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Abstract

Clostridium perfringens epsilon toxin (ETX) rapidly kills MDCK II cells at 37uC, but not 4uC. The current study shows that, in
MDCK II cells, ETX binds and forms an oligomeric complex equally well at 37uC and 4uC but only forms a pore at 37uC.
However, the complex formed in MDCK cells treated with ETX at 4uC has the potential to form an active pore, since shifting
those cells to 37uC results in rapid cytotoxicity. Those results suggested that the block in pore formation at 4uC involves
temperature-related trapping of ETX in a prepore intermediate on the MDCK II cell plasma membrane surface. Evidence
supporting this hypothesis was obtained when the ETX complex in MDCK II cells was shown to be more susceptible to
pronase degradation when formed at 4uC vs. 37uC; this result is consistent with ETX complex formed at 4uC remaining
present in an exposed prepore on the membrane surface, while the ETX prepore complex formed at 37uC is unaccessible to
pronase because it has inserted into the plasma membrane to form an active pore. In addition, the ETX complex rapidly
dissociated from MDCK II cells at 4uC, but not 37uC; this result is consistent with the ETX complex being resistant to
dissociation at 37uC because it has inserted into membranes, while the ETX prepore readily dissociates from cells at 4uC
because it remains on the membrane surface. These results support the identification of a prepore stage in ETX action and
suggest a revised model for ETX cytotoxicity, i) ETX binds to an unidentified receptor, ii) ETX oligomerizes into a prepore on
the membrane surface, and iii) the prepore inserts into membranes, in a temperature-sensitive manner, to form an active
pore.
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Introduction

Clostridium perfringens epsilon toxin (ETX) is the third most potent

of all clostridial toxins [1,2,3,4], thus earning it a listing as a CDC

class B select toxin. ETX is only produced by type B and D isolates

of C. perfringens, which cause fatal enterotoxemias in several

livestock species [3,4]. Those type B and D enterotoxemias

develop when ETX is produced in the intestines and then

absorbed into the circulation, allowing the toxin to target internal

organs outside of the gastrointestinal tract. ETX then causes

severe, often-fatal neurologic disturbances and edema in many

internal organs, at least in part, by damaging vascular endothelial

cells [3,5,6].

The ETX-encoding gene (etx) is carried by large plasmids, some

of which share homology with the enterotoxin-encoding plasmids

found in type A strains [7]. ETX is produced during vegetative

growth, rather than by sporulating cells. It is then secreted, initially

as a binding capable (but inactive) prototoxin of 311 amino acids

(32.7 kDa) [8]. The ETX prototoxin can be proteolytically-

activated by removal of 11-13 N-terminal amino acids and 22–29

C-terminal amino acids, with the size of the cleavage dependent

upon the protease used [1]. Proteases capable of activating ETX

include C. perfringens lambda toxin, as well as intestinal proteases

such as trypsin or chymotrypsin [9]. Activation of the toxin in vivo

is probably mediated mainly by the intestinal proteases present in

the gastrointestinal tract.

Activated ETX is a pore-forming toxin that shares structural

similarities with another pore-forming toxin (PFT) named

aerolysin [10]. However, ETX is about 100-fold more potent

than aerolysin at killing sensitive mammalian cells [11], reportedly

via a necrotic process [10]. A channel-forming domain has been

identified in ETX that resides between residues 151–180 [12].

This same ETX region also contains one or more neutralizing

epitopes [13]. ETX regions mediating other functions have not yet

been conclusively mapped.

It is generally accepted that ETX action on sensitive cells begins

with the binding of this toxin to a still unidentified protein

receptor. Distribution of the ETX receptor is apparently restricted

to certain organs, including the brain, the lungs and the kidneys

[14,15,16,17,18]. Similarly, ETX can affect only a few cell culture

lines. Those ETX-sensitive cell lines include Madin–Darby

Canine Kidney (MDCK) II cells, which are commonly used as

an in vitro model to study the molecular action of ETX

[2,19,20,21,22,23]. In MDCK II cells, the toxin uses lipid rafts

to form a large heptameric complex that is SDS-resistant and has

an apparent size of ,155 kDa [24]. Substantial evidence suggests

that this ETX complex corresponds to a general diffusion pore

permeable to molecules up to ,1 kDa [12,21]. This ETX pore
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mediates the release of K+ from, and influx of Na+ and Cl2 into,

MDCK II cells [2,25,26].

Comparing in vitro studies performed at various temperatures

often provide valuable insights into a toxin’s mechanism of action

[27,28,29]. Since the pioneering work by Petit et al. [2], it has

been appreciated that ETX does not kill MDCK II cells at 4uC,

despite MDCK II cells being one of the most ETX-sensitive cell

lines at 37uC [2]. That study also reported that ETX can still bind

and form a large complex at 4uC [2], although opposite

conclusions have also been reported using a biologically-active

ETX fusion protein [30]. Furthermore, no study has yet

conducted a systematic step-by-step quantitative comparison of

the occurrence of each step in ETX action at 4uC vs. 37uC.

