 1,400 1,600
-3

-1

1

3

5

7

9

11

#edge

lo
g(

R
un

tim
e(

s)
)

Graphs with 50 nodes

QJSK DQMK AGK

50 200 400 600 800 1,000 1,200 1,400 1,600
-3

-1

1

3

5

7

9

11

#edge

lo
g(

R
un

tim
e(

s)
)

Graphs with 50 nodes

RWK WLK SPK QJSU ASK GHK LTK

Figure 5. The runtime comparison of kernels for edge-based scalability test. Compared with QJSK,
DQMK and AGK shown in (b), the kernels in (a) almost maintain the runtime cost when the graph
density increases.

• Set-based Scalability

The dataset 50-Node&150-Edge is designed to test the set-based scalability of graph kernels. All
the graph samples have the same amount of nodes and edges. Figure 6 shows the runtime
comparison of kernels for set-based scalability test. Based on the formal definition of the kernel, the
kernel matrix used in the kernel-based classification is pairwise and the matrix size relates to the
graph number of the dataset. Therefore, all the kernels will cost more runtime when the graph set
increases. Compared with other methods, the increasing trends of the runtime costs of QJSK, DQMK

Figure 4. The runtime comparison of kernels for node-based scalability test. (a) The runtime costs of
QJSK, DQMK and AGK maintain when the graph size increases. (b) the ascending runtime trends of
other kernels.

However, other kernels in Figure 4b show bad scalabilities, especially the QJSU which has
the sharpest ascending trend as the graph size increases. The main reason is that CTQW is a
costly procedure.

• Edge-based Scalability

The dataset 50-Node is generated to test the edge-based scalability of graph kernels. All the
graphs have 50 nodes. Unlike the dataset 200-Edge, the graph density increases as the edge number of
graphs increases.

Entropy 2018, 20, 984 11 of 19

Figure 5 shows the runtime comparison of kernels for edge-based scalability test. Most kernels
show good scalabilities when graph density increases (see Figure 5a), except AGK, QJSK and DQMK
in Figure 5b. RWK locates the walk pattern of the graphs therefore it is sensible to the graph density.
QJSK and DQMK utilize the edge-based discrete-time quantum walk to compute the similarity, which is
a high complexity operation when the graph is dense. Therefore, the runtime costs of these 3 kernels
increase significantly when the edges increase (see Figure 5b). It is found that this observation is nearly
opposite with the result of the above Node-based Scalability experiment.

Entropy 2018, 20, x FOR PEER REVIEW 11 of 20

20 30 40 50 60 70 80 90 100 110
-2

0

2

4

6

8

10

#node

lo
g(

R
un

tim
e(

s)
)

Graphs with 200 edges

QJSK DQMK AGK

20 30 40 50 60 70 80 90 100 110
-2

0

2

4

6

8

10

#node

lo
g(

R
un

tim
e(

s)
)

Graphs with 200 edges

RWK WLK SPK QJSU ASK GHK LTK

Figure 4. The runtime comparison of kernels for node-based scalability test. (a) The runtime costs of
QJSK, DQMK and AGK maintain when the graph size increases. (b) the ascending runtime trends of
other kernels.

• Edge-based Scalability

The dataset 50-Node is generated to test the edge-based scalability of graph kernels. All the
graphs have 50 nodes. Unlike the dataset 200-Edge, the graph density increases as the edge number
of graphs increases.

Figure 5 shows the runtime comparison of kernels for edge-based scalability test. Most kernels
show good scalabilities when graph density increases (see Figure 5a), except AGK, QJSK and DQMK
in Figure 5b. RWK locates the walk pattern of the graphs therefore it is sensible to the graph density.
QJSK and DQMK utilize the edge-based discrete-time quantum walk to compute the similarity,
which is a high complexity operation when the graph is dense. Therefore, the runtime costs of these
3 kernels increase significantly when the edges increase (see Figure 5b). It is found that this
observation is nearly opposite with the result of the above Node-based Scalability experiment.

50 200 400 600 800 1,000 1,200 1,400 1,600
-3

-1

1

3

5

7

9

11

#edge

lo
g(

R
un

tim
e(

s)
)

Graphs with 50 nodes

QJSK DQMK AGK

50 200 400 600 800 1,000 1,200 1,400 1,600
-3

-1

1

3

5

7

9

11

#edge

lo
g(

R
un

tim
e(

s)
)

Graphs with 50 nodes

RWK WLK SPK QJSU ASK GHK LTK

Figure 5. The runtime comparison of kernels for edge-based scalability test. Compared with QJSK,
DQMK and AGK shown in (b), the kernels in (a) almost maintain the runtime cost when the graph
density increases.

• Set-based Scalability

The dataset 50-Node&150-Edge is designed to test the set-based scalability of graph kernels. All
the graph samples have the same amount of nodes and edges. Figure 6 shows the runtime
comparison of kernels for set-based scalability test. Based on the formal definition of the kernel, the
kernel matrix used in the kernel-based classification is pairwise and the matrix size relates to the
graph number of the dataset. Therefore, all the kernels will cost more runtime when the graph set
increases. Compared with other methods, the increasing trends of the runtime costs of QJSK, DQMK

Figure 5. The runtime comparison of kernels for edge-based scalability test. Compared with QJSK,
DQMK and AGK shown in (b), the kernels in (a) almost maintain the runtime cost when the graph
density increases.

• Set-based Scalability

The dataset 50-Node&150-Edge is designed to test the set-based scalability of graph kernels.
All the graph samples have the same amount of nodes and edges. Figure 6 shows the runtime
comparison of kernels for set-based scalability test. Based on the formal definition of the kernel,
the kernel matrix used in the kernel-based classification is pairwise and the matrix size relates to
the graph number of the dataset. Therefore, all the kernels will cost more runtime when the graph
set increases. Compared with other methods, the increasing trends of the runtime costs of QJSK,
DQMK and RWK are more significant. For a large dataset, these three kernels cannot work well within
an acceptable time.

