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Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells
and are controlled by extracellular signals from the microenvironment, the bone marrow
(BM) niche, as well as intrinsic cell signals. Intrinsic signals include the tightly controlled
action of signaling pathways, as the Janus kinase-signal transducer and activator of
transcription (JAK-STAT) pathway. Activation of JAK-STAT leads to phosphorylation of
members of the STAT family to regulate proliferation, survival, and self-renewal of HSCs.
Mutations in components of the JAK-STAT pathway are linked with defects in HSCs
and hematologic malignancies. Accumulating mutations in HSCs and aging contribute
to leukemia transformation. Here an overview of hematopoiesis, and the role of the JAK-
STAT pathway in HSCs and in the promotion of leukemic transformation is presented.
Therapeutic targeting of JAK-STAT and clinical implications of the existing research
findings are also discussed.
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INTRODUCTION

Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells (Figure 1)
and are controlled by extracellular signals from the microenvironment or niche, and intrinsic
cell signals that include signaling pathways. HSCs are ideal for advanced therapies, because of
their multipotent and self-renewing properties. The niche supports HSC maintenance, regulation,

Abbreviations: HSCs, hematopoietic stem cells; JAK-STAT, Janus kinase-signal transducer and activator of transcription;
BM, bone marrow; HSPCs, hematopoietic stem and progenitor cells; LT-HSCs, long-term self-renewing HSCs; ST-HSCs,
short-term self-renewing HSCs; MPPs, multipotent progenitors; OPPs, oligopotent progenitors; AML, acute myeloid
leukemia; LSC, leukemic stem cell; AGM, aorta-gonad-mesonephros; AECs, arterial endothelial cell; HECs, hemogenic
endothelial cells; E, mouse embryonic day; EC, endothelial cell; MSCs, mesenchymal stem cells; SECs, sinusoidal ECs;
OLCs, osteolineage cells; NES, nestin; SCF, stem cell factor; CXCL12, C-X-C motif chemokine 12; NG2, nerve/glial antigen
2; LEPR, leptin receptor; CAR, CXCL12-abundant reticular cells; Foxc1, forkhead box C1 protein; CXCL4, C-X-C motif
chemokine 4; Dll4, Delta-like Notch ligand 4; ROS, reactive oxygen species; TPO, thrombopoietin; CXCR4, C-X-C motif
chemokine receptor 4; TYK2, tyrosine kinase 2; IFN-β, interferon beta; Ser, serine; CTCL, cutaneous T-Cell lymphoma;
MPNs, myeloproliferative neoplasms; PV, polycythemia vera; Pf4-Cre, Platelet factor 4-Cre recombinase; ETP, early T-cell
Precursor; ALL, acute lymphoblastic leukemia; IL-7, interleukin 7; MDS, myelodysplastic syndromes; FLT3, fms-related
receptor tyrosine kinase 3; FLT3-ITD, FLT3-internal tandem duplication; miR, microRNA; lncRNA, long non-coding
RNA; PTCL, peripheral T-cell lymphoma; LGL, large granular lymphocytic; T-ALL, T-cell acute lymphoblastic leukemia;
EBF1, early B cell factor 1; CLL, chronic lymphocytic leukemia; miRNA, microRNA; HSCT, HSCs transplantation; CARs,
chimeric antigen receptors; TALEN, transcription activator-like effector nucleases; CRISPR, clustered regularly interspaced
short palindromic repeats; JAKinib, JAK inhibitor; FDA, Food and Drug Administration; CMML, chronic myelomonocytic
leukemia; CML, chronic myelogenous leukemia; AKIs, aurora kinase inhibitors; mRNA, messenger RNA; ASO, antisense
oligonucleotides; siRNA, small interfering RNA; HDAC, histone deacetylase; NMSC, non-myelinating Schwann cells; LMPPs,
lymphoid-primed multipotential progenitors; CLPs, common lymphoid progenitors; CMPs, common myeloid progenitors;
MEPs, megakaryocyte/erythrocyte progenitors; GMPs, granulocyte/macrophage progenitors; NK-cells, natural-killer cells.
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self-renewal and proliferation (Crane et al., 2017). Janus kinase-
signal transducer and activator of transcription (JAK-STAT)
pathway activation leads to phosphorylation of STATs that
regulate hematopoiesis, and HSCs proliferation, survival and
self-renewal. Dysregulation of the JAK-STAT pathway has been
associated with various malignancies. STAT5, a member of the
STAT family, controls normal lympho-myeloid development
(Wang and Bunting, 2013) and plays a critical role in leukemia.
Leukemia, characterized by overproduction of abnormal blood
cells and defects in HSCs, is considered an age-related disease
and its incidents rose continuously in the last decades (Hao
et al., 2019). Albeit extensive research in this field, a lot of
questions on the underlying molecular mechanisms of JAK-STAT
in HSCs in normal lympho-myeloid development and leukemia
remain unanswered. A better understanding of the mechanisms
and signaling pathways in HSCs will contribute to improving
already existing therapeutic approaches and design novel ones
for hematopoietic malignancies. Here, a short overview of the
advances on HSCs biology and the role of the JAK-STAT pathway
in early hematopoiesis and leukemia, together with therapeutic
implications of the existing research findings are discussed.