Therefore, the current study quantitatively compared the effects

of temperature differences on each known step in ETX action

against MDCK II cells. By studying the nature of the low

temperature blockage of ETX action, these analyses have provided

the first experimental evidence for a prepore step in ETX action.

Material and Methods

Toxin
Epsilon prototoxin was purified from overnight cultures of

Clostridium perfringens type D (NCTC 8346) as described previously

[31,32]. Briefly, a starter culture of strain NCTC 8346 was grown

overnight at 37uC in fluid thioglycolate broth (Difco). That starter

culture was then used to inoculate 100 ml of TGY (3% tryptic soy

broth [Becton-Dickinson]; 2% glucose [Sigma Aldrich], 1% yeast

extract [Becton-Dickinson], 0.1% sodium thioglycolate [Sigma

Aldrich]). After 16–18 h of growth at 37uC, the TGY culture was

added to 3.5 L of fresh TGY and grown for 12 h at 37uC.

Following that inoculation, the culture was centrifuged and the

supernatant was then incubated at 4uC for 1 h with ammonium

sulfate before centrifugation. The precipitated material was

dissolved in phosphate buffer (0.1M KH2PO4, 0.1 M Na2HPO4,

pH 7.3) and dialyzed against the same phosphate buffer overnight

at 4uC. The dialyzed sample was then applied to a DEAE cellulose

column and fractions were collected, dialyzed and analyzed by

electrophoresis or Western Blot and quantified by Lowery [33].

Those analyses showed the purified prototoxin preparation

contained a single protein of ,32 kDa.

The purified prototoxin was fluorescently labeled using an

AlexaFluor 488 protein labeling kit (Invitrogen), following methods

described by the manufacturer. Fluorescently-labeled toxin will be

referred to as AF488-ETX throughout the manuscript. AF488-

ETX and ETX had similar cytotoxicity for MDCK II cells, as

assessed using the Live/Dead cell assay (described below).

Prior to use in assays as active ETX, aliquots of the prototoxin

(whether labeled or not) were activated by incubation with 12.5 mg

of trypsin (Sigma)/mg toxin for 1 h at 37uC. Following this

activation, trypsin inhibitor (Sigma) was added to remove trypsin

activity. Therefore, all cytotoxicity/morphology assays used the

trypsin/trypsin inhibitor mix as a control, as well as a non-trypsin-

treated prototoxin control.

Cell culture and animal tissue
Madin-Darby Canine Kidney (MDCK II) epithelial cells [34]

were routinely cultured in a 50/50 (v/v) mix of Dulbecco’s

Modified Eagle’s Medium (DMEM, Sigma) and Nutrient Mixture

F12 HAM (Sigma), supplemented with 3% fetal bovine serum, 100

units/ml penicillin, 100 mg/ml streptomycin, and 1% glutamine.

Cells were maintained at 37uC in 5% atmospheric CO2 and

grown until confluency in 75 cm2 flasks before seeding for

experimentation.

A 0.05 g aliquot of Balb/C mouse brain or kidney tissue was

weighed out and homogenized in 0.5 ml of PBS supplemented

with 0.4 M NaCl, 0.05% Tween-20, 0.5% BSA and 10 mM

EDTA and Protease inhibitors (Roche). The tissue homogenates

were then stored at 280uC until needed.

Cell Morphology and Cytotoxicity
To visualize ETX-induced morphologic damage, confluent

MDCK II cells in 100 mm2 cell culture dishes (Corning) were

incubated in the presence or absence of 10 mg of ETX for 60 min at

4uC or 37uC. MDCK II cells treated with ETX at 4uC were also

assessed for morphological damage after a shift to 37uC. This was

performed as described earlier except that, following incubation with

ETX at 4uC for 60 min, the cells were washed and then warmed to

37uC. After a 1 h incubation, pictures were taken of the control cells,

prototoxin-treated cells, and ETX-treated cells using a Canon

Powershot G5 fitted to the Zeiss Axiovert 25 microscope [35].

MDCK II cell cytotoxicity was measured using the Live/Dead

viability/cytotoxicity kit for mammalian cells (Invitrogen), as

previously described [36], or the LDH Cytotoxicity Detection Kit

(Roche). Briefly for the Live/Dead assay, confluent MDCK II cells

cultured in 96 well plates (Corning) were treated with 10 mg of

ETX or prototoxin for 60 min at 4uC or 37uC before cytotoxicity

was measured. For the LDH assay, confluent MDCK II cultures

grown in 100 mm2 plates were treated with 10 mg of ETX for

60 min at 4uC or 37uC. Alternatively, some MDCK II cells were

treated with 10 mg of ETX for 60 min at 4uC; after washing, those

cells were warmed to 37uC for 1 h. Supernatant was removed

from all treated cultures and then transferred to individual wells of

a 96 well plate before the reagents from the LDH kit were added

and cytotoxicity was measured using an iMark microplate reader

(BIO-RAD), with an absorbance wavelength of 490 nm and a

reference wavelength of 600 nm. The data was recorded and

analysed using the Microplate manager software version 6.1.