Entropy 2018, 20, x FOR PEER REVIEW 12 of 20

and RWK are more significant. For a large dataset, these three kernels cannot work well within an
acceptable time.

100 300 500 700 900 1100 1300 1500
-2

0

2

4

6

8

10

12

14

#set

lo
g(

R
un

tim
e(

s)
)

Graphs with 50-Nodes&150-Edges

QJSK DQMK RWK

100 300 500 700 900 1100 1300 1500
-2

0

2

4

6

8

10

12

14

#set

lo
g(

R
un

tim
e(

s)
)

Graphs with 50-Nodes&150-Edges

AGK WLK SPK QJSU ASK GHK LTK

(a) (b)
Figure 6. The runtime comparison of kernels for set-based scalability test. Compared with QJSK,
DQMK and RWK shown in (b), the kernels in (a) show slower increasing trends when the graph set
increases.

• Normalized Evaluation

For every kernel, the runtime cost is related with many factors as listed in Table 2. The factor set
is assumed to be { , , }x y z . Take factor x as an example. In order to make a normalized standard
evaluation on the x -based scalability of a kernel method, we fix all the other factors in the dataset
and use the following function to compute the normalized scalability:

1
1

, ,

1 1

ln ln1
1 ln ln

i i
n

x y z x y z
x

i i i

T T
Scalability

n x x
+

−

= +

−
=

− − (6)

where ,x y zT denotes the runtime cost for a dataset with the relative factors { , , }x y z .

Actually, the x -based scalability should be evaluated by the derivatives of the sub-function xT
x

∂
∂

.

The higher the value is, the x -based scalability is worse. However, for an arbitrary kernel, the sub-
cost xT is difficult to test. Approximately, we could assume that every factor is independent with

each other and the x -based asymptotic complexity is about ()kO x . It can be easily proved that

Equation (6) can be used to compute xT
x

∂
∂

approximately.

Note that even if the scalability equals to 1, it does not mean that the runtime cost changes
linearly with the factor. This function should be considered as an approximate method to measure
the scalability quantitatively.

The node-based, edge-based and set-based normalized scalabilities of the 10 graph kernels are
given in Table 6.

Table 6. The three kinds of normalized scalabilities of the 10 mentioned kernels. The results in red
italic font denote bad scalabilities we observe in Figure 4–6, while the results in blue bold font are
outstanding scalabilities.

Kernel Name Node-based Scalability Edge-based Scalability Set-based Scalability
SPK 1.96 -0.41 1.04
WLK 0.96 -0.02 1.14
AGK -0.58 1.96 0.98
GHK 1.60 0.09 1.69
RWK 0.68 0.61 2.06

Figure 6. The runtime comparison of kernels for set-based scalability test. Compared with QJSK,
DQMK and RWK shown in (b), the kernels in (a) show slower increasing trends when the graph
set increases.

Entropy 2018, 20, 984 12 of 19

• Normalized Evaluation

For every kernel, the runtime cost is related with many factors as listed in Table 2. The factor set
is assumed to be {x, y, . . . z}. Take factor x as an example. In order to make a normalized standard
evaluation on the x-based scalability of a kernel method, we fix all the other factors in the dataset and
use the following function to compute the normalized scalability:

Scalabilityx =
1

n− 1

n−1

∑
i=1

ln Txi ,y...z − ln Txi+1,y...z

ln xi − ln xi+1
(6)

where Tx,y...z denotes the runtime cost for a dataset with the relative factors {x, y, . . . z}.
Actually, the x-based scalability should be evaluated by the derivatives of the sub-function ∂Tx

∂x .
The higher the value is, the x-based scalability is worse. However, for an arbitrary kernel, the sub-cost
Tx is difficult to test. Approximately, we could assume that every factor is independent with each other
and the x-based asymptotic complexity is about O

(
xk
)

. It can be easily proved that Equation (6) can

be used to compute ∂Tx
∂x approximately.

Note that even if the scalability equals to 1, it does not mean that the runtime cost changes
linearly with the factor. This function should be considered as an approximate method to measure the
scalability quantitatively.

The node-based, edge-based and set-based normalized scalabilities of the 10 graph kernels are
given in Table 6.

Table 6. The three kinds of normalized scalabilities of the 10 mentioned kernels. The results in red
italic font denote bad scalabilities we observe in Figures 4–6, while the results in blue bold font are
outstanding scalabilities.

Kernel Name Node-Based Scalability Edge-Based Scalability Set-Based Scalability

SPK 1.96 −0.41 1.04
WLK 0.96 −0.02 1.14
AGK −0.58 1.96 0.98
GHK 1.60 0.09 1.69
RWK 0.68 0.61 2.06
QJSU 5.00 0.17 1.34
LTK 1.82 −0.12 1.10
ASK 1.86 0.22 1.48

DQMK −0.04 2.48 2.07
QJSK −0.04 3.08 2.32

4.3.4. Applicability Results

Some similar and non-isomorphic graphs are usually difficult to distinguish via inexact graph
comparison methods. Therefore, a graph kernel cannot be applied to some kinds of graphs. In this
subsection, the distinguishing ability for similar graphs is used to compare the applicability of these
graph kernels. Here similar graphs are the graph pairs or graph groups with similar structure.

Table 7 shows the failure rates of these graph kernels for distinguishing the similar graph pairs
collected in Table 4, including the cospectral graphs, regular graphs and strong regular graphs.

The Kruskal-Wallis test under the 95% degree of confidence is conducted. The significance is
0.014. Therefore, the graph kernels have significant influence on the applicability. RWK is the worst
kernel, which cannot be used to distinguish these similar graphs. WLK could only locate the difference
of the cospectral graphs, but fails for regular graphs. On the contrary, DQMK, LTK, QJSU and AGK
achieve the best distinguishing abilities, even for the strong regular graphs.

Generally, the quantum kernels show better applicability. Because the slight topological difference
will be amplified by quantum interference, and thus better distinguishing ability is achieved. Therefore,
when the sample graphs are similar and difficult to be classified, quantum kernels will be better choices.

Entropy 2018, 20, 984 13 of 19

Table 7. The failure rates of all the kernels for distinguishing the similar graphs.

Kernel Name Cospectral Graphs Regular Graphs Strong Regular Graphs Average

SPK 33.16% 1.14% 100% 44.77%
WLK 1.66% 100% 100% 67.22%
AGK 5.96% 4.87% 3.82% 4.88%
GHK 18.82% 0.12% 100% 39.65%
RWK 100% 100% 100% 100%
QJSU 0% 2.79% 0.65% 1.15%
LTK 0% 0% 0% 0%
ASK 33.16% 1.14% 95.96% 43.42%

DQMK 0% 0% 0% 0%
QJSK 33.16% 1.14% 13.60% 15.97%

5. Discussion

According to the evaluations in Section 4, seven criteria are considered for each kernel including
classification accuracy, F1Score, runtime cost, node-based scalability, edge-based scalability, set-based
scalability and distinguishing ability. The normalized ability value (using the ability X of kernel K as
an example) is defined as follows:

AbilityX =
|XK − Xworst|
|Xbest − Xworst|

(7)

where Xbest and Xworst are the ability value of the optimal kernel and the worst kernel in all the
10 mentioned kernels respectively.

According to Section 2.3, all the graph kernels can be grouped according to five different
dimensions. Here we focus on the comparison of the graph kernel groups to explore the advantages
and disadvantages of all the kernel groups. For each kernel group, we compare the average abilities of
all the kernels in this group.

Figure 7 shows the comparison results of the five graph kernel groups. In the radar figures in
Figure 7, the bigger the ability scope is, the better the graph kernel group is. And for each criteria of
the comparison, the bigger the value is, the stronger the ability is.

Through the statistical analyses, we find out that:

• R-convolution kernels perform better on scalabilities and runtime cost, while the information
theory kernels show better abilities on accuracy and applicability. The information theory kernels
utilize the global probability distribution diffusion of two graphs to measure the graph similarity.
Therefore, compared with local pattern matching of R-convolution kernels, the information theory
kernels result in the better accuracy and applicability.

• Aligned kernels have stronger applicability and node-based scalability but are weaker than
unaligned kernels on the other criteria. Through graph alignment, the vertex mapping
characteristic is found out before kernel computation. Meanwhile, the slight difference of the
similar graph pairs can also be located in the alignment procedure. Therefore, after graph
alignment, the kernel methods can utilize the vertex mapping directly, which leads to a well
node-based scalability.

• Global kernels, quantum kernels and entropy kernels are worse than their counterpart kernel
group in all the other criteria except the distinguishing ability (applicability). It unveils that
if good applicability is needed, more complex computations are needed in the kernel method,
such as the above kinds of graph kernels.

Above all, R-convolution, unaligned, local-pattern, classical and topological kernels have better
ability scope and show more advantages. However, these kinds of kernels lack powerful applicability.
The reasons are twofold. Firstly, a complete graph kernel can distinguish all the non-isomorphic

Entropy 2018, 20, 984 14 of 19

graph pairs, which means it has the best applicability. However, it is NP-hard. Therefore, to achieve a
powerful applicability, the computation cost will be great. Secondly, distinguishing slight differences
will lead to bad generalization performance, and thus result in low accuracy.

Entropy 2018, 20, x FOR PEER REVIEW 14 of 20

Figure 7 shows the comparison results of the five graph kernel groups. In the radar figures in
Figure 7, the bigger the ability scope is, the better the graph kernel group is. And for each criteria of
the comparison, the bigger the value is, the stronger the ability is.

Figure 7. The ability comparison of all the 5 graph kernel groups in 7 criteria. (a) R-convolution kernels
vs. Information theory kernels. (b) Aligned kernels vs. Unaligned kernels. (c) Local kernels vs. Global
kernels. (d) Quantum kernels vs. Classical kernels. Note that for the 10 chosen kernels, the radar figure
of Entropy kernels vs. Topological kernels is the same with that of Quantum kernels vs. Classical kernels.

Through the statistical analyses, we find out that:

• R-convolution kernels perform better on scalabilities and runtime cost, while the information
theory kernels show better abilities on accuracy and applicability. The information theory
kernels utilize the global probability distribution diffusion of two graphs to measure the graph
similarity. Therefore, compared with local pattern matching of R-convolution kernels, the
information theory kernels result in the better accuracy and applicability.

• Aligned kernels have stronger applicability and node-based scalability but are weaker than
unaligned kernels on the other criteria. Through graph alignment, the vertex mapping
characteristic is found out before kernel computation. Meanwhile, the slight difference of the
similar graph pairs can also be located in the alignment procedure. Therefore, after graph
alignment, the kernel methods can utilize the vertex mapping directly, which leads to a well
node-based scalability.

• Global kernels, quantum kernels and entropy kernels are worse than their counterpart kernel
group in all the other criteria except the distinguishing ability (applicability). It unveils that if

Figure 7. The ability comparison of all the 5 graph kernel groups in 7 criteria. (a) R-convolution
kernels vs. Information theory kernels. (b) Aligned kernels vs. Unaligned kernels. (c) Local kernels
vs. Global kernels. (d) Quantum kernels vs. Classical kernels. Note that for the 10 chosen kernels,
the radar figure of Entropy kernels vs. Topological kernels is the same with that of Quantum kernels vs.
Classical kernels.

