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Abstract: The dissolution behavior of magnetite deposited on flow mini-channel surfaces within a
printed circuit heat exchanger (PCHE) and the corrosion behavior of a STS 316L PCHE material were
investigated in an ethylendiaminetetraacetic acid (EDTA)-based chemical cleaning solution at 93 ◦C.
The fouling in the PCHE was simulated using a water-steam circulation loop system. Most of the
magnetite deposits were rapidly dissolved in the early stage of the circulation chemical cleaning. An
empirical equation for estimating the dissolution percentage was derived as a function of cleaning
time. The PCHE material showed excellent corrosion resistance during the chemical cleaning tests.
These results indicate the fouling layers in the PCHEs can be removed efficiently by the chemical
cleaning process without concern about base metal corrosion.

Keywords: printed circuit heat exchanger; fouling; chemical cleaning; magnetite; deposit; corrosion;
small modular reactor

1. Introduction

A heat exchanger is one of the most important components in the energy production
industry, and many studies are underway to increase its heat transfer efficiency. In particu-
lar, a shell-and-tube steam generator (SG) consists of thousands of tubes and has the largest
volume among the components in a pressurized water reactor (PWR). In addition, SG tubes
experience various types of corrosion and mechanical damage due to harsh environments
under high-temperature and high-pressure. A rupture of a single tube at operating PWRs
may also result in the failure of some neighboring tubes in the tube bundle. As a result,
not only heat transfer efficiency, but also safety issues must always be considered together.
Recently, there has been a growing interest in printed circuit heat exchangers (PCHEs) of a
plate type in an effort to improve the above-mentioned drawbacks [1–7].

PCHEs are comprised of stacked metal plates in which flow mini-channels are etched
photo-chemically. Because of the small hydraulic diameter of the channels, ranging from
300 µm to 2 mm, the heat transfer surface area per unit volume of the heat exchanger
drastically increases [8], thereby enabling miniaturization of the heat exchanger itself. In
addition, since the alternately stacked cold and hot channel plates are bonded using a
diffusion-bonding process, the PCHEs have outstanding mechanical properties under
high-temperature and high-pressure conditions. Because of these advantages, there has
been a growing interest in the development of PCHEs for application to small modular
reactors [9,10]. However, some challenges should also be addressed for the implementation
of nuclear PCHEs.

Subcooled water is transformed to steam in the flow channels of the nuclear PCHEs.
As a result, non-volatile corrosion products such as magnetite (Fe3O4) can be deposited

Materials 2022, 15, 1471. https://doi.org/10.3390/ma15041471 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15041471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0709-800X
https://orcid.org/0000-0002-1763-6625
https://doi.org/10.3390/ma15041471
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15041471?type=check_update&version=2


Materials 2022, 15, 1471 2 of 13

on the channel surfaces during the phase transformation, which is referred to as foul-
ing. Severe fouling causes undesirable results in the classic shell-and-tube SGs of PWRs,
including thermal performance degradation, thermal hydraulic instability, interference
with inspection, and coast-down operation [11–15]. Due to the small flow channel size,
PCHEs are expected to be much more vulnerable to fouling compared to conventional
SGs. Moreover, some studies have reported that corrosion of the SG tube materials is
accelerated by the concentration of aggressive chemical impurities within the pores of the
fouling layer [16–19]. Classic shell-and-tube SG tubing in PWRs can be damaged by a
variety of degradation modes, including stress corrosion cracking, intergranular attack,
pitting, and fretting-wear [11–13,20–24]. To address this, the integrity of the SG tubing has
been inspected using eddy current testing (ECT) probes. The thickness of the deposits and
clogging of the tube support plate have also been estimated using ECT signals [25–27]. In
conventional SGs, deposits are removed by mechanical and chemical cleaning processes.
The most representative mechanical cleaning method is a sludge lancing, which physi-
cally detaches the deposits by inserting high-pressure water jet tools into the tube bundle,
regardless of the type of deposit [11,27–29]. On the other hand, chemical cleaning is a
process to remove the deposits by chemically dissolving using solutions depending on
the deposit species, typically iron oxides or copper oxides. At this time, it is important
not only to dissolve the deposits efficiently, but also to minimize the corrosion of the base
materials [11,27,30,31].

However, these conventional probes and mechanical cleaning tools cannot be applied
to PCHEs due to their small channel size and complex channel geometry. Conventional
tubes that are damaged due to mechanical or corrosion-related degradation in a PWR SG
are repaired by plugging and sleeving, but a PCHE would be replaced with a new one, due
to the difficulty of repairing damaged flow channels. Therefore, it is essential to remove
corrosion products deposited on the flow channels of nuclear PCHEs using a chemical
cleaning process. Nevertheless, no experimental research on the removal of deposits in
nuclear PCHEs has been published to date.