Analysis of ETX complex formation at 4uC versus 37uC in
mouse brain or kidney homogenates

To assess ETX complex formation in brain and kidney tissues

obtained from healthy untreated mice, 100 ml of homogenized tissue

(kidney or brain), prepared as described earlier, were incubated with

10 mg of AF488-ETX for 60 min with gentle rocking at either 4uC or

37uC. Upon completion of this incubation, 100 ml of 2 X loading

buffer (50 mM Tris pH 6.8, 2% SDS, 10% Glycerol and 0.05%

bromophenol blue) was added to the sample. The ETX-treated

mouse kidney or brain tissue samples (or ETX-treated MDCK II cell

samples for comparison) were then electrophoresed on an 8%

polyacrylamide gel containing SDS. The resultant gel was imaged

using a Typhoon 9400 variable mode imager (Amersham Bioscienc-

es), with fluorescence emission set to detect the Alexafluor 488 label

using the green laser with wavelength 532 nm or, for detection of the

molecular weight markers, the red laser was used with a wavelength

of 633 nm. Complex formation was then quantified using Image-

quant version 5.2 (Molecular Dynamics). Upon completion of the first

fluorescent complex scan, separated proteins on the gel were

transferred to nitrocellulose membrane and then probed with rabbit

polyclonal anti-ETX antibody (catalog number NR-865 from BEI

resources, Manassas, VA) to ensure that this was indeed the ETX-

containing complex (data not shown).

Pronase digestion susceptibility of ETX complex formed
at 4uC vs. 37uC

The relative susceptibility to pronase digestion of ETX complex

formed in MDCK II cells at 4uC vs. 37uC was analyzed using an

C. perfringens Epsilon Toxin Has a Prepore Stage
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assay adapted from previously published methods [37]. Confluent

MDCK II cells grown in a 6 well plate were treated with 10 mg of

AF488-ETX for 60 min at either 4uC or 37uC. Those MDCK II

cells were harvested and washed; half of this sample was left intact,

while the other half was lysed in RIPA buffer (50 mM Tris,

150 mM NaCl, 0.1% SDS, 0.5% C24H39NaO4, 1% Triton-X100

and protease inhibitors added before use). Both sets of samples

were incubated with 6, 60 or 600 ng of pronase (Sigma) for 60 min

at 4uC. At that time the intact MDCK II cells were washed with

HBSS and resuspended in 50 ml of HBSS and 2x loading buffer,

whereas 2x loading buffer was added in equal volume to the

MDCK II cell lysates. Samples were electrophoresed side-by-side

on an 8% polyacrylamide gel containing SDS in order to compare

the pronase digestion susceptibility of ETX complexes in whole

cell vs. lysates at the two different temperatures. Fluorescent gels

were imaged as described earlier.

Measurement of ETX pore formation in MDCK II cells
A 86rubidium release assay is often used to evaluate toxin-

induced pore formation that leads to mammalian plasma

membrane permeability changes [35]. Therefore this assay was

employed to assess the ability of ETX to form pores in MDCK II

cells. Confluent MDCK II cells grown in a 24 well plate (Corning)

were radiolabeled for 3 h at 37uC in HBSS containing 4 mCi of
86RbCl (Perkin-Elmer) per well. After radiolabeling, the cells were

washed twice and treated, at 4uC or 37uC, for 5, 10 or 20 min with

10 mg of ETX. Culture supernatants were collected and counted

(cpm) using a Beckman gamma counter. After subtraction of

spontaneous (background) 86Rb release, data were plotted as the

percentage of maximal 86Rb release that was specifically induced

by each ETX treatment, determined as published previously [35].

Dissociation of ETX complex at 4uC or 37uC
MDCK II cells were washed and treated with 10 mg of AF488-

ETX for 60 min at either 4uC or 37uC. The supernatants

containing unbound toxin were removed and the cultures were

further incubated at the toxin treatment temperature for 0, 15, 30

or 60 min. After that incubation, adherent cells were harvested by

gentle scrapping and combined with nonadherent cells floating in

the supernatant. These collected cells were then washed three

times and resuspended in 50 ml of PBS buffer with 1 ml of

benzonase. SDS loading buffer (2X) was added for lysis and the

samples were electrophoresed using the conditions described

earlier for complex analysis.

Additionally, the stability of solubilized ETX complex that had

been formed in MDCK II cells at 4uC vs. 37uC was compared in

the presence of 10% SDS. MDCK II cells were treated with 10 mg

of AF488-ETX for 60 min at either 4uC or 37uC. After that

treatment, the cells were washed and incubated for desired time

periods. At the completion of the incubation time, the cells were

harvested and washed twice in HBSS before electrophoresis on

8% polyacrylamide gels containing 10% SDS to determine the

stability of the complex that had been formed at both

temperatures.

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Animal Care and Use Committee of

the University of California, Davis (Permit Number: 16258). All

efforts were made to minimize suffering of mice. The MDCK II

cell line used in this study is not a de novo cell line and was

obtained from Dr. James Anderson, who previously published

using this well-established cell line [34].