6. Conclusions

In this paper, a comprehensive evaluation of graph kernels for unattributed graphs is introduced.
According to five different dimensions of the design details, all the existing graph kernels can be
catalogued and 10 representative graph kernels are chosen to be completed compared using plenty
of real-world and synthetic datasets. For each kernel, we focus on seven criteria to evaluate the
performance of the kernel, namely, the classification accuracy, runtime cost, node-based scalability,
edge-based scalability, set-based scalability and applicability. Through the kernel group comparison,
it is found that the R-convolution, unaligned, local-pattern, classical and topological kernels achieve
better performance in all the criteria except for the applicability.

Ten chosen graph kernels may not be enough to represent all the existing graph kernel methods.
Therefore, some conclusions in this paper should be seen as guidelines which are useful for choosing an

Entropy 2018, 20, 984 15 of 19

optimal kernel for graph classification or designing a novel kernel. As to the future work, more kernels
will be included and graph kernels for attributed graphs will be considered.

Author Contributions: Conceptualization, Y.Z. and L.W. (Liandong Wang); methodology, Y.Z.; software,
Y.Z. and L.W. (Lulu Wang); validation, Y.Z., L.W. (Lulu Wang) and L.W. (Liandong Wang); formal analysis,
L.W. (Lulu Wang); investigation, Y.Z.; resources, Y.Z. and L.W. (Lulu Wang); data curation, Y.Z.; writing—original
draft preparation, Y.Z.; writing—review and editing, L.W. (Lulu Wang).

Funding: This research was funded by China Postdoctoral Science Foundation, grant number 45649 and National
Natural Science Foundation of China, grant number 61701502.

Acknowledgments: The authors appreciate the kind comments and professional criticisms of the anonymous
reviewers. They have greatly enhanced the overall quality of the manuscript and opened numerous perspectives
geared toward improving the work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A The Real-World Datasets

All the real-world datasets are listed in Table A1.

Table A1. The detailed information of the real-world datasets. The dataset density is calculated by the
average edges divided by the average nodes.

Dataset Name
Statistics

Description
#Set #Class Avg. #Nodes Avg. #Edges Density

Mutagenicity 4337 2 30.32 30.77 1.01 Chemical Molecule
PTC_MM 336 2 13.97 14.32 1.03 Chemical Molecule
PTC_FM 349 2 14.11 14.48 1.03 Chemical Molecule
PTC_MR 344 2 14.29 14.69 1.03 Chemical Molecule
PTC_FR 351 2 14.56 15 1.03 Chemical Molecule

AIDS 2000 2 15.69 16.2 1.03 Chemical Molecule
DHFR 467 2 42.43 44.54 1.05 Chemical Molecule
COX2 467 2 41.22 43.45 1.05 Chemical Molecule

FRANKENSTEIN 4337 2 16.9 17.88 1.06 Chemical Molecule
BZR 405 2 35.75 38.36 1.07 Chemical Molecule
NCI1 4110 2 29.87 32.3 1.08 Chemical Molecule

NCI109 4127 2 29.68 32.13 1.08 Chemical Molecule
MUTAG 188 2 17.93 19.79 1.10 Chemical Molecule

PROTEINS 1113 2 39.06 72.82 1.86 Chemical Molecule
PROTEINS_full 1113 2 39.06 72.82 1.86 Chemical Molecule

ENZYMES 600 6 32.63 62.14 1.90 Chemical Molecule
BZR_MD 306 2 21.3 225.06 10.57 Chemical Molecule
ER_MD 446 2 21.33 234.85 11.01 Chemical Molecule

DHFR_MD 393 2 23.87 283.01 11.86 Chemical Molecule
COX2_MD 303 2 26.28 335.12 12.75 Chemical Molecule
COIL-RAG 3900 100 3.01 3.02 1.00 Image
MSRC_21C 209 20 40.28 96.6 2.40 Image

MSRC_9 221 8 40.58 97.94 2.41 Image
COIL-DEL 3900 100 21.54 54.24 2.52 Image
MSRC_21 563 20 77.52 198.32 2.56 Image
Letter-low 2250 15 4.68 3.13 0.67 Handwriting
Letter-high 2250 15 4.67 4.5 0.96 Handwriting
Letter-med 2250 15 4.67 4.5 0.96 Handwriting

IMDB-BINARY 1000 2 19.77 96.53 4.88 Social Network
IMDB-MULTI 1500 3 13 65.94 5.07 Social Network

Fingerprint 2800 4 5.42 4.42 0.82 Fingerprint

Entropy 2018, 20, 984 16 of 19

Appendix B The Complete Results of Accuracy Test

The detailed results of the accuracy of the classification test are shown in Tables A2 and A3.

Table A2. The complete results of the classification accuracy. Every item is comprised of the average accuracy (%) and the standard deviation of 100 repeated tests.
The bold numbers are the best result among the ten kernels for each dataset.