The purpose of this work is to investigate the dissolution behavior of magnetite
deposited on the flow channel surfaces of a PCHE. A fouling test was first carried out
using a water-steam circulation loop system equipped with the PCHE in which water
was transformed to steam. The fouled PCHE was then cleaned using a chemical cleaning
method. The corrosion of the PCHE material was also evaluated during the chemical
cleaning process.

2. Experimental Methods
2.1. Preparation of the PCHEs for the Fouling Test

The PCHEs were manufactured using a photochemical etching and a diffusion bond-
ing process. Flow mini-channels were etched into an STS 316L plate with a size of
84 (W) × 850 (L) × 5 (T) mm. Figure 1a shows the geometry of the flow channels. The
flow passages were designed in two symmetrical shapes in the longitudinal direction, and
one unit flow passage consisted of a feedwater inlet, an orifice, main flow channels with
a zigzag-shape, and a steam outlet. All cross-sections of the etched flow channels had a
semicircular shape with a diameter and height of approximately 2 mm and 1 mm, respec-
tively. The channel plate was then diffusion-bonded without inserting an interlayer with
an STS 316L cover plate with the same dimensions as the channel plate at a temperature of
900 ◦C and a pressure of 10 MPa for 60 min, which corresponds well with similar diffusion
bonding parameters for this material [32]. Subsequently, STS 316L tubes, which will serve
as a header, were welded to the inlet and outlet of the PCHE. A schematic diagram of the
finally manufactured PCHE is shown in Figure 1b.
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Figure 1. Manufacturing processes and detailed dimensions of the PCHE: (a) geometry of the flow
channels; (b) after the diffusion bonding process.

2.2. Fouling Test

Figure 2 is a schematic diagram of a water-steam circulation loop system used for the
PCHE fouling tests. The fouling tests were performed for 500 h each using two fresh PCHEs
under the thermal hydraulic parameters and water chemistry conditions given in Table 1.
These thermal hydraulic parameters correspond with the operating conditions of a small
modular reactor, named SMART (System-integrated Modular Advanced ReacTor) [33–35].
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Figure 2. Schematic diagram of the circulation loop system for the PCHE fouling test.

Table 1. Thermal hydraulic parameters and water chemistry conditions for the fouling test.

Thermal Hydraulic Parameter Water Chemistry Condition

Feedwater inlet
temperature

Steam outlet
temperature

Steam outlet
pressure

Flow
rate

[Fe] concentration
in feedwater

Dissolved
oxygen pH25 ◦C

230 ◦C 303.5 ◦C 57.6 bar 340 mL/min 100 µg/L <5 µg/L 9.8

Deionized water with a pH of 9.8 ± 0.2 at 25 ◦C was used as feedwater, and the pH
was maintained using ammonia. The feedwater was deaerated by blowing high-purity
nitrogen gas in a make-up tank, and thus dissolved oxygen (DO) was controlled at less
than 5 µg/L during the test. This is a typical secondary water chemistry for PWRs [30].
The feedwater stored in the make-up tank was heated to about 230 ◦C via pre-heaters
and fed into the PCHE at a flow rate of 340 mL/min. Commercial PCHEs which are
currently used in various fields are composed of alternately stacked multi-hot and cold
plates in which flow channels are etched. Therefore, heat is exchanged through each flow
channel plate without phase transformation. Unlike commercial PCHEs, in nuclear PCHEs
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the feedwater flowing through cold channel plates undergoes a phase transformation.
However, the PCHE fabricated in this work had only a single cold channel plate for the
water-to-steam change, as shown in Figure 1. Therefore, heat fluxes were supplied to
both sides of the PCHE main flow channel surfaces using ten electric heaters to generate
superheated steam of 303.5 ◦C. The superheated steam was transformed to the single-phase
water state through a condenser and returned into the make-up tank. Iron acetate was
artificially injected as a fouling source into the water-steam circulation environment, so
that the iron concentration of the feedwater flowing into the PCHE inlet was a constant
100 µg/L until the test was completed.

2.3. Chemical Cleaning of Deposits Accumulated in the PCHEs

After the first fouling test, the PCHE was bisected along the centerline between the
symmetric flow channels, and then each main flow channel region was cut widthwise into
ten equal zones as shown in Figure 3. One flow channel was used to identify the mor-
phology, chemical composition, and crystal structure of the fouling deposits to determine
appropriate the chemical cleaning conditions. The other channel was used to quantify the
amount of deposits removed from each zone by chemical cleaning.

Materials 2022, 15, x FOR PEER REVIEW 4 of 14 
 

 

which flow channels are etched. Therefore, heat is exchanged through each flow channel 

plate without phase transformation. Unlike commercial PCHEs, in nuclear PCHEs the 

feedwater flowing through cold channel plates undergoes a phase transformation. How-

ever, the PCHE fabricated in this work had only a single cold channel plate for the water-

to-steam change, as shown in Figure 1. Therefore, heat fluxes were supplied to both sides 

of the PCHE main flow channel surfaces using ten electric heaters to generate superheated 

steam of 303.5 °C. The superheated steam was transformed to the single-phase water state 

through a condenser and returned into the make-up tank. Iron acetate was artificially in-

jected as a fouling source into the water-steam circulation environment, so that the iron 

concentration of the feedwater flowing into the PCHE inlet was a constant 100 µg/L until 

the test was completed. 