Results

Comparison of morphologic damage and cytotoxicity in
MDCK II cells treated with ETX at 4uC vs. 37uC

It was previously reported that both native ETX and an ETX-

green fluorescent protein (GFP) fusion protein are cytotoxic for

MDCK II cells at 37uC, but not at 4uC [2,11]. The current study

first confirmed those conclusions by treating MDCK II cells with

ETX for 60 min. Both ETX-induced morphologic damage and

cytotoxicity were readily detectable within 60 min when the

treatment temperature was 37uC (Fig. 1A and 1B). In contrast,

after 60 min of similar ETX treatment at 4uC, the MDCK II cells

did not exhibit either morphological damage (Fig. 1A) or

cytotoxicity (Fig. 1B), as detected by a Live/Dead assay. Even

after 2 h of ETX treatment at 4uC only a small increase in

cytotoxicity was detected over control (no ETX treatment) levels.

Comparison of AF488-ETX binding and complex
formation levels in MDCK II cells treated with ETX at 4uC
vs. 37uC

A possible explanation for the loss of cytotoxicity at 4uC, as

observed in Fig. 1, might be that ETX cannot bind or form

complexes at low temperature. Whether ETX binds and forms

complexes in MDCK II cells at 4uC has remained somewhat

unsettled in the literature. Petit et al. reported detection of ETX

complexes in MDCK II cells treated with ETX at 4uC [2].

However, Soler-Jover et al. [30] reported that when MDCK II

cells were treated at 4uC with an ETX-GFP fusion protein (which

is cytotoxic at 37uC), washed, and then warmed to 37uC, no

cytotoxicity developed [30]. Since that result supported a possible

impairment of ETX binding at 4uC, the current study repeated

this experiment by treating MDCK II cells at 4uC with native

ETX instead of using an ETX-GFP fusion protein. The results

obtained clearly indicated that ETX had bound to functional ETX

receptors at 4uC, i.e., strong morphologic damage (Fig. 2A) and

cytotoxicity (Fig. 2B) developed when those cells were washed and

then warmed to 37uC for 1 h. Notably, the levels of morphologic

damage and cytotoxicity that occurred in these temperature-

shifted cells was nearly that observed using the same ETX

treatment constantly at 37uC for 1 h.

Having obtained evidence supporting ETX binding at 4uC, the

current study next conducted the first head-to-head quantitative

comparison of ETX binding levels and complex formation levels

at 4uC vs. 37uC. When quantitative fluorescence analysis was

performed on gels containing samples of MDCK II cells treated

with AF488-ETX at either 4uC or 37uC (Fig. 3A), similar amounts

of bound toxin were detected at either 4uC or 37uC (Fig. 3B). This

analysis further determined that, i) ,70–90% of the AF488-ETX

bound to MDCK II cells was localized in the ETX complex and ii)

nearly equivalent amounts of ETX complex had formed in

MDCK II cells at both temperatures (Fig. 3C).

Temperature effects on ETX complex formation in mouse
tissues

Mouse kidney and brain are the major organs that bind ETX at

37uC and are considered important ETX targets in vivo

[11,15,38,39]. While ETX complex formation in brain synapto-

mosomal membranes has been previously shown at 37uC [24],

ETX complex formation in kidney tissue preparations has not yet

been demonstrated, to our knowledge. Furthermore, ETX
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PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e22053



complex formation has not been compared at 4uC vs. 37uC using

preparations from either brain or kidney.

Therefore, to help confirm that the Fig. 3 results also apply to

natural ETX target tissues, an experiment examined ETX

complex formation in homogenized mouse brain and kidney

tissues both at 4uC and 37uC. Results from analyses first showed

that AF488-ETX forms a complex in homogenized kidney tissue

that is similarly-sized as the ETX complex formed in either

homogenized brain tissue or MDCK II cells (Fig. 4A). Further-

more, this experiment detected no significant temperature-related

Figure 1. Temperature effects on ETX-induced MDCK II cell morphologic damage. A) Cell morphology. MDCK II cells were treated with
10 mg of ETX for 60 min at 4uC or 37uC and photographed. B) Cytotoxicity. MDCK II cells were treated with 10 mg of ETX for 60 or 120 min at 4uC or
37uC and cytotoxicity was then measured using the Live/Dead viability/cytotoxicity kit for mammalian cells. Shown is the average for 3 experiments.
doi:10.1371/journal.pone.0022053.g001

Figure 2. MDCK II cells treated with ETX at 46C are efficiently killed when shifted to 376C. A) Cell morphology. MDCK II cells were treated
with 10 mg of ETX for, i) 60 min at 4uC, followed by washing and further incubation at 4uC, ii) 60 min at 4u, followed by washing and incubation at
37uC for 1 h or iii) 60 min at 37uC. B) Cell cytotoxicity. Cell death in the cultures described in panel A was measured by the LDH assay. Shown is the
average from 3 experiments.
doi:10.1371/journal.pone.0022053.g002

C. perfringens Epsilon Toxin Has a Prepore Stage
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differences in the amounts of AF488-ETX complex formed in

either brain or kidney homogenates (Fig. 4B).