HEMATOPOIESIS

Hematopoietic Stem and Progenitor
Cells, and Aging
Hematopoiesis generates all the terminally differentiated cellular
blood components (Figure 1). HSCs can be found reposed
or they proliferate and differentiate, depending on their
internal programming and the external signals from the
microenvironment (Nakamura-Ishizu et al., 2014). HSCs have
the unique potential for multi-potency and self-renewal (Seita
and Weissman, 2010) and in adults are mainly situated in
the bone marrow (BM). HSCs continuously replenish the
blood throughout the lifetime (Orkin and Zon, 2008; Dzierzak
and Philipsen, 2013) and can functionally reconstitute the
entire blood system in an irradiated recipient by stem cell
transplantation (Appelbaum, 2007). Hematopoietic stem and
progenitor cells (HSPCs) pool contains long-term self-renewing
HSCs (LT-HSCs), short-term self-renewing HSCs (ST-HSCs),
and non-self-renewing multipotent progenitors (MPPs) (Seita
and Weissman, 2010; Zhang et al., 2019). Distinct myeloid-biased
MPP subsets work together with lymphoid-primed MPP cells to
guide the generation of blood components. MPPs are produced
in parallel by HSCs, at different levels and kinetics depending on
the hematopoietic needs in normal or regenerating conditions.
In the latter case, the myeloid-biased MPPs are overproduced
by HSCs for a short time, to support myeloid amplification and
rebuilding of the hematopoietic system (Pietras et al., 2015). The
multi-lineage priming of MPPs is linked to low-level activation of
expression programs for various lineages. Lineage fate choice is
then connected with activation of a specific expression program
while the rest are switched-off. Recent single-cell technologies
have questioned the rigid past model of hematopoiesis of
MPPs advancing to oligopotent progenitors (OPPs), and then to
lineage-committed and mature effector cells. The fluidity of HSC
differentiation is today represented more by a continuum than

a rigid step-by-step procedure. Heterogeneous populations are
organized hierarchically, with gradual highly flexible progression
during differentiation (Figure 1; Laurenti and Gottgens, 2018;
Jacobsen and Nerlov, 2019).

Mutations during HSCs development lead to leukemia,
myelodysplasia, or BM failure. HSCs are susceptible to age-
related changes triggered by intrinsic and extrinsic factors.
Aged HSCs feature defective repopulating and homing capacity,
increased mobilization and myeloid lineage-biased skewing,
decreased fitness, and epigenetic/genetic changes (Lee J. et al.,
2019). Many hematological malignancies, including acute
myeloid leukemia (AML), are age-dependent. Aging is also
connected to expanded clonal hematopoiesis (Konieczny and
Arranz, 2018). High fitness of the young HSC pool serves
to maintain the existing condition, while in an aged HSC
pool the low fitness allows accumulation of mutations and
epigenetic changes to improve fitness. For example, Bcr-Abl
provides an advantage to aged B-lymphoid progenitors compared
to young ones, leading to increased Bcr-Abl leukemogenesis
(Henry et al., 2010, 2011). HSCs or other progenitors when
undergoing a mutation can give rise to a leukemic stem cell (LSC),
which features a dysregulated self-renewal program (Figure 1).
LSCs differentiate into the hematopoietic lineage carrying the
mutation/s or remain as immature progenitor cells, called
leukemic blast cells (Buss and Ho, 2011; Hanekamp et al., 2017;
Vetrie et al., 2020).

Bone Marrow Niche
The BM niche constitutes a specialized microenvironment,
composed of diverse cell types to support maintenance,
induction, differentiation and proliferation of HSCs in embryos
and adults. Definitive HSCs develop from the hemogenic
endothelium within the aorta-gonad-mesonephros (AGM)
region, then migrate to the fetal liver and finally to the adult
BM (Gao et al., 2018). Single-cell transcriptomics analysis has
defined two molecularly distinct arterial endothelial cell (AEC)
populations and putative HSC-primed hemogenic endothelial
cells (HECs) in the dorsal aorta of the AGM region, whose
number peaked at mouse embryonic day (E) 10.0 and decreased
thereafter (Hou et al., 2020). Primitive vascular endothelial
cells (ECs) from E8.0 experienced an initial arterial fate choice
to become HSC-primed HECs, followed by a hemogenic fate
conversion (Hou et al., 2020). Similarities in the development of
HSC-primed HECs between mouse and human embryos exist
(Zeng et al., 2019; Hou et al., 2020).

The BM niche includes mesenchymal stem cells (MSCs),
ECs [AECs and sinusoidal ECs (SECs)], osteolineage cells
(OLCs), non-myelinating Schwann cells and progeny of HSCs
(such as megakaryocytes and macrophages) located together
with the HSCs in the extracellular matrix (Figure 1; Yu
and Scadden, 2016; Mendez-Ferrer et al., 2020; Mitroulis
et al., 2020). Different niche cell populations regulate the
balance between HSC proliferation and quiescence during
homeostasis or regenerative hematopoiesis. Identification of
MSCs, which are important for HSCs function, has relied
on reporter mouse models for markers including Nestin
(NES), Stem Cell Factor (SCF), CXC chemokine ligand 12
(CXCL12), nerve/glial antigen 2 (NG2), and Leptin receptor
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FIGURE 1 | Illustration of bone marrow niche, normal and leukemic hematopoiesis. (A) Schematic representation of the bone marrow (BM) niche summarizing key
cell types and functional features. HSCs reside in the proximity of BM vessels (arterioles or sinusoids). Mesenchymal stem cell (MSC) populations include, among
others, NG2 +, LEPR + and CAR cells and promote HSCs maintenance by releasing important factors (i.e., CXCL12, SCF). Endothelial cells (ECs) (arteriolar
endothelial cells (AECs), surrounding the arterioles and sinusoidal endothelial cells (SECs), surrounding the sinusoids) also release important factors for HCSs
maintenance. Sympathetic nerve fibers regulate HSCs migration through the sinusoids. MSC subpopulations, ECs, non-myelinating Schwann cells (NMSCs) and
HSC progeny (i.e., megakaryocytes) contribute to the regulation of HSC homeostasis or regenerative hematopoiesis. Megakaryocytes produce CXCL4 to regulate
HSCs. (B) Schematic representation of normal hematopoiesis. HSCs reside at the top of the hierarchy. Differentiation is considered today more of a continuum, than
a step-by-step procedure, represented by the dashed arrow on the left. The HSC pool is heterogeneous in terms of self-renewal and differentiation properties.
Self-renewal of HSCs is denoted by an arrow around the cells (solid arrow represents strong and dashed arrow weaker self-renewal potential). Hematopoietic Stem
and Progenitor cells (HSPCs) pool contains long-term self-renewing HSCs (LT-HSCs), short-term self-renewing HSCs (ST-HSCs) and non-self-renewing multipotent
progenitors (MPPs). Throughout differentiation, HSCs might first lose self-renewal capacity and then lineage potential as they commit to evolving to a mature
functional cell of a specific lineage. MPPs, might have unilineage, bi- or trilineage potential. MPPs advance to oligopotent progenitors (OPPs), including the
lymphoid-primed multipotent progenitors (LMPPs), the common lymphoid progenitors (CLPs) and the common myeloid progenitors (CMPs). The myeloid and
lymphoid compartments remain associated in the hierarchy via the lymphoid-primed multipotent progenitors (LMPP). CMPs give rise to megakaryocyte/erythrocyte
progenitors (MEPs) and granulocyte/macrophage progenitors (GMPs). LMPPs give rise to give GMPs and CLPs. The OPPs through the lineage-restricted
progenitors give rise to the mature effector cells (B-cells, T-cells and NK-cells, dendritic cells, granulocytes, macrophages, platelets, and erythrocytes). (C) Schematic
representation of leukemic hematopoiesis. Aging, mutations, disease, inflammation, niche dysfunction/alterations and clonal hematopoiesis can lead to the
generation of a leukemic stem cell (LSC). LSC can differentiate into the hematopoietic lineage carrying the mutation/s or remain as immature progenitor cells, called
blast cells. Not all intermediate cell stages are depicted and cells are not in scale. Main differentiation points where the JAK-STAT pathway, JAKs and STATs exert
their roles are shown.

(LEPR) (Sugiyama et al., 2006; Ding et al., 2012; Sugiyama
and Nagasawa, 2012; Ding and Morrison, 2013; Kunisaki et al.,
2013). NG2+ pericytes, found spatially linked to arteriolar niches,
have been confirmed to be important for the maintenance of
HSC quiescence (Kunisaki et al., 2013). HSCs are localized
predominantly in the perisinusoidal space and in close proximity
to Leptin Receptor+Cxcl12high cells (Acar et al., 2015). Adipo-
osteogenic progenitors have been also found essential for
HSCs proliferation and maintenance in an undifferentiated
state (Omatsu et al., 2010). Depletion of CXCL12-abundant
reticular (CAR) cells in vivo has led to severe impairment of the
adipogenic/osteogenic differentiation competency, and reduced
SCF and CXCL12 production, resulting in decreased lymphoid

and erythroid progenitors cycling (Omatsu et al., 2010). ECs and
Lepr-expressing perivascular cells, through the expression of
essential factors, such as SCF, maintain HSCs and Scf deletion
from both endothelial and Lepr-expressing cells has led to
HSCs depletion from the BM (Ding et al., 2012). Foxc1 has
been found significant for the development and maintenance
of the mesenchymal niches, through enhancement of CAR cell
development by upregulation of CXCL12 and SCF expression
(Omatsu et al., 2014). Megakaryocytes have been also found to
control HSCs quiescence by producing CXCL4 (Bruns et al.,
2014). Single-cell RNA-seq has characterized in detail the mouse
BM stroma in homeostasis and leukemia. Seventeen distinct
cell populations have been defined, including MSCs, OLCs,
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chrondrocytes, fibroblasts, pericytes, and EC subsets, together
with new differentiation paths (Baryawno et al., 2019). The
dynamic and diverse transcriptional landscape of vascular,
perivascular, and osteoblast BM niche cell populations has
been confirmed both at homeostasis and stress hematopoiesis
(Tikhonova et al., 2019). Vascular-endothelial Delta-like Notch
ligand 4 (Dll4) expression regulates HSC differentiation and
lineage commitment. Under stress conditions transcriptional
remodeling of the niche has been linked to an adipocytic skewing
of perivascular cells and vascular Dll4 absence has led to a
premature skewing of HSPCs toward a myeloid transcriptional
program (Tikhonova et al., 2019).

Together with perivascular MSCs, ECs control HSPCs
maintenance and leukocyte trafficking by forming a
network of blood vessel types with distinct permeability
properties. Heterogeneity amongst the contribution of the
EC subpopulations to the stem cell niches has been revealed.
Deletion of Scf in AECs, but not in SECs, has led to a reduction
of functional HSCs (Xu et al., 2018). The highly permeable SECs
promote HSPCs activation and constitute the site for leukocyte
trafficking to and from the BM. The high permeability, associated
with high reactive oxygen species (ROS) levels, increases HSPCs
migration and differentiation, while compromising their long-
term repopulation and survival. The less permeable arterial
blood vessels maintain HSPCs in low ROS levels (Itkin et al.,
2016). The establishment of unique perivascular micro-niches
has been moderated by divergent localization to sinusoidal
and arteriolar surfaces of CAR cell subsets (Adipo-CAR and
Osteo-CAR) that mainly function as cytokine-producing cells
(Baccin et al., 2020). Furthermore, live imaging of LT-HSCs
in the mouse native niche defined a subset of highly quiescent
LT-HSCs, residing close to both sinusoidal blood vessels
and the endosteal surface. MPPs have been mainly linked to
transition zone vessels. Steady-state LT-HSCs showed limited
motility in contrast with activated LT-HSCs exhibiting high
motility or clonal expansion in spatially restricted domains.
These domains include BM cavities with remodeling features,
where HSCs expansion takes place, and cavities with low
bone-resorbing activity, lacking HSCs expansion, where the
microenvironment might differ (Christodoulou et al., 2020).
In addition to the significance of the intrinsic BM signals,
extrinsic factors are also critical for HSC maintenance, as
shown for thrombopoietin (TPO) expressed by hepatocytes
(Decker et al., 2018).

Changes in BM niche might directly affect myeloid vs.
lymphoid output. The niche changes substantially during aging
(Lee G.Y. et al., 2019) and plays a major regulatory role in
malignancies, where either alterations in BM can promote
leukemic transformation or create a favorable microenvironment
for malignant proliferation, though BM remodeling by LSCs.
For example, LSCs can upregulate CXCR4 expression (Pinho
and Frenette, 2019; Mendez-Ferrer et al., 2020). Different
leukemia types can be linked with induction of specific
niche remodeling alterations. Remodeling of BM stromal cell
subpopulations in AML has been confirmed by single-cell RNA-
seq. These findings support a model where the malignant
cells alter differentiation of the surrounding stromal cells
and decrease the expression of signaling molecules regulating

normal hematopoiesis. The malignant clone competes with
the normal hematopoietic cells, creating a less supportive
environment (Baryawno et al., 2019). Further characterization of
the niche heterogeneity will provide additional insights on the
control of HSC quiescence vs. proliferation in young, aged and
malignant conditions.

JAK-STAT PATHWAY IN NORMAL
HEMATOPOIESIS AND HEMATOLOGIC
MALIGNANCIES

JAK-STAT in Early Hematopoiesis
The JAK-STAT is amongst the most conserved signaling
pathways allowing communication between the extracellular
environment and the nucleus. It can be activated by a plethora
of cytokines, growth factors and hormones and regulates
proliferation, differentiation, migration and cell survival
depending on the cellular context and the environmental stimuli
(Harrison, 2012). JAK-STAT is important in developmental
and homeostatic processes including, stem cell maintenance,
hematopoiesis and immune cell development. The JAK family of
kinases includes JAK1, -2, -3, and TYK2 (Firmbach-Kraft et al.,
1990; Krolewski et al., 1990; Wilks et al., 1991; Takahashi and
Shirasawa, 1994). STAT protein family in mammals includes
STAT1, -2, -3, -4, -5a, -5b, -6, which contain a conserved
structure (Ihle, 1996, 2001; Darnell, 1997). Ligand binding to
the receptor allows JAK phosphorylation and activation that
leads to phosphorylation of the receptor, acting as a docking
site for the STATs that are subsequently phosphorylated by
JAKs. This leads to the formation of STAT homodimers or/and
heterodimers that translocate to the nucleus and bind to DNA to
regulate transcription.

JAK2 activation, by several hematopoietic and other
cytokines, leads to phosphorylation of STATs (Bousoik and
Montazeri Aliabadi, 2018), including STAT5 that regulates HSCs
proliferation, survival and self-renewal (Wang and Bunting,
2013). JAK1 and JAK2 are essential for HSC homeostasis.
Conditional Jak1 deletion in HSCs in vivo reduced their self-
renewal capacity and modified lympho-myeloid differentiation
(Kleppe et al., 2017), whereas Jak2 knock-out is embryonic lethal
due to ineffective erythropoiesis (Neubauer et al., 1998; Parganas
et al., 1998). Conditional Jak2 knock-out leads to BM failure,
increased apoptosis and loss of quiescence in HSC-enriched
Lin−Sca-1+c-Kit+ cells, confirming its critical role for HSCs
maintenance and function (Akada et al., 2014). JAK3 has been
found essential for innate lymphoid cell development (Robinette
et al., 2018) and TYK2 for B-lymphoid tumors regulation
(Stoiber et al., 2004).

STAT1 plays an important role in megakaryopoiesis (Huang
et al., 2007). Activated STAT3 has promoted HSC self-renewal,
under stimulated but not homeostatic states, rendering
STAT3 significant for hematopoietic regeneration (Chung
et al., 2006). STAT3 phosphorylation is required for the
IFN-β induced apoptosis in primary pro-B cells (Gamero
et al., 2006). Selective activation of STAT5 confirmed its
role in the self-renewal of normal and leukemic stem cells
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(Kato et al., 2005). STAT5, through survival effects on HSCs,
supports the hematopoietic reserve and promotes multilineage
hematolymphoid development. STAT5A/5B-deficient mice
show an impaired hematopoietic potential in diverse blood
lineages (Snow et al., 2002). Induction of high STAT5A activity
levels impaired myelopoiesis and induced erythropoiesis in
CD34+ cells, while intermediate levels resulted in maximum
proliferation (Wierenga et al., 2008). Distinct cytokine responses
in STAT5 phosphorylation at the single-cell level of leukemic
and normal progenitors exist (Han et al., 2009). STAT5A and
STAT5B possess distinct cell-growth-promoting properties that
differentially affect the biological activity of HSPCs. STAT5A
phosphorylation at Ser779/780 (mouse/human) controls
proliferation and transformation/expansion of HSPCs with
higher potency than STAT5B (Ghanem et al., 2017). Other STATs
are also involved in normal and leukemic hematopoiesis. For
instance, CD38 expression in the BM microenvironment of
multiple myeloma cells is regulated by both STAT1 and STAT3
(Ogiya et al., 2020).

JAK-STAT in Hematologic Malignancies
Since the 1990s numerous studies have confirmed the
association between activating mutations in JAK-STAT and
hematologic disorders (Leonard and O’Shea, 1998; Levine
et al., 2007; Jatiani et al., 2010). Such mutations leading to
constitutive activation of JAK-STAT can occur upstream or
within the molecular components of the pathway. These
include mutations of the transmembrane receptors, the
JAKs or other upstream oncogenes, the STATs and the
autocrine/paracrine cytokine production, which collectively
leads to STAT activation (O’Shea et al., 2015). Deregulated
JAK/STAT signaling due to JAK1 and JAK3 somatic mutations
has been observed in Cutaneous T-Cell Lymphoma (CTCL)
(Perez et al., 2015). Translocations of the JAK2 gene or the
JAK2V617F mutation are underlying causes of hematological
malignancies (Baxter et al., 2005; James et al., 2005; Jones
et al., 2005; Levine et al., 2005). JAK2V617F is an activating
point mutation resulting in increased JAK2 activity, leads
to STAT5 activation (Levine et al., 2005), and has been
described in the majority of patients with myeloproliferative
neoplasms (MPNs). It has been detected in almost all patients
with polycythemia vera (PV) and about 50% of the patients
with essential thrombocytosis and primary myelofibrosis
(Baxter et al., 2005; Passamonti and Maffioli, 2016). In
PV patients the mutation occurs in HSCs and predisposes
toward erythroid differentiation (Jamieson et al., 2006).
Mouse models have contributed to the understanding of
the mechanisms by which JAK-STAT or related mutations
promote hematopoietic malignancies (Dunbar et al., 2017).
Expression of Jak2V617F in BM progenitors resulted in a
PV-like syndrome with myelofibrosis in a mouse BM transplant
model (Wernig et al., 2006). Use of Pf4-Cre transgenic mice
to drive Jak2V617F expression in megakaryocyte lineage-
committed cells, augmented erythropoiesis and stimulated
fibrosis, resulting in a myeloproliferative state. These findings
confirmed that JAK/STAT activation in megakaryocytes induced
myeloproliferation and is essential for MPN maintenance
in vivo (Woods et al., 2019). Xenograft mouse models