2.3. Chemical Cleaning of Deposits Accumulated in the PCHEs 

After the first fouling test, the PCHE was bisected along the centerline between the 

symmetric flow channels, and then each main flow channel region was cut widthwise into 

ten equal zones as shown in Figure 3. One flow channel was used to identify the morphol-

ogy, chemical composition, and crystal structure of the fouling deposits to determine ap-

propriate the chemical cleaning conditions. The other channel was used to quantify the 

amount of deposits removed from each zone by chemical cleaning. 

 

Figure 3. Drawing for sectioning the PCHE. 

Deposits are accumulated on the narrow flow channel surfaces in the PCHE. There-

fore, the cover plate part was first carefully eliminated by machining to expose the fouled 

surfaces of the flow channels. This enabled us to analyze deposits accumulated to the 

etched channel surfaces microscopically and spectroscopically. An optical microscope 

was used to visually observe the deposits on the channel surfaces. The detailed surface 

appearance and size of the deposits were also investigated using a high-resolution scan-

ning electron microscope (SEM) with an acceleration voltage of 10 kV. Specimens for scan-

ning transmission electron microscope (STEM) observation were fabricated using a fo-

cused ion beam (FIB) technique and then the chemical compositions of the deposits were 

analyzed using an energy dispersive spectroscope (EDS) in the TEM. Deposit particles 

were scraped from the exposed channel surfaces using a plastic knife and collected to de-

termine their crystal structure using a high-resolution X-ray diffractometer (XRD) with a 

Cu-K  radiation ( = 1.54056 Å ) at a scan rate of 0.01 °/s. 

The chemical cleaning tests were carried out using the following solution according 

to the Electric Power Research Institute/Steam Generator Owners Group (EPRI/SGOG, 

Palo Alto, CA, USA) cleaning process: 20 wt.% diammonium ethylendiaminetetraacetic 

acid ((NH4)2EDTA), 1 wt.% hydrazine (N2H4), 1 wt.% corrosion inhibitor (CCI-801). The 

pH of the solution was adjusted to 7.0 at 25 °C using ammonia solution (NH4OH). This 

EDTA-based solution was developed for iron oxide dissolution by the EPRI and has been 

implemented in many PWR SGs [11,27,36–38] around the world. The CCI-801 is manufac-

tured by Petrolite Corporation (Saint Louis, MO, USA), and the exact ingredients of the 

product cannot be known due to confidentiality. However, commonly used corrosion in-

hibitors form a corrosion-resistant film on the metal surfaces, resulting in a decrease of the 

corrosion rate [39–43]. The chemical cleaning was performed in two steps: first, each 

PCHE segment was immersed in a static reaction cell containing the chemical cleaning 

Deposit characterization

7.5

4.2

(Unit : cm)

7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
0 7.5 15 22.5 30 37.5 45 52.5 60 67.5 75

Chemical cleaning

Figure 3. Drawing for sectioning the PCHE.

Deposits are accumulated on the narrow flow channel surfaces in the PCHE. Therefore,
the cover plate part was first carefully eliminated by machining to expose the fouled
surfaces of the flow channels. This enabled us to analyze deposits accumulated to the
etched channel surfaces microscopically and spectroscopically. An optical microscope
was used to visually observe the deposits on the channel surfaces. The detailed surface
appearance and size of the deposits were also investigated using a high-resolution scanning
electron microscope (SEM) with an acceleration voltage of 10 kV. Specimens for scanning
transmission electron microscope (STEM) observation were fabricated using a focused ion
beam (FIB) technique and then the chemical compositions of the deposits were analyzed
using an energy dispersive spectroscope (EDS) in the TEM. Deposit particles were scraped
from the exposed channel surfaces using a plastic knife and collected to determine their
crystal structure using a high-resolution X-ray diffractometer (XRD) with a Cu-Kα radiation
(λ = 1.54056 Å) at a scan rate of 0.01 ◦/s.

The chemical cleaning tests were carried out using the following solution according
to the Electric Power Research Institute/Steam Generator Owners Group (EPRI/SGOG,
Palo Alto, CA, USA) cleaning process: 20 wt.% diammonium ethylendiaminetetraacetic
acid ((NH4)2EDTA), 1 wt.% hydrazine (N2H4), 1 wt.% corrosion inhibitor (CCI-801). The
pH of the solution was adjusted to 7.0 at 25 ◦C using ammonia solution (NH4OH). This
EDTA-based solution was developed for iron oxide dissolution by the EPRI and has
been implemented in many PWR SGs [11,27,36–38] around the world. The CCI-801 is
manufactured by Petrolite Corporation (Saint Louis, MO, USