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A B S T R A C T

While cognitive impairments are not generally considered to be part of the childhood absence epilepsy (CAE)
syndrome, some recent studies report cognitive, mainly attentional, deficits. Here we set out to investigate the
whole brain functional network of children with CAE and controls. Furthermore, the possible relation of the
functional network abnormalities with epilepsy and neurocognitive characteristics is studied.

Seventeen children with childhood CAE (aged 9.2 ± 2.1 years) and 15 controls (aged 9.8 ± 1.8 years) were
included. Resting state functional MRI was acquired to study the functional network. Using graph theoretical
analysis, three global metrics of the functional network were investigated: the characteristic path length, the
clustering coefficient, and the small-worldness. A multivariable linear regression model including age, sex, and
subject motion as covariates was used to investigate group differences in the graph metrics. Subsequently, re-
lations of the graph metrics with epilepsy and neurocognitive characteristics were assessed.

Longer path lengths, weaker clustering and a lower small-world network topology were observed in children
with CAE compared to controls. Moreover, longer path lengths were related to a longer duration of CAE and a
higher number of absence seizure per hour. Clustering and small-worldness were not significantly related to
epilepsy or neurocognitive characteristics.

The organization of the functional network of children with CAE is less efficient compared to controls, and is
related to disease duration. These preliminary findings suggest that CAE is associated with alterations in the
functional network.

1. Introduction

Childhood absence epilepsy (CAE) constitutes approximately 12%
of all types of childhood epilepsies (Berg et al., 1999). Children with
CAE suffer from frequent absence seizures that occur multiple times per
day (Curwood et al., 2015; Li et al., 2015), often in clusters. Absence
seizures typically last around 10 s, during which the child is un-
responsive to the environment (Kessler et al., 2017). At these times,
generalized 3 Hz spike-and-wave discharges (GSWD) can be observed in

an electroencephalogram (EEG) (Li et al., 2015; Luo et al., 2011). The
onset of CAE is usually between the ages of 5 and 10 years (Curwood
et al., 2015; Guerrini, 2006). Most children with CAE will outgrow the
seizures when reaching adulthood, therefore CAE has traditionally been
considered a benign syndrome (Vining and Thio, 2013). However, re-
cent reports indicate a broad spectrum of abnormal behavioural and
cognitive performance in CAE, including deficits in attention, memory,
processing speeds, and language (Caplan et al., 2008; Loughman et al.,
2014). Furthermore, these deficits in cognitive performance may
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persist, even after becoming seizure-free (Fonseca Wald et al., 2019).
Previous research has shown that children with CAE have altered

resting-state functionality in selected networks of the brain (Li et al.,
2015; Luo et al., 2014; Wang et al., 2017). Differences in functional
connectivity have been reported using independent component analysis
(ICA), particularly in dorsal attention, salience, and default mode net-
works (Li et al., 2015). Furthermore, disruptions of hubs in the func-
tional network were found for the default mode network and the tha-
lamus (Wang et al., 2017). Moreover, a less efficiently organized whole
brain structural network in children with CAE was previously reported
using diffusion weighted imaging (Qiu et al., 2017). Since prior cohort
studies in children with epilepsy suggested that early changes of func-
tional brain organization are followed by changes of structural con-
nectivity (Besseling et al., 2014; Overvliet et al., 2013), and based on
the clinical profile and widespread cognitive comorbidities of this al-
legedly benign syndrome (Caplan et al., 2008; Loughman et al., 2014;
Verrotti et al., 2015), we would also expect whole brain functional
disruptions. While the whole brain functional network has already been
shown to be reorganized during absence seizures (Liao et al., 2014),
currently the involvement of the resting state functional network in
CAE (i.e. inter-ictally) on a whole brain level remains undetermined.
Whole brain network metrics can be calculated using graph theoretical
analysis. Graph theory was developed as a way of representing pairwise
relations between objects, using vertices (or nodes) and their relations
defined as edges (or connections) (Onias et al., 2014). For the brain, the
nodes represent brain regions and the edges are the connections be-
tween the brain regions (Telesford et al., 2013). In case of functional
magnetic resonance imaging (fMRI), these connections do not describe
the physical structural connections, but rather their temporal correla-
tions (e.g. functional connectivity).

In this study, we will investigate characteristics of functional con-
nectivity in children with CAE and controls by means of graph theo-
retical analysis. Two global graph metrics, the characteristic path
length and the clustering coefficient, will be used to quantify the
functional brain network in terms of integration and segregation, re-
spectively (Onias et al., 2014; Rubinov and Sporns, 2010). Moreover,
the overall topology of the networks will be assessed using the small-
worldness, which is indicative of the overall organization of the net-
works (Watts and Strogatz, 1998). Subsequently, we will assess whether
the global graph metrics differ between children with CAE and controls.
Thereafter, we aim to explore the potential relation of the global graph
metrics with epilepsy characteristics and neurocognitive performance.

2. Methods

2.1. Participants

Seventeen children with a clinical diagnosis of CAE (aged 6–12y)
were prospectively included. Children with a clinical diagnosis of CAE
were included based on the following criteria: 1) Primarily presenting
with daily occurring episodes of brief loss of consciousness in an
otherwise normal child and an EEG showing ictal 3 Hz (2.5–4.5 Hz)
generalized rhythmic spike-and-wave complexes with a discharge
duration of at least 3 s on a present or former EEG (in accordance to
ILAE statements for CAE (Berg et al., 2010; Fisher et al., 2017)). 2)
Early absence epilepsy, defined as a confirmed diagnosis or seizure
onset within 2 years. 3) Six to twelve years of age (Drenthen et al.,
2019). Additionally, fifteen controls (aged 7–12y) were included for
comparison, the control subjects were carefully selected such that, on
average, the age and sex of the two groups matched approximately. All
included children were following regular education, except one child
included in the CAE group who followed special needs education. All
caregivers, and participants aged ≥12 years old gave written permis-
sion prior to inclusion in the study and this research was approved by
the medical ethics committee azM/UM NL55455.068.15/METC152055
and is listed at clinicaltrials.gov under NCT02954107. The following

epilepsy characteristics were recorded: age at onset, duration of epi-
lepsy and number of GSWD per hour. The latter was determined using a
24h-EEG, where the number of GSWD that lasted at least 3 s were
counted in three separate and randomly chosen hours during which the
patient was in a wakeful state. The mean of the three measurements
was used as a measure of seizure frequency. Furthermore, nine of the
children with CAE were taking Ethosuximide (range 14.7 - 27.2mg/kg),
three were taking Valproïc Acid (range 13.3 - 30.8mg/kg), two were
taking Ethosuximide+Valproïc Acid (1. 31.8mg/kg ETM and
22.7 mg/kg VPA; 2. 25.7 mg/kg ETM and 14.12mg/kg VPA) and one
was taking Lamotrigine+Clobazam (1.4+0.42mg/kg). At the time of
the MRI, two children were still drug-naïve, whereas 15 were on anti-
epileptic drug treatment. Five children with CAE were already suc-
cessfully treated with anti-epileptic drugs (AEDs), and were therefore
omitted from any subsequent analysis with seizure frequency.

For all participants, general intelligence and processing speed was
determined using six subtests (mean± SD=10 ± 3) of the Dutch
version of the Wechsler Intelligence Scale for Children third edition
(WISC-III) (similarities, vocabulary, picture completion, coding, block
design, and symbol search). Furthermore, the Bourdon-Vos, a paper and
pencil cancelation test, was used to test for sustained visual attention
and vigilance (Vos, 1988). The time needed to complete the test and the
errors made are recorded. The subject characteristics are shown in
Table 1. Group differences in sex, handedness, schooling and family
history were assessed using the Chi-square test of independence. Prior
to assessing group-differences between the rest of the subject char-
acteristics, the Anderson-Darling test of normality was performed
(Anderson and Darling, 1952). For the normally distributed character-
istics, general intelligence and processing speed, differences were as-
sessed using Student t-tests, while differences between the non-nor-
mally distributed characteristics, age, and Bourdon-Vos duration and
errors, were assessed using Mann–Whitney U tests. The two groups did
not differ significantly regarding age, sex, and general intelligence.
Processing speed index (mean± SD=100 ± 15) was significantly
lower for children with CAE compared to controls (95 ± 15 vs.
108 ± 14, p= .03). Furthermore, the children with CAE took longer to
finish the Bourdon-Vos test (12 ± 3.3min vs. 9.5 ± 2.0min, p= .04),
while no difference in the number of errors was found.