have also contributed to the understanding of JAK/STAT
mechanisms in leukemia. For example, the importance of
JAK/STAT in early T-cell precursor (ETP) acute lymphoblastic
leukemia (ALL) has been confirmed when the JAK1/2 inhibitor
ruxolitinib has been used in murine xenograft models leading
to abrogation of the STAT5 activation in response to IL-7
(Maude et al., 2015).

STAT1, STAT3, and STAT5 have been found, since the
1990s, constitutively activated in cells from acute leukemias
(Gouilleux-Gruart et al., 1996, 1997). STAT1 has been defined
as a tumor promoter in leukemia development (Kovacic
et al., 2006). STAT5 contributes to the development of
malignancies influencing myeloid and lymphoid lineages. A
constitutively activated STAT5A mutant, forming enhanced
levels of stable tetramers has caused multilineage leukemias,
with STAT5 tetramers to accumulate in excess to dimers in
human leukemias (Moriggl et al., 2005). STAT5A Ser725 and
779 phosphorylation detected in human leukemic cell lines
and primary patient samples has been found essential for
hematopoietic cell transformation (Friedbichler et al., 2010).
Additionally, the N-terminus of STAT5A/B is functionally
important in B-lymphoid transformation (Hoelbl et al., 2006).

Myelodysplastic syndromes (MDS), a heterogeneous group
of clonal disorders of HSCs with a risk of progression to
AML (Sperling et al., 2017; Cazzola, 2020; Garcia-Manero et al.,
2020), have complex molecular pathogenesis due to the high
genomic heterogeneity (Awada et al., 2020). The development
of AML is considered a multi-cause and -step process (Gruszka
et al., 2017). Translocations and inversions including fusion
oncogenes, that use the JAK-STAT pathway, have been involved.
Initial activating mutations in receptor tyrosine kinases (e.g.,
FLT3) promote proliferation of hematopoietic progenitors and
subsequently additional mutations targeting transcription factors
and impairing differentiation and apoptosis are required to result
in leukemic cells (Gilliland, 2002; Gruszka et al., 2017). FLT3
is among the most commonly mutated genes in AML (Kiyoi
et al., 2002; Ley et al., 2013). AML-specific Flt3 mutations have
induced STAT target genes (Mizuki et al., 2003) and FLT3-D835
mutation has led to constitutive activation of STAT5 (Taketani
et al., 2004). Levels of CDC25A, a phosphatase important
for proliferation and differentiation in AML expressing the
FLT3-ITD mutation, are controlled by a complex STAT5/miR-
16 transcription and translation pathway, confirming that
FLT3-ITD/STAT5/miR-16/CDC25A interplay is important for
AML cell proliferation and differentiation (Sueur et al., 2020).
Furthermore, induced inflammatory response in the human
AML niche leads to increased activity of the JAK/STAT pathway
in AML blasts and BM stromal cells promoting leukemic
proliferation (Habbel et al., 2020). An imatinib-upregulated
lncRNA family has been identified as a negative regulator
of Bcr-Abl-induced tumorigenesis, through suppression of the
STAT5-CD71 pathway (Wang et al., 2019). STAT5B has been
defined as more important than STAT5A in BCR/ABL-induced
leukemia, explaining the high frequency of STAT5B mutations in
hematopoietic malignancies (Kollmann et al., 2019). High activity
levels of STAT5A and STAT5B variants in the hematopoietic
system of transgenic mice can lead to a lethal condition
resembling human peripheral T-cell lymphoma (PTCL) and
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FIGURE 2 | Connections of JAK-STAT, HSCs and leukemia. Schematic representation of the connections of HSCs-bone marrow niche, JAK-STAT pathway and
leukemia is shown. JAK-STAT pathway regulates HSCs proliferation, survival and self-renewal, and components of the BM microenvironment. Mutations linked to
JAK-STAT and/or HSCs-niche can lead to leukemic transformation. Research findings on these connections provide opportunities (in the middle of the triangle) for
the management and therapy of leukemia. Double arrows represent bidirectional connections. For example mutations in JAK-STAT can cause leukemia, but also in
leukemia cells deregulated JAK-STAT pathway is observed. HSC: Hematopoietic stem cell, HSCT: Hematopoietic stem cell transplantation.