Comparison of ETX pore formation in MDCK II cells at 4uC
vs. 37uC

Pore formation is considered to be important when ETX kills

MDCK II cells, with the ETX complex corresponding to this pore

[2,12,25]. Since the Figs. 1, 2, 3, and 4 results indicated that ETX

performs the first two steps in its action, i.e., binding and complex

formation, equally well at 4uC vs. 37uC, the low temperature block

in ETX cytotoxicity observed in Fig. 1 might be attributable to an

inhibition of pore formation at 4uC. To our knowledge, whether

ETX can form functional pores in MDCK II cells at low

temperature has not yet been assessed.

Formation of the ETX pore was previously shown to cause

rapid efflux of cytosolic potassium from MDCK II cells [2].

Therefore, to evaluate whether ETX pore formation is temper-

ature-sensitive, the current study compared the effects of

temperature on ETX-induced release of 86Rb, a potassium

transport analogue, from MDCK II cells. When 86Rb-radiola-

beled MDCK II cells were treated with 10 mg of ETX at 4uC, no
86Rb release over background levels was measured. However,

significant 86Rb release over background levels was detected

within 5 min of similar ETX treatment at 37uC. After correction

for spontaneous background release, this ETX-induced 86Rb

release reached ,100% within 10 min at 37uC (Fig. 5).

Investigating the mechanistic basis for the inhibition of
ETX pore formation at 4uC

The Fig. 5 results clearly demonstrated that ETX pore

formation is blocked at 4uC, offering an explanation for the

observed loss of ETX-induced cytotoxicity at low temperature.

The ability of the ETX complex to form at both 37uC and 4uC
(Fig. 2), coupled with the absence of pore formation at 4uC (Fig. 5),

suggested that ETX action might involve assembly of a ‘‘pre-pore’’

ETX complex on membrane surfaces prior to temperature-

sensitive insertion of this complex into lipid bilayers to form a

functional membrane pore. The current study explored this

possibility using two experiments that have previously provided

evidence for a prepore step in the action of C. perfringens

enterotoxin, another PFT [37,40].

The first experiment evaluated whether the ETX complexes

present in intact MDCK II cells exhibit differing susceptibility to

pronase digestion when formed at 4uC vs. 37uC. The premise of

this experiment is that, i) at 37uC, membranes may provide an

inserted ETX complex with some protection from digestion by

externally-applied pronase, while ii) the ETX complex formed at

4uC should show greater sensitivity to similar pronase challenge if

it remains exposed on the membrane surface in a prepore state.

This experiment was performed using MDCK II cells containing

AF488-ETX complex formed at 4uC or 37uC, washed at 4uC, and

then treated with pronase at 4uC. As shown in Fig. 6A and 6B,

more pronase digestion was noted for the ETX complex using

Figure 3. Analysis of temperature effects on ETX binding and complex formation in MDCK II cells. A) ETX complex formation. MDCK II
cells were treated with 10 mg of AF448-ETX for 60 min at 4uC or 37uC and then electrophoresed and quantitatively imaged (see Materials and
Methods). Arrows indicate, as specified, migration of the ,155 kDa ETX complex or the ,30 kDa ETX monomer. B) Quantitative analysis of ETX
binding at 4uC vs. 37uC. MDCK II cells were treated with 10 mg of AF488-ETX for 60 min at 4uC or 37uC. After electrophoresis of cell lysates, total
AF488-ETX present in the gel i.e. AF488-ETX bound in complex or as monomer, was quantified by fluorescence scanning. Shown are the average
results from 4 gel scans. C) Quantitative analysis of ETX complex formation. MDCK II cells were treated with 10 mg of ETX for 60 min at 4uC or 37uC.
The amount of fluorescence specifically present in gel regions containing AF488-ETX bound in the ETX complex was determined. Shown are the
mean values from 4 experiments.
doi:10.1371/journal.pone.0022053.g003

C. perfringens Epsilon Toxin Has a Prepore Stage

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e22053



intact MDCK II cells containing complex formed at 4uC vs. 37uC,

This result is consistent with the ETX complex formed at 4uC
remaining exposed as a prepore on the membrane surface and the

ETX complex formed at 37uC having inserted into membranes.