2.2. MRI acquisition

All subjects were scanned on a 3.0 T unit (Philips Achieva, Best, the
Netherlands) using a 32-element phased array coil. To minimize
moving during the MRI exam, children were carefully prepared be-
forehand using a combination of video and written information.

Table 1
Subject characteristics of children with CAE and controls.

CAE Controls p-value

Number (#) 17 15 –
Age (y, mean±SD) 9.2 ± 2.1 9.8 ± 1.8 .36
Sex (M/F) 12/5 11/4 .86
Handedness (R/L) 16/1 11/4 .11
Age of onset (y, mean±SD) 8.0 ± 2.0 – –
Duration of epilepsy (y, mean± SD) 1.2 ± 0.74 – –
Average GSWD per hour (mean± SD) 6.3 ± 7.0 – –
Schooling (regular/special) 16/1 15/0 .34
Family history of epilepsy (Yes/No) 2/15 1/14 .62
WISC-III Subtests (mean± SD) 9.6 ± 1.9 10.9 ± 2.3 .09
WISC-III Processing speed index (mean±

SD)
95 ± 15 108 ± 14 .03

Bourdon-Vos duration (min, mean± SD) 12 ± 3.3 9.5 ± 2.0 .04
Bourdon-Vos errors (#, mean±SD) 17 ± 12 13 ± 12 .06

Y, years; SD, standard deviation; L, left; R, right; CAE, childhood absence epi-
lepsy; WISC-III, Wechsler Intelligence Scale for Children, third edition; GSWD,
generalized spike wave discharges.
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Furthermore, parents were instructed to practice laying still with the
child at home, and be present with them in the magnet room during
scanning. First, for anatomical reference and segmentation, T1-
weighted (T1w) 3D turbo field echo images were acquired (repetition
time (TR)= 8.36ms, echo time (TE)= 3.84ms, flip angle (FA)= 8°,
voxel size= 1×1×1mm, field of view=240×240×180mm).
Functional MR images were acquired in resting state with eyes closed
using a single-shot echo planar imaging (EPI) sequence (TR=2000ms,
31 slices, TE= 35ms, pixel size= 2×2mm, 4mm thick transverse
slices, field of view=212×256×124mm, and 195 acquisitions).

2.3. Analysis

2.3.1. Preprocessing

Preprocessing of the fMRI data and T1w structural images was
performed using the Statistical Parametric Mapping software package,
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) in Matlab R2016b. The
structural images were automatically parcellated into 68 cortical and
14 sub-cortical regions using Freesurfer (version 5.1) based on the
Desikan-Killiany atlas (Desikan et al., 2006; Fischl, 2004). The resulting
parcellations were visually checked and corrected manually where
appropriate.

First, a slice timing correction was applied to the functional images.
Second, to correct for head displacement, all slices were computation-
ally realigned to the first volume in the sequence. Third, the functional
images were smoothed through convolution with a 6mm full-width half
maximum (FWHM) Gaussian kernel. Fourth, a band-pass filter of 0.01
to 0.1 Hz was applied to extract the frequency band of interest. Fifth,
the first 5 vol of the functional images were discarded to ensure steady-
state longitudinal magnetization of the blood-oxygen level dependent
(BOLD) signal (Li et al., 2015; Liao et al., 2010). Last, the time signals of
each region of interest were averaged and corrected for head motion
(relative translational movement (Van Dijk et al., 2012)) as well as
white matter and cerebrospinal fluid (CSF) signals via linear regression
in order to reduce the contribution of physiological noise (Onias et al.,
2014). To cope with EPI distortions in the fMRI data, the T1w image
and corresponding Freesurfer atlas were non-linearly co-registered to
the functional images using Elastix v4.9.0 (Klein et al., 2010). Subse-
quently, a mask based on the outline of the brain in the fMRI data was
used to prevent that fMRI voxels outside brain regions were included.

Since we included young children in our study, subject motion is
likely to affect our results. Therefore, mean relative motion parameters
for translational and rotational movement were included in the statis-
tical analysis as covariates (Van Dijk et al., 2012).