Datasets SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK

AIDS 99.32 ± 0.59 98.75 ± 0.87 98.78 ± 0.84 99.33 ± 0.58 79.99 ± 2.67 99.73 ± 0.34 99.54 ± 0.46 96.79 ± 1.24 79.99 ± 2.67 79.99 ± 2.67
BZR 79.95 ± 2.31 87.75 ± 1.53 78.96 ± 2.35 83.82 ± 1.86 78.61 ± 2.34 83.26 ± 2.01 79.23 ± 2.26 79.29 ± 2.56 78.61 ± 2.34 78.61 ± 2.34

BZR_MD 60.71 ± 2.51 59.25 ± 2.82 48.96 ± 0.98 60.56 ± 2.36 61.49 ± 1.26 62.33 ± 2.00 60.59 ± 2.41 60.87 ± 2.26 59.08 ± 1.15 55.41 ± 2.36
COIL-DEL 12.04 ± 1.60 12.43 ± 1.51 8.80 ± 1.41 18.11 ± 1.75 0.94 ± 0.49 7.83 ± 1.23 7.70 ± 1.16 4.46 ± 1.05 6.01 ± 1.10 0.84 ± 0.08
COIL-RAG 4.99 ± 1.11 5.89 ± 1.14 3.34 ± 0.87 5.77 ± 1.18 0.83 ± 0.05 6.16 ± 1.13 5.20 ± 1.16 2.45 ± 0.76 3.76 ± 0.93 0.83 ± 0.05

COX2 78.15 ± 5.64 78.87 ± 5.63 78.15 ± 5.64 78.65 ± 5.74 78.15 ± 5.64 78.69 ± 5.94 78.17 ± 5.57 78.15 ± 5.64 78.15 ± 5.64 78.08 ± 5.69
COX2_MD 47.95 ± 1.12 47.51 ± 1.86 47.95 ± 1.12 48.00 ± 1.14 47.00 ± 1.83 46.80 ± 2.00 47.57 ± 1.19 47.44 ± 1.08 46.77 ± 1.33 47.85 ± 1.01

DHFR 70.09 ± 5.89 82.13 ± 4.31 61.23 ± 5.48 79.77 ± 4.75 61.23 ± 5.48 79.03 ± 4.09 60.91 ± 5.04 47.40 ± 4.80 76.77 ± 4.96 61.23 ± 5.48
DHFR_MD 68.11 ± 3.61 67.07 ± 3.57 68.11 ± 3.61 66.81 ± 3.61 67.55 ± 3.57 66.88 ± 3.62 67.12 ± 3.66 67.72 ± 3.68 68.11 ± 3.61 68.11 ± 3.61

ER_MD 59.65 ± 3.50 63.14 ± 3.62 59.14 ± 3.07 62.62 ± 3.26 62.50 ± 3.03 61.65 ± 3.31 62.78 ± 3.01 63.19 ± 3.62 59.04 ± 3.05 59.14 ± 3.07
ENZYMES 28.70 ± 5.58 37.39 ± 6.48 26.65 ± 5.78 37.34 ± 6.58 11.63 ± 3.12 31.97 ± 6.21 22.89 ± 5.19 30.27 ± 5.67 28.91 ± 5.71 19.56 ± 2.44
Fingerprint 26.62 ± 2.81 27.23 ± 2.93 29.75 ± 3.04 26.68 ± 2.69 24.57 ± 2.75 30.16 ± 3.12 29.56 ± 3.21 24.74 ± 2.62 30.73 ± 3.00 24.14 ± 2.85

FRANKENSTEIN 60.46 ± 2.35 72.40 ± 1.89 59.46 ± 2.29 67.33 ± 2.08 57.54 ± 2.67 66.91 ± 2.22 62.07 ± 2.25 63.33 ± 2.00 63.77 ± 2.39 52.51 ± 3.16
IMDB-BINARY 59.09 ± 5.21 72.45 ± 4.33 64.92 ± 5.22 71.74 ± 4.47 67.50 ± 5.14 62.10 ± 5.24 61.75 ± 5.21 63.57 ± 5.03 46.40 ± 4.30 50.36 ± 5.57
IMDB-MULTI 40.71 ± 4.63 50.96 ± 4.37 40.11 ± 4.25 50.45 ± 3.61 46.20 ± 4.52 43.24 ± 4.14 45.81 ± 3.72 42.81 ± 5.15 49.02 ± 4.93 43.51 ± 4.15

Letter-high 28.99 ± 3.02 33.87 ± 2.84 32.03 ± 3.09 34.20 ± 3.03 13.25 ± 2.23 46.36 ± 3.13 30.71 ± 3.05 28.20 ± 3.08 32.89 ± 3.50 26.90 ± 3.03
Letter-low 32.82 ± 2.87 39.30 ± 3.18 43.92 ± 3.11 37.15 ± 3.31 6.86 ± 2.70 78.90 ± 2.50 33.26 ± 3.03 33.03 ± 5.61 46.74 ± 3.29 27.71 ± 2.09
Letter-med 30.63 ± 2.73 36.36 ± 3.40 39.70 ± 3.15 35.62 ± 3.27 7.16 ± 2.64 74.02 ± 2.87 30.82 ± 3.16 28.66 ± 5.28 43.72 ± 3.25 27.10 ± 2.17

Mutagenicity 63.64 ± 2.18 78.48 ± 1.86 59.62 ± 2.38 69.34 ± 2.11 55.32 ± 2.39 69.07 ± 2.10 60.17 ± 2.17 62.44 ± 2.04 58.71 ± 2.67 55.32 ± 2.39
MSRC_9 16.53 ± 1.53 13.00 ± 2.98 8.05 ± 1.10 19.29 ± 2.70 8.49 ± 1.28 15.00 ± 0.37 9.82 ± 1.61 17.78 ± 3.10 14.73 ± 2.02 9.38 ± 2.47

MSRC_21 12.86 ± 0.68 7.52 ± 0.77 5.66 ± 1.74 11.35 ± 1.83 4.12 ± 0.49 6.92 ± 1.18 5.02 ± 1.87 7.12 ± 1.22 3.54 ± 1.22 4.39 ± 2.10
MSRC_21C 19.14 ± 2.90 11.82 ± 1.40 13.24 ± 1.69 14.32 ± 2.44 12.26 ± 1.14 17.12 ± 1.35 15.04 ± 1.41 15.52 ± 1.25 11.28 ± 1.22 11.78 ± 1.27