An alternative interpretation for the Fig. 6A and 6B results could

be that the ETX complex formed at 37uC is simply inherently more

resistant against pronase digestion than the ETX complex formed at

4uC because of some significant conformational change. Arguing

Figure 5. ETX effects on 86Rb-release from MDCK II cells at 46C or 376C. MDCK II cells were labeled with 86Rb for 3 h at 37uC, followed by
incubation with 10 mg of ETX for 5, 10 or 20 min at 4uC or 37uC. Culture supernatants were then collected and cpm were measured using a Packard
Cobra II gamma counter. After correction for spontaneous release, data were plotted as a percentage of maximal release with the error bars
representing SE. Shown are the mean results from three experiments, with each experiment using duplicate samples.
doi:10.1371/journal.pone.0022053.g005

Figure 4. Analysis of ETX complex formation in mouse tissues at 376C and 46C. A) ETX complex formation in MDCK II cells or homogenized
mouse brain or kidney tissue. A 10 mg aliquot of ETX was incubated with MDCK II cells or homogenized tissue for 60 min at 4uC or 37uC, as indicated.
Those samples were then electrophoresed as described above. Arrows depict, as specified, migration of the ,155 kDa ETX complex or the ,30 kDa
ETX monomer. B) Quantitative analysis of complex formation in MDCK II cells and mouse tissue. Fluorescence quantification of ETX complex levels
demonstrated that the amount of complex formed in MDCK II cells or homogenized mouse tissues was not temperature-sensitive. Shown is the
average from 3 experiments.
doi:10.1371/journal.pone.0022053.g004

C. perfringens Epsilon Toxin Has a Prepore Stage
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against this possibility are the results obtained when pronase was

added to solubilized ETX-treated MDCK II cells. In this

experiment, the solubilized ETX complexes formed at 4uC or

37uC were both pronase-digested at 4uC to a similar extent (Fig. 6C).

Since ETX does not internalize into MDCK II cells, the Fig. 6

results collectively suggest that plasma membrane insertion explains

the protection against proteolysis observed for intact MDCK II cells

containing ETX complex formed at 37uC (Fig. 6A and 6B). By

extension, these results support the hypothesis that ETX added to

cells at 4uC becomes trapped in a prepore on the membrane surface

because the prepore is blocked for insertion.

To further test the hypothesis that ETX becomes immobilized

in a prepore complex on the membrane surface at 4uC, the

dissociation of bound AF488-ETX from MDCK II cells was

compared after treatment with the labeled toxin at 4uC or 37uC
(Fig. 7). The premise of this experiment is that, relative to

dissociation of a prepore localized on the membrane surface at

4uC, insertion of the complex into membranes to form pores at

37uC should reduce ETX complex dissociation from MDCK II

cells. For this experiment, MDCK II cells were treated with

AF488-ETX at 4uC or 37uC, washed and dissociation of ETX

from those washed cells or membrane fractions at the toxin

treatment temperature was then examined over time. This analysis

revealed that substantially less dissociation of bound ETX complex

occurs from MDCK II cells when toxin treatments and subsequent

incubations are performed at 37uC versus 4uC (Fig. 7). More

dissociation of bound AF488-ETX complex was also observed

from isolated membranes of MDCK II cells treated with toxin at

4uC vs. 37uC (data not shown). There was also little or no ETX

monomer remaining in cells that had been treated with ETX at

4uC, washed and then incubated at 4uC for 15 min or more.

However, cell-associated ETX monomer remained present in

samples treated with toxin at 37uC, washed, and then incubated

for 15 min or more. This cell-associated monomer in the 37uC

Figure 6. Comparison of pronase susceptibility of ETX complex formed in MDCK II cells at 46C or 376C. A) Comparison of pronase
digestion of ETX complex in intact MDCK II cells at 4uC or 37uC. MDCK II cells were treated as described above with the exception that, following
treatment, some MDCK II cells were lysed and then subjected to pronase digestion. Arrows denote, as specified, migration of the ,155 kDa ETX
complex or the ,30 kDa ETX monomer. B) Fluorescence quantification of pronase dose effects on digestion of ETX complexes in intact MDCK II cells
formed at 4uC vs. 37uC. C) Fluorescence quantification of pronase digestion of ETX complexes, formed at either 37uC or 4uC, in intact MDCK II cells vs.
MDCK II cell lysates. This analysis showed that ETX complexes formed at either 4uC or 37uC are extensively digested when present in cell lysates but
only the ETX complexes formed at 4uC are pronase-digested when using intact cells. These results suggest that in intact cells the ETX complex formed
at 37uC has inserted into the membrane. Results shown are the average of 3 experiments.
doi:10.1371/journal.pone.0022053.g006
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samples might reflect partial breakdown of the ETX complex to

monomers during the washing and extraction procedure. The

stability of the ETX complex in membranes deserves future

analysis.

Evidence for conformational differences in ETX complex
formed at 4uC vs. 37uC

Petit et al. reported [2] that, after solubilization, the ETX

complex formed in MDCK II cells at 4uC appeared to be less

stable in the presence of 10% SDS than is the ETX complex

formed at 37uC [2]. That observation could suggest the existence

of conformational differences, perhaps more subtle than can be

picked up by the pronase digestion susceptibility assay, between

the ETX complexes formed at 4uC vs. 37uC. The current study

confirmed that observation by Petit et al. and then quantified, in a

head-to-head comparison, the extent of this effect. Starting with

the same amount of ETX complex present in MDCK II cells that

had been treated with AF488-ETX at 4uC or 37uC (Fig. 8A), those

complexes were extracted from cells using 10% SDS and then

electrophoresed. Fluorescence scanning determined that 54.9%

less of the AF488-ETX complex formed at 4uC remains intact

under these high SDS conditions compared against the ETX

complex formed at 37uC (Fig. 8B). These differences in ETX

complex stability in the presence of high concentrations of SDS

could reflect a conformational change that develops in the ETX

complex at 37uC when it inserts into membranes and forms a

stable pore.