2.3.2. Functional network construction

For each pair of regions, the connection strength was calculated
using the Pearson's correlation coefficients of the fMRI signals, resulting
in a weighted adjacency matrix representing the functional network.
Only those region pairs with a significant Pearson's correlation coeffi-
cient (p < .05) are added as an edge to the network. Furthermore, the
Pearson's correlation coefficients are used as weights, where a higher
correlation is considered a ‘stronger’ connection. Negative correlations
were set to zero because currently the role of negative weights in the
functional network is unclear (Rubinov and Sporns, 2010). On average,
only 2% of the correlations were negative. Additionally, to cope with
noise and false positive connections, non-significant correlation coef-
ficients in the connectivity matrix were set to zero. Functional network
construction was performed in Matlab R2016b.

2.3.3. Network analysis

The weighted functional networks are quantitatively described by
two of the most robust and widely applied global graph metrics, the

characteristic path length (L) and clustering coefficient (C) (Onnela
et al., 2005; Watts and Strogatz, 1998). L provides insight into how well
information can spread throughout a network, while C is a measure of
local information processing. A network with strongly clustered mod-
ules and relative short path length between nodes is considered an ef-
ficiently organized small-world network. Graph analysis is highly de-
pendent on the topology of the network (van Wijk et al., 2010). To
obtain global graph metrics that are normalized with respect to varia-
tions in topology, the global graph metrics are determined relative to
the average of 100 random networks with similar degree distribution
(λ=L/Lrand and γ=C/Crand). Random networks were constructed by
iteratively rewiring the connections, each edge is rewired approxi-
mately 10 times (Maslov and Sneppen, 2002). A measure of small-
worldness can now be defined as σ=γ/λ, where σ>1 indicates that a
network has a small-world topology. Furthermore, only networks with
the same number of nodes and edges (i.e. the networks are equally
sparse) will be compared. Moreover, to decrease the occurrence of false
positives and false negatives in the network, only the nodes and edges
present in the network of at least half of the subjects are considered in
the graph analysis (i.e. group thresholding) (Reus and Heuvel, 2013).
The number of edges in each network is varied such that the functional
networks are 60–90% sparse, with intervals of 1%. Networks sparser
than 90% would lead to disconnected nodes, hindering the graph
analysis. Graph metrics were calculated using the Brain Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net) in Matlab
R2016b.

2.3.4. Statistical analysis

Between-group differences in the global graph metrics were as-
sessed using multivariable linear regression models. To account for
demographical differences and head motion, age, sex and the two mean
motion parameters were added to the models as covariates. However,
since the motion parameters are inherently correlated (r=0.88, p <
.01), only the mean translation motion parameter was added to the
model to prevent multicollinearity in the regression model. Prior to the
analysis, the non-normally distributed mean motion parameters and
number of GSWD per hour were transformed using the Box-Cox trans-
formation (Box and Cox, 1964).

To assess whether the graph metrics relate to epilepsy and cognitive
characteristics, linear multivariable regression models were used, cor-
recting for the effects of age, sex and head motion. For the children with
CAE, the relation of the global graph metrics with the duration of CAE,
number of GSWD per hour, general intelligence, and processing speed
index, was assessed using linear regression models, correcting for the
effects of age, sex and head motion. Moreover, the relation of the global
graph metrics and errors of the Bourdon-Vos test was assessed using
linear regression models, correcting for the effects of age, sex, head
motion and the duration of the Bourdon-Vos test. Furthermore, in the
control group, the relation of global graph metrics with the general
intelligence, and processing speed index was assessed using linear re-
gression models, correcting for the effects of age, sex, and head motion.
Moreover, the relation of the global graph metrics and errors of the
Bourdon-Vos test was assessed using linear regression models, cor-
recting for the effects of age, sex, head motion and the duration of the
Bourdon-Vos test.

Statistical significance was inferred when p < .05.

3. Results

3.1. Between-group differences

The graph metrics of children with CAE and controls are plotted
with respect to the sparsity level in Fig. 1. The normalized characteristic
path length was significantly higher in children with CAE compared to
controls for networks that are 75% and 78–83% sparse. The normalized
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clustering coefficient was found to be lower in children with CAE
compared to controls, reaching statistical significance over a wide
sparsity range (67–90%). Similarly, the small-worldness was sig-
nificantly lower in children with CAE compared to controls, over nearly
the whole sparsity range (62–90%).