MUTAG 82.96 ± 3.65 81.69 ± 2.31 80.84 ± 3.52 85.40 ± 2.65 77.00 ± 3.41 82.67 ± 2.19 83.29 ± 2.81 84.20 ± 3.46 76.42 ± 2.88 79.00 ± 3.41
NCI1 61.76 ± 2.40 81.77 ± 1.79 62.48 ± 2.29 68.02 ± 2.36 57.95 ± 1.46 66.25 ± 2.21 62.84 ± 2.47 64.49 ± 2.55 65.18 ± 2.33 57.82 ± 1.60

NCI109 62.16 ± 2.33 82.29 ± 1.89 62.41 ± 2.28 67.34 ± 2.51 59.80 ± 2.11 66.10 ± 2.56 62.58 ± 2.44 63.22 ± 2.56 64.88 ± 2.25 59.62 ± 2.18
PTC_FM 59.09 ± 2.23 58.64 ± 2.36 60.08 ± 2.20 59.62 ± 2.11 58.75 ± 2.89 59.91 ± 2.15 61.22 ± 2.06 59.39 ± 2.52 59.33 ± 1.76 58.39 ± 2.00
PTC_FR 65.43 ± 3.58 65.30 ± 4.13 65.50 ± 3.64 65.31 ± 3.62 65.66 ± 3.56 64.49 ± 3.62 65.51 ± 3.35 65.10 ± 3.27 65.62 ± 3.57 65.49 ± 3.57

PTC_MM 60.92 ± 2.69 61.98 ± 2.01 62.05 ± 2.58 61.45 ± 2.59 61.27 ± 2.64 59.37 ± 2.48 59.60 ± 2.63 60.99 ± 2.49 61.09 ± 2.73 61.08 ± 2.76
PTC_MR 56.39 ± 3.51 56.68 ± 3.69 56.35 ± 4.29 55.94 ± 4.34 56.05 ± 3.13 56.29 ± 4.17 56.92 ± 4.14 56.22 ± 4.88 57.29 ± 4.20 55.61 ± 4.23

PROTEINS 72.50 ± 4.38 72.77 ± 4.11 71.29 ± 4.26 74.13 ± 3.97 70.13 ± 4.88 71.79 ± 4.03 71.29 ± 4.15 72.00 ± 4.32 66.05 ± 4.61 70.13 ± 4.88
PROTEINS_full 72.36 ± 3.86 72.56 ± 4.19 70.88 ± 3.95 73.81 ± 3.78 69.26 ± 4.31 71.62 ± 4.26 70.88 ± 3.96 71.74 ± 4.01 65.25 ± 4.47 69.26 ± 4.31

Average 51.44 ± 3.00 55.39 ± 2.90 50.59 ± 2.94 54.49 ± 2.98 46.10 ± 2.77 55.90 ± 2.83 50.64 ± 2.90 51.28 ± 3.19 50.58 ± 3.00 47.07 ± 2.87

Entropy 2018, 20, 984 17 of 19

Table A3. The complete result of the F1 score test. Every item shows the average score (%) and the standard deviation of 100 repeated tests. The bold numbers are the
best result among the ten kernels for each dataset.

Datasets SPK WLK AGK GHK RWK QJSU LTK ASK DQMK QJSK

COIL-DEL 12.55 ± 1.39 13.07 ± 1.59 10.98 ± 1.6 17.59 ± 2.21 3.23 ± 0.72 11.77 ± 1.67 5.01 ± 0.71 4.74 ± 0.69 6.67 ± 1.74 1.02 ± 0.1
COIL-RAG 2.91 ± 0.79 4.31 ± 0.72 2.3 ± 0.74 4.25 ± 1.13 1.78 ± 0.77 4.63 ± 1.26 3.77 ± 0.94 2.34 ± 1.14 3.40 ± 0.80 0.83 ± 0.11
ENZYMES 30.61 ± 3.38 37.35 ± 4.5 30.04 ± 7.31 37.67 ± 4.87 11.76 ± 5.06 33.98 ± 7.34 22.8 ± 6.26 30.7 ± 4.77 26.94 ± 5.85 5.88 ± 0.67
Fingerprint 5.78 ± 1.51 6.63 ± 0.54 6.54 ± 1.59 6.26 ± 0.64 4.43 ± 1.01 7.14 ± 1.1 6.37 ± 1.5 3.35 ± 1.13 7.17 ± 0.78 2.78 ± 0.34

IMDB-MULTI 40.89 ± 3.08 51.67 ± 3.09 42.5 ± 1.61 51.94 ± 3.16 48.29 ± 4.23 44.1 ± 4.01 46.55 ± 3.75 46.0 ± 2.57 37.76 ± 3.99 29.86 ± 4.67
Letter-high 28.98 ± 3.74 31.69 ± 2.01 31.73 ± 2.02 34.28 ± 2.86 11.08 ± 1.83 47.86 ± 2.37 31.53 ± 3.73 27.3 ± 2.45 38.03 ± 2.77 6.09 ± 1.03
Letter-low 32.21 ± 3.66 35.84 ± 2.96 36.17 ± 1.96 33.75 ± 1.83 11.91 ± 3.05 79.32 ± 1.28 32.25 ± 2.46 31.82 ± 5.79 44.17 ± 1.59 6.72 ± 0.89
Letter-med 28.16 ± 2.75 32.95 ± 3.75 33.67 ± 1.85 33.3 ± 2.57 12.87 ± 4.46 74.1 ± 3.23 29.49 ± 4.31 26.73 ± 3.13 41.3 ± 1.14 5.00 ± 0.29
MSRC_9 22.13 ± 2.52 10.23 ± 1.66 18.0 ± 1.85 13.68 ± 2.34 14.28 ± 1.78 9.34 ± 1.12 9.40 ± 2.60 16.47 ± 3.52 12.38 ± 2.56 1.78 ± 0.19