Discussion

Several previous studies have reported that ETX is not cytotoxic

for sensitive cell lines, such as MDCK II cells, at 4uC [2,21,30,41].

However, no mechanistic explanation for this observation had yet

been offered. By investigating this topic, the current study has

generated evidence supporting a new step in ETX action, i.e.,

Figure 7. Temperature effects on the dissociation of ETX
complex from MDCK II cells. MDCK II cells were treated with 10 mg
of ETX for 60 min at 4uC or 37uC. Dissociation of the complex formed in
those cells was then assessed over 15, 30 and 60 min at the same
temperature used for toxin treatment. After washing, samples were
subjected to SDS-PAGE and complex was then visualized using the
Typhoon 9400 variable mode imager. Arrows depict, as specified,
migration of the ,155 kDa ETX complex or the ,30 kDa ETX
monomer.
doi:10.1371/journal.pone.0022053.g007

Figure 8. Stability of ETX complex formed at either 46C or 376C in the presence of high SDS concentrations. A) SDS disruption of ETX
complex. MDCK II cells treated with 10 mg of ETX for 60 min at 4uC or 37uC. After washing and incubation with 10% SDS for 30 min, the samples were
electrophoresed on an 8% polyacrylamide gel containing 10% SDS. Arrows depict, as specified, migration of the ,155 kDa ETX complex or the
,30 kDa ETX monomer. B) Quantification of ETX complex stability in the presence of 10% SDS at 4uC or 37uC. Fluorescence analysis of the ETX
complex shows greater disruption by 10% SDS at 4uC than at 37uC, supporting temperature-sensitive conformational differences in the complex.
Shown are the average results from 3 experiments.
doi:10.1371/journal.pone.0022053.g008
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formation of a prepore ETX oligomer on the membrane surface

prior to insertion of that ETX complex into membranes to form

the active pore.

At the start of this study, it remained possible that ETX

binding or complex formation in MDCK II cells might be

influenced by temperature. Petit et al. had previously reported [2]

that ETX can bind and form the ETX complex required for

cytotoxicity at 4uC but they did not perform a quantitative

comparison of these two processes at 4uC vs. 37uC. In contrast,

Soler-Jover et al. had determined that an ETX-GFP fusion

protein, which is cytotoxic at 37uC but not at 4uC, binds in a

temperature-dependent process [30]. For example, they showed

that MDCK II cells treated with the fusion protein at 4uC,

washed and then shifted to 37uC failed to develop any

cytotoxicity [30]. When our current study repeated that

experiment using native ETX, cytotoxicity developed at levels

near those of a similar constant ETX treatment at 37uC.

Furthermore, both toxin binding and complex formation were

clearly observed at 4uC, with quantitative analyses using AF-

labeled ETX indicating that these two early steps in ETX action

develop to a similar extent at 4uC and 37uC. One possible

explanation for the binding differences observed by Soler-Jover et

al. [30] vs. those of our study and the study by Petit et al. [2]

could be that the presence of a GFP moiety might alter the

binding properties of the ETX-GFP fusion protein used by Soler-

Jover et al., resulting in impaired binding and complex formation

at 4uC.

Since the first two steps in native ETX action, i.e., binding and

complex formation, were not significantly reduced at 4uC, the

current study next examined the temperature dependence of the

other previously recognized step in ETX action, i.e., pore

formation. ETX was already known to cause a rapid and massive

potassium release from MDCK II cells at 37uC [2,21,26], which

the current study confirmed by demonstrating that, at 37uC,

MDCK II cells show a strong ETX-induced release of cytoplasmic
86Rb, a potassium transport analogue. More importantly, despite

the ability of ETX to bind and form a complex in MDCK II cells

at 4uC, the current study found those cells exhibit no ETX-

induced 86Rb release. To our knowledge, this is the first evidence

that development of a functional ETX pore is blocked at 4uC,

which explains why no ETX-induced cytotoxicity occurs at low

temperature.

Pore formation by several other PFTs is also blocked at low

temperature [28,37,42,43]. However, the low temperature-sensi-

tive step responsible for the loss of pore formation varies amongst

different PFTs. In general, PFT binding tends to be temperature-

independent, occurring equally well at 4uC and 37uC; however,

there are exceptions, e.g., C. perfringens enterotoxin causes less

cytotoxicity at 4uC, in part, because of reduced receptor binding of

this toxin at low temperature [27,29,37]. The pore-forming ability

of some other PFTs, e.g. Vibrio cholerae cytolysin, is reportedly

inhibited at 4uC because their oligomerization is temperature-

sensitive [43]. In addition to impaired receptor binding at 4uC, the

oligomerization of C. perfringens enterotoxin is also temperature-

sensitive [27], illustrating that low temperatures can sometimes

interfere with several early steps in the action of a pore-forming

toxin. The current findings indicate that ETX differs from such

PFTs in that it can bind and form oligomeric complexes equally

well at both 4uC and 37uC.