Fig. 1.
The mean motion parameters did not significantly differ between

the children with CAE and control subjects (data not shown).

3.2. Epilepsy and neurocognitive characteristics

The normalized path length was found to be positively related to the
duration of CAE, reaching significance for sparsity values 82% and
83%. Furthermore, the normalized path length related significantly to
the number of GSWD per hour for sparsity values 68%, and 70–81%.
The normalized clustering coefficient and small-worldness did not sig-
nificantly relate to either the duration of CAE nor number of GSWD per
hour (p > .10). Fig. 2 shows the normalized path length of networks for
a representative sparsity of 82% as a function of the duration of CAE (A)
and as a function of the GSWD per hour (B).

The graph metrics did not relate significantly to general in-
telligence, processing speed index or number of errors of the Bourdon-
Vos test in either the control or the CAE group.

The mean motion parameters did not significantly correlate to the
epilepsy variables (data not shown).

4. Discussion

4.1. Current findings

In the current study, we aimed to study alterations in the global
functional network of children with CAE compared to controls on a
whole brain level using graph theoretical analysis. We have shown that
the functional network organization is impaired in children with CAE,

revealing a less efficiently organized network in terms of a weaker
clustering and less small-world organized networks. Furthermore, a
longer duration of CAE and higher number of GSWD per hour is related
to longer path lengths (i.e. more deviant compared to controls), illus-
trating a relationship with disease development. Clustering and small-
worldness were not significantly related to epilepsy characteristics.
None of the graph metrics were related to general intelligence in either
the controls or children with CAE.

4.2. Between-group differences

Weaker clustering and lower small-worldness are reported in chil-
dren with CAE compared to controls, showing that the network to-
pology exhibits a less small-world organization. These results indicate
that the functional brain network of children with CAE is organized in a
less efficient manner compared to controls. Previously, similar findings
of weaker clusters and lower small-worldness were reported in the
structural network of children with CAE using diffusion weighted
imaging (Qiu et al., 2017). Combined with the results from our study,
this implies a disruption of the brain network on a functional as well as
structural level. To date, reports on functional network changes in CAE
have mainly focussed on the default mode network and the attention
networks (dorsal and salience) (Bear, 2019; Li et al., 2015; Luo et al.,
2014, 2011; Wang et al., 2017). Possibly, our results could be related to
some extent to the underlying impairments of either the default mode
or attention networks. However, here we showed that the functional
alterations are not limited to certain resting state networks, but rather
extend to the functional brain network as a whole. This could provide
additional insights that not focus on particular (e.g. attentional) deficits
in CAE, but rather on the broad spectrum of behavioural, cognitive and
linguistic comorbidities of CAE (Caplan et al., 2008). Previously, it was
shown that the whole brain functional network reorganized during and
after a GSWD (Liao et al., 2014). The results of this study extend upon
this by showing that the inter-ictal functional brain network also seems

Fig. 1. A) Normalized path length, B) normalized cluster coefficient and C) normalized small-worldness as a function of sparsity. Mean and standard errors for
children with CAE (dashed) and controls (solid) are shown. Asterisks indicate a significant difference between the two groups (p < .05).

Fig. 2. The relationship of normalized
path length for networks that are 82%
sparse with A) the duration of CAE and
B) the number of GSWD per hour. A
least squares line and 95% confidence
intervals are added for visualization.
Note that the latter is boxcox trans-
formed and therefore displayed on a
log-scale. CAE, childhood absence epi-
lepsy; GSWD, generalized spike-wave
discharges.
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to be affected.

4.3. Relationship of network metrics with epilepsy characteristics

Longer path lengths were found to be associated with a longer
duration of CAE and more GSWD per hour. Networks with high degrees
of clustering and short path lengths are considered efficient networks
with a small-world organization (Watts and Strogatz, 1998). Therefore,
longer paths indicate a less optimal network organization and could be
a contributing factor to the pathology. Previously using fMRI, the local
functional network disruptions in CAE were also related to the duration
of CAE. More specifically, a longer duration of CAE was related to a
lower degree centrality in the precuneus (Wang et al., 2017), left-la-
teralization of functional connectivity in the anterior insula (Luo et al.,
2014) and decreased functional connectivity in the superior frontal
gyrus and lateral parietal cortex (Luo et al., 2011). While these studies
vary in methodology, they share that more aberrant network properties
from the ‘normal situation’ (i.e. controls) is related to longer duration of
CAE. Similarly, in the current study the children with CAE showed
longer path lengths compared to controls, indicating that suffering from
CAE for a longer time is associated with a more abnormal state of the
functional network. Moreover, our study extends upon the previous
work by showing that abnormalities in the whole-brain functional
network related to the duration of CAE, rather than specific ROIs.
Furthermore, a less efficiently and more randomly integrated network
was previously associated with poor seizure control in temporal lobe
epilepsy (TLE) patients (Park et al., 2017). Although the clinical profile
of TLE differs from our study, this further indicates that an altered in-
tegration might be related to a worse seizure control.