MSRC_21 14.02 ± 2.77 8.47 ± 1.37 6.41 ± 1.16 10.85 ± 2.53 8.15 ± 1.67 5.88 ± 0.14 3.43 ± 0.91 4.26 ± 1.76 0.49 ± 0.16 0.74 ± 0.10
MSRC_21C 6.56 ± 0.47 2.96 ± 0.29 3.81 ± 0.43 3.96 ± 0.35 1.97 ± 0.2 3.94 ± 0.43 5.37 ± 0.36 5.28 ± 0.31 2.11 ± 0.14 1.01 ± 0.11

Average 20.4 ± 2.7 21.40 ± 2.0 20.2 ± 2.0 22.5 ± 2.2 11.8 ± 2.2 29.3 ± 2.2 17.8 ± 2.5 18.10 ± 2.80 20.0 ± 2.00 5.6 ± 0.87

Entropy 2018, 20, 984 18 of 19

References

1. Ta, V.T.; Lézoray, O.; Elmoataz, A.; Schüpp, S. Graph-based tools for microscopic cellular image segmentation.
Pattern Recognit. 2009, 42, 1113–1125. [CrossRef]

2. Raymond, J.W.; Willett, P. Maximum common subgraph isomorphism algorithms for the matching of
chemical structures. J. Comput.-Aided Mol. Des. 2002, 16, 521–533. [CrossRef] [PubMed]

3. Fan, W. Graph pattern matching revised for social network analysis. In Proceedings of the International
Conference on Database Theory, Berlin, Germany, 26–29 March 2012; pp. 8–21.

4. Ngomo, A.C.N.; Schumacher, F. BorderFlow: A Local Graph Clustering Algorithm for Natural Language
Processing. In Proceedings of the International Conference on Computational Linguistics and Intelligent
Text Processing, Mexico City, Mexico, 1–7 March 2009; pp. 547–558.

5. Mahé, P.; Vert, J.P. Graph kernels based on tree patterns for molecules. Mach. Learn. 2009, 75, 3–35. [CrossRef]
6. Aziz, F.; Wilson, R.C.; Hancock, E.R. Backtrackless walks on a graph. IEEE Trans. Neural Netw. Learn. Syst.

2013, 24, 977–989. [CrossRef] [PubMed]
7. Neuhaus, M.; Bunke, H. Bridging the Gap between Graph Edit Distance and Kernel Machines; World Scientific:

Singapore, 2007.
8. Torresani, L.; Kolmogorov, V.; Rother, C. Feature correspondence via graph matching: Models and global

optimization. In Proceedings of the Computer Vision—ECCV, Marseille, France, 12–18 October 2008;
pp. 596–609.

9. Shervashidze, N.; Schweitzer, P.; Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-lehman graph
kernels. J. Mach. Learn. Res. 2011, 12, 2539–2561.

10. Shervashidze, N.; Vishwanathan, S.V.; Petri, T.; Mehlhorn, K.; Borgwardt, K. Efficient graphlet kernels for
large graph comparison. In Proceedings of the Twelfth International Conference on Artificial Intelligence
and Statistics, Clearwater Beach, FL, USA, 16–18 April 2009; pp. 488–495.

11. Bai, L.; Rossi, L.; Torsello, A.; Hancock, E.R. A quantum Jensen–Shannon graph kernel for unattributed
graphs. Pattern Recognit. 2015, 48, 344–355. [CrossRef]

12. Bai, L.; Rossi, L.; Cui, L.; Zhang, Z.; Ren, P.; Bai, X.; Hancock, E. Quantum kernels for unattributed graphs
using discrete-time quantum walks. Pattern Recognit. Lett. 2017, 87, 96–103. [CrossRef]

13. Orsini, F.; Frasconi, P.; De Raedt, L. Graph invariant kernels. In Proceedings of the 24th International
Conference on Artificial Intelligence (AAAI 2015), Austin, TX, USA, 25–30 January 2015; pp. 3756–3762.

14. Morris, C.; Kriege, N.M.; Kersting, K.; Mutzel, P. Faster kernels for graphs with continuous attributes
via hashing. In Proceedings of the IEEE 16th International Conference on Data Mining (ICDM 2016),
Barcelona, Spain, 12–15 December 2016; pp. 1095–1100.

15. Berg, J.; Karp, R.M. Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA
2004, 101, 14689–14694. [CrossRef] [PubMed]

16. Ferreira, J.C.; Menegatto, V.A. Eigenvalues of integral operators defined by smooth positive definite kernels.
Integral Equ. Oper. Theory 2009, 64, 61–81. [CrossRef]

17. Balcan, M.F.; Blum, A. On a theory of learning with similarity functions. In Proceedings of the International
Conference on Machine Learning, Pittsburgh, PA, USA, 25–19 June 2006; pp. 73–80.

18. Chen, Y.; Gupta, M.R.; Recht, B. Learning kernels from indefinite similarities. In Proceedings of the
International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June2009; pp. 145–152.

19. Haussler, D. Convolution Kernels on Discrete Structures; Department of Computer Science, University of
California at Santa Cruz: Santa Cruz, CA, USA, 1999.

20. Bai, L. Information Theoretic Graph Kernels; University of York: York, UK, 2014.
21. Bai, L.; Rossi, L.; Zhang, Z.; Hancock, E. An aligned subtree kernel for weighted graphs. In Proceedings of

the International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; pp. 30–39.
22. Gärtner, T.; Flach, P.; Wrobel, S. On graph kernels: Hardness results and efficient alternatives. In Proceedings

of the Learning Theory and Kernel Machines 16th Annual Conference on Learning Theory and 7th Kernel
Workshop (COLT/Kernel 2003), Washington, DC, USA, 24–27 August 2003; pp. 129–143.