Oligomerization of several PFTs occurs on the membrane

surface, resulting in a prepore stage prior to membrane insertion of

the toxin oligomer to form an active pore [28,37,42]. The most

important results of the current study are the first direct

experimental evidence supporting the oligomerization of ETX in

a prepore stage on the membrane surface. First, the current study

demonstrated that, when MDCK II cells are treated with ETX at

4uC and then shifted to 37uC, they exhibited almost similar levels

of cytotoxicity as occurs when those cells are constantly treated

with ETX at 37uC. This result is consistent with the ETX complex

formed at 4uC representing a prepore intermediate that can, under

permissive conditions, become a functional ETX pore. Second,

this work showed that, when solubilized from MDCK II cells, the

ETX complexes formed at 4uC or 37uC are equally susceptible to

pronase degradation; however, when present in intact MDCK II

cells, the ETX complex formed at 4uC is much more susceptible to

pronase degradation than is the ETX complex formed at 37uC.

Since the ETX complex at 37uC has inserted into membranes to

form an active pore, the temperature-related differences in

pronase susceptibility of ETX complexes in intact cells provide

evidence that the ETX complex formed at 4uC remains exposed

on the membrane surface in a prepore. Finally, the ETX complex

formed at 4uC was shown to dissociate more readily from MDCK

II cells compared against the ETX complex formed in MDCK II

cells at 37uC. This result is consistent with i) the complex formed at

37uC being trapped in membranes due to its insertion to form an

active pore but, ii) the complex formed at 4uC more easily

dissociating from cells because it remains surface-localized in a

prepore. Collectively, these results offer experimental support for

the earlier hypothesis of Pelish and McClain that ETX might be a

PFT that forms a pre-pore intermediate prior to active pore

formation [20].

This new evidence for a prepore stage in ETX action highlights

the similarity in action between ETX and C. septicum alpha toxin

[28]. C. septicum alpha toxin resembles ETX by exhibiting

temperature-independent binding and oligomerization, yet tem-

perature-sensitive pore formation. In addition, Sellman et al.

reported evidence indicating that C. septicum alpha toxin has a

temperature-sensitive prepore assembly step that occurs prior to its

insertion into membranes to form an active pore [28]. This

similarity between the actions of ETX and C. septicum alpha toxin is

notable since alpha toxin shares sequence homology with aerolysin

and aerolysin possesses structural similarity to ETX (the structure

of C. septicum alpha toxin has not yet been solved) [10,44].

However, it is interesting that, while aerolysin can bind and

oligomerize at low temperatures [45], a distinct prepore step in the

action of that PFT has not yet been observed [45]. Instead, it has

been proposed that oligomerization and membrane insertion of

aerolysin may be concomitant events [45].

Future studies are needed to determine precisely why, at 4uC,

ETX remains surface-localized in a prepore. However, we did

observe a correlation between formation of the ETX pore and

temperature, with ETX-treated MDCK II cells exhibiting no
86Rb-release at 4uC (Fig. 5), intermediate levels of 86Rb-release at

20uC (data not shown), and massive 86Rb-release at 37uC (Fig. 5).

This result could indicate that ETX pore formation in MDCK II

cells is influenced by membrane fluidity. That possibility would be

consistent with conclusions about ETX insertion drawn from

earlier studies examining ETX action on liposomes [46].

However, comparisons between results using MDCK II cells

and liposomes should be made cautiously since liposomes are 100-

fold less sensitive to ETX compared against MDCK II cells and, at

4uC, ETX binding and oligomerization are also inhibited in

liposomes, a situation unlike what has been observed in MDCK II

cells (this study; [2]).

Petit et al. observed that the ETX complex formed at 4uC is

much less stable in the presence of 10% SDS compared against

the ETX complex formed at 37uC [2]. This observation was

confirmed in the current study. Given the new information
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supporting the trapping of ETX in a prepore stage at 4uC, these

differences in SDS stability of ETX complexes at 4uC vs. 37uC
could reflect temperature-related conformational differences due

to the presence of ETX complex in a prepore vs. active pore

state.

In summary, results from the current study update our

understanding of ETX action to fit the model shown in Fig. 9.

ETX binds to an uncharacterized receptor and then oligomerizes

to form a prepore intermediate on the membrane surface. At 4uC,

the process stops here, possibly because of limited membrane

fluidity (although this hypothesis requires further study). At 37uC,

the prepore rapidly undergoes a conformational change to insert

into membranes and form the active pore. This pore formation

then triggers efflux of certain cytoplasmic ions such as potassium

and influx of other ions such as calcium. These pore-induced

permeability effects cause or contribute to ETX-induced cell

death.
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