elevated expression of STAT5A/B has been detected in human
PTCL samples. Both factors have been confirmed as oncogenes
in PTCL, with STAT5B to be more transforming (Maurer et al.,
2020). Mutations in STAT3 (Koskela et al., 2012) and STAT5B
genes have been detected in large granular lymphocytic (LGL)
leukemia patients, with the STAT5BN642H mutation to be
connected with unfavorable disease progression (Rajala et al.,
2013). The same mutation has been commonly found in pediatric
T-cell acute lymphoblastic leukemia (T-ALL) and is linked to
a higher risk of relapse (Bandapalli et al., 2014). Recently, a
key contributor to B-cell lymphopoiesis, Early B cell factor 1
(EBF1), has been shown to possess an inhibitory role in chronic
lymphocytic leukemia (CLL) through inactivation of the STAT5
pathway (Wang et al., 2021).

These findings confirm the functional involvement of
mutated/activated STATs, miRNAs, and lncRNAs in hematologic
malignancies. Numerous studies have identified target genes
regulated by STATs in normal and leukemic settings (Theodorou
et al., 2013; Nanou et al., 2017). Developments in next-generation
sequencing at the multi- and single-cell level have contributed
to the acceleration of such identifications. Genes, lncRNAs,
miRNAs targeted by STAT factors are useful in stratification

strategies, management of leukemia and provision of novel
therapeutic targets.

THERAPEUTIC IMPLICATIONS: HSCs
TRANSPLANTATION AND JAK-STAT
INHIBITORS

Hematopoietic stem cells are extensively utilized in advanced
regenerative medicine therapies (Dessie et al., 2020). Cell
damage in hematological malignancies can be restored by
HSCs transplantation (HSCT). Advancements in transplant
immunology led to decreased transplant-associated mortality
and more effective HSCT. Efforts regarding allogeneic HSCT
mainly focus on conditioning therapies, donor selection, and
stem cell sources. The combination of graft-vs.-leukemia effector
cells contained in the stem cell graft with advances on the human
leukocyte antigen system allowed enhanced antitumor effect
and improved donor selection (Juric et al., 2016). Alternative
stem cell sources including granulocyte-colony stimulating
factor-mobilized peripheral blood stem cells and cord blood
cells have been also validated. Genetically modified T-cells
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expressing chimeric antigen receptors (CARs) specific for a
selected tumor antigen, such as CD19 in B-cell malignancies,
have been also introduced as more effective antileukemic cell-
based approaches. Gene-editing tools including transcription
activator-like effector nucleases (TALEN) and clustered regularly
interspaced short palindromic repeats (CRISPR) (Li et al.,
2020) resulted in eliminated alloreactivity and decreased
immunogenicity. However, further optimizations are needed,
and many challenges still exist.

The JAK-STAT pathway constitutes a promising target for
the development of various indirect and direct inhibitors
for malignancies (Springuel et al., 2015; Brachet-Botineau
et al., 2020). Indirect inhibitors focus on approaches using
upstream tyrosine kinases targeting, natural and synthetic
molecules, and drug repositioning. The understanding of the
JAK2V617F mutation mechanism and the elaboration of the
pseudokinase domain structure has provided the opportunity
for the development of JAK2 inhibitors for MPN treatment
targeting only the mutated kinase, as JAK2 is necessary for
normal hematopoiesis. The first selective JAK inhibitor (JAKinib)
to be tested and later approved in humans has been Tofacinitib,
which targets JAK1, JAK2 and JAK3 (Kontzias et al., 2012;
O’Shea et al., 2015). Ruxolitinib, the first JAKinib approved
by the United States Food and Drug Administration (FDA),
is a potent inhibitor of JAK1 and JAK2, used for primary
myelofibrosis (O’Shea et al., 2015) and its effects have been also
studied in MDS, AML, ALL, chronic myelomonocytic leukemia
(CMML) and chronic myeloid leukemia (CML) (Eghtedar
et al., 2012; Pemmaraju et al., 2015). JAKinibs might also
ameliorate treatment by monoclonal antibody therapies for
myeloma patients. This represents a novel therapeutic option,
as Ruxolitinib inhibition of the JAK-STAT3 pathway has been
shown to increase CD38 expression and anti-CD38 monoclonal
antibody-mediated cytotoxicity (Ogiya et al., 2020). Another class
of indirect inhibitors includes the first- and next-generation FLT3
inhibitors for AML. First-generation inhibitors lack specificity.
Next-generation inhibitors have higher specificity, potency, lower
toxicities and are under clinical investigation for AML (Daver
et al., 2019). Recently an inhibitor targeting Aurora A (AKI604),
has been shown to block the leukemic proliferation induced by
STAT5, thus suggesting that the use of Aurora kinase inhibitors
(AKIs) might be promising to overcome STAT-induced leukemic
proliferation in AML (Wang et al., 2020).