23. Borgwardt, K.M.; Kriegel, H.P. Shortest-path kernels on graphs. In Proceedings of the 5th IEEE International
Conference on Data Mining (ICDM 2005), Houston, TX, USA, 27–30 November 2005; pp. 8–16.

24. Rossi, L.; Torsello, A.; Hancock, E.R. Measuring Graph Similarity through Continuous-Time Quantum Walks
and the Quantum Jensen-Shannon Divergence. Phys. Rev. E 2015, 91, 022815. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.patcog.2008.10.029
http://dx.doi.org/10.1023/A:1021271615909
http://www.ncbi.nlm.nih.gov/pubmed/12510884
http://dx.doi.org/10.1007/s10994-008-5086-2
http://dx.doi.org/10.1109/TNNLS.2013.2248093
http://www.ncbi.nlm.nih.gov/pubmed/24808478
http://dx.doi.org/10.1016/j.patcog.2014.03.028
http://dx.doi.org/10.1016/j.patrec.2016.08.019
http://dx.doi.org/10.1073/pnas.0305199101
http://www.ncbi.nlm.nih.gov/pubmed/15448202
http://dx.doi.org/10.1007/s00020-009-1680-3
http://dx.doi.org/10.1103/PhysRevE.91.022815
http://www.ncbi.nlm.nih.gov/pubmed/25768560

Entropy 2018, 20, 984 19 of 19

25. Bai, L.; Rossi, L.; Bunke, H.; Hancock, E.R. Hancock: Attributed Graph Kernels Using the Jensen-Tsallis
q-Differences. In Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, Nancy, France, 15–19 September 2014; pp. 99–114.

26. Bai, L.; Edwin, R. Hancock: Graph Kernels from the Jensen-Shannon Divergence. J. Math. Imaging Vis. 2013,
47, 60–69. [CrossRef]

27. Bai, L.; Zhang, Z.; Wang, C.; Bai, X.; Hancock, E.R. Hancock: A Graph Kernel Based on the Jensen-Shannon
Representation Alignment. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015;
pp. 3322–3328.

28. Rossi, L.; Torsello, A.; Hancock, E.R. Unfolding Kernel Embeddings of Graphs: Enhancing Class Separation
through Manifold Learning. Pattern Recognit. 2015, 48, 3357–3370. [CrossRef]

29. Fröhlich, H.; Wegner, J.K.; Sieker, F.; Zell, A. Optimal assignment kernels for attributed molecular graphs.
In Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), Lille, France,
6–11 July 2005; pp. 225–232.

30. Vert, J.P. The optimal assignment kernel is not positive definite. arXiv, 2008; arXiv:0801.4061.
31. Kriege, N.M.; Giscard, P.L.; Wilson, R. On valid optimal assignment kernels and applications to graph

classification. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain, 5–10 December 2016; pp. 1623–1631.

32. Johansson, F.; Jethava, V.; Dubhashi, D.; Bhattacharyya, C. Global graph kernels using geometric embeddings.
In Proceedings of the 31st International Conference on Machine Learning (ICML 2014), Beijing, China,
21–26 June 2014; pp. 21–26.

33. Kondor, R.; Pan, H. The multiscale Laplacian graph kernel. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 2990–2998.

34. Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett. 2009, 102, 180501. [CrossRef]
[PubMed]

35. Bai, L.; Zhang, Z.; Ren, P.; Rossi, L.; Hancock, E.R. An edge-based matching kernel through discrete-time
quantum walks. In Proceedings of the International Conference on Image Analysis and Processing
(ICIAP 2015), Genoa, Italy, 7–11 September 2015; pp. 27–38.

36. Feragen, A.; Kasenburg, N.; Petersen, J.; de Bruijne, M.; Borgwardt, K. Scalable kernels for graphs with
continuous attributes. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2013),
Lake Tahoe, NV, USA, 5–8 December 2013; pp. 216–224.

37. Costa, F.; de Grave, K. Fast neighborhood subgraph pairwise distance kernel. In Proceedings of the ICML,
Haifa, Israel, 21–24 June 2010.

38. Horváth, T.; Gärtner, T.; Wrobel, S. Cyclic pattern kernels for predictive graph mining. In Proceedings of the
KDD, Seattle, WA, USA, 22–25 August 2004.

39. The Graph Kernel Benchmarks. Available online: https://ls11-www.cs.tu-dortmund.de/staff/morris/
graphkerneldatasets (accessed on 15 June 2018).

40. The Datasets and the Matlab Codes. Available online: https://github.com/YiZhangNUDT/graph_kernel_
test (accessed on 10 September 2018).

41. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011,
2, 27. [CrossRef]

42. Liu, X.; Dou, Y.; Yin, J.; Wang, L.; Zhu, E. Multiple Kernel k-Means Clustering with Matrix-Induced
Regularization. In Proceedings of the AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 1888–1894.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10851-012-0383-6
http://dx.doi.org/10.1016/j.patcog.2015.03.018
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://www.ncbi.nlm.nih.gov/pubmed/19518851
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/YiZhangNUDT/graph_kernel_test
https://github.com/YiZhangNUDT/graph_kernel_test
http://dx.doi.org/10.1145/1961189.1961199
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Graph Kernel
	Graph Definition
	Kernel Method
	Kernel Groups

	Complexity Analysis
	Quantitative Evaluation
	Datasets
	Evaluation Criteria
	Results
	Accuracy Results
	Runtime Results
	Scalability Results
	Applicability Results

	Discussion
	Conclusions
	The Real-World Datasets
	The Complete Results of Accuracy Test
	References