4.4. Neurocognitive performance

A lower neurocognitive performance for the processing speed index
and a trend towards lower general intelligence was observed in children
with CAE. However, on average the processing speed index of the
children with CAE is still within the normal range (e.g. > 85).
Moreover, the children with CAE took longer to finish the Bourdon-Vos
test, while not performing better. This hints towards a worse sustained
attention in children with CAE. This is in agreement with previous
studies on neurocognition in CAE (Loughman et al., 2014; Masur et al.,
2013). Furthermore, more efficient global functional networks in terms
of clustering and higher degrees of small-world topology are believed to
be related to better cognitive performance. For example, previous re-
search has shown that a more efficient global functional network in
terms of integration was related to better intellectual performance
(Heuvel et al., 2009). Therefore, as the functional brain network of
children with CAE were less efficiently organized, there might be a
relation between the impaired neurocognitive performance in children
with CAE and the whole-brain functional network efficiency. However,
in the current study no relation was found between the neurocognitive
performance and global graph metrics.

4.5. Study considerations

Our study has important strengths. The study used well defined
inclusion criteria for children with CAE in agreement with current ILAE
standards. Moreover, the carefully selected controls enabled us to make
reliable group-level comparisons. Furthermore, to minimize the influ-
ence of subject motion, which is an inherent problem when scanning
young children, the head motion was carefully considered in both
preprocessing and statistical analysis. Last, the 24-hour EEG's allowed
for a quantitative assessment of the number of GSWD per hour. The
main limitation of this study is the relatively low sample size, although
even with our small sample size we already report between-group dif-
ferences as well as relations with the duration of epilepsy. However, a
larger sample is required for a more in depth analysis of the relation of

neurocognitive characteristics. Moreover, the cortical parcellation by
Freesurfer is based on an adult template, which could result in errors in
a pediatric cohort. This is especially the case if the images are also
corrupted by subject motion (Phan et al., 2018), accordingly in this
study we attempted to minimize subject motion by instructing parents
to practice laying still with the child. However, even with these pre-
cautions, we cannot entirely exclude group-differences in vigilance and
subject motion, and as such, our results could be partly confounded by
subject motion. Furthermore, it cannot be excluded that at least some of
the children with CAE suffered from GSWD during the fMRI acquisition.
This could have a bearing on our results, as previously it was shown
that GSWD could have an effect on the graph theoretical metrics of
functional networks (Liao et al., 2014). However, since the fMRI exam
lasts over 6 min, while absence seizures generally last a few seconds,
the effects are likely to be minimal. Last, during the MRI examination
15 out of 17 children with CAE were on anti-epileptic drug (AED)
treatment. Since Ethosuximide and Valproic acid have been associated
with neurocognitive side effects (Ijff et al., 2016; Masur et al., 2013)
and changes in functional connectivity (Salinas and Szabó, 2017;
Tenney et al., 2018), it might have a bearing on our results. However,
since the current guidelines prescribe the use of these AED's, our results
reflect children with CAE at this point in time.

5. Concluding remark

Disruptions of the functional network in terms of longer path
lengths, weaker clustering and a less small-world network topology
were observed in children with CAE compared to controls. Moreover,
longer path lengths are related to a longer duration of CAE and a higher
number of GSWD per hour. Furthermore, cognitive performance was
found to be impaired in the children with CAE, though a relation be-
tween the impaired cognitive performance and global graph metrics
could not be formally established. These results hint that less efficiently
organized functional networks are a characteristic of CAE which is re-
lated to disease. However, future prospective studies with larger co-
horts are needed to confirm our findings.
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