Several natural and synthetic compounds exerting anti-
tumor functions through their action on STAT3 and/or STAT5
signaling have been developed. These low toxicity compounds
can synergize with other pharmacological agents to reverse
chemoresistance. For example, the inhibitor 17f has been shown
to selectively inhibit STAT5 signaling in CML and AML cells
(Brachet-Botineau et al., 2019). Resveratrol, a naturally occurring
plant compound, inhibited STAT5 activation in CML cell lines,
providing a potential CML treatment (Li et al., 2018).

For drug repositioning, cell-based assays for high-throughput
screening have been employed to identify compounds specifically
inhibiting STAT3/5 transcriptional activity. For instance,
pyrimethamine, an antimalaria drug, previously identified as a
STAT3 signaling inhibitor, provided a potential AML treatment
(Takakura et al., 2011; Sharma et al., 2016).

Direct inhibitors of STAT3/5 include molecules obstructing
tyrosine phosphorylation, dimerization, nuclear translocation
and/or DNA binding. Inhibitors targeting STAT3/5 domains
or mRNAs have been developed (Brachet-Botineau et al.,
2020). Nucleic acid based inhibition strategies include antisense
oligonucleotides (ASO), siRNA, dominant-negative constructs,
G-quartet oligonucleotides and decoy oligonucleotides (Sen and
Grandis, 2012). AZD9150, an ASO targeting STAT3 mRNA, has
decreased viability in leukemic cell lines (Shastri et al., 2018) and
is now in phase 1/2 clinical trials (Brachet-Botineau et al., 2020).

CONCLUSION

Research on HSCs and the BM niche has shed light on normal
and leukemic hematopoiesis, however, their molecular intricacies
have not been fully delineated. The developments in the field
of single-cell omics have enhanced the understanding of the
cellular and molecular organization of the niche bringing us
a step closer to a more detailed functional characterization
to improve HSCT and to discover novel therapeutic strategies
for leukemia. Applied induction of effector CAR immune
cells from HSCs can produce large numbers of immune
cells for clinical evaluation. Gene therapy using autologous
HSCs overcame the major issue of donor compatibility
and ongoing research will further optimize the therapeutic
dosage control, the low cell targeting and the retention in
malignancy sites, however, many challenges remain to fully
treat leukemia and its relapse (Chu et al., 2020). Research
findings on the interconnections between HSCs-niche and
signaling pathways (i.e., JAK-STAT) will further contribute
to new approaches in stem cell engineering, HSCT and
combinations with pharmacological approaches to improve
safety and efficacy.

The delineation of the role of the JAK/STAT pathway
in hematologic malignancies rendered its components ideal
candidates for the development of novel therapeutic strategies.
STAT5, a significant signaling regulator in normal HSCs
and LSCs constitutes an attractive candidate for innovative
therapies. Combinations of JAKinibs with STAT inhibitors,
monoclonal antibodies, growth factor support, hypomethylating
agents, chemotherapy and allogeneic HSCT might be beneficial.
Pyrimethamine, a direct inhibitor of activated STAT3, conjugated
with histone deacetylase inhibitors, also known to inhibit STAT3
activation, has been used successfully in a breast cancer cell line
for HDAC and STAT3 pathway inhibition (Wu et al., 2020). It
cannot be excluded that conjugated inhibitors might also provide
novel therapeutic solutions for hematologic malignancies.
Targeting the communication between leukemia-initiating cells
and their microenvironment together with the JAK-STAT
pathway might be more effective and might overcome problems
of inhibitor persistence and resistant subclones (Springuel et al.,
2015). Furthermore, identification of genes, miRNAs, lncRNAs
and other non-coding RNAs targeted by STATs will provide novel
targets for therapies and useful biomarkers for monitoring of
therapeutic strategies and patient stratification (Figure 2).
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Although many new aspects and mechanisms of the
hematologic malignancies have been revealed, further
investigation is needed to define the role of JAK-STAT and
the effects of BM niche in normal hematopoiesis, leukemia
and aging. All the above will allow effective targeting of
JAK-STAT and the development of personalized and accurate
therapeutic management.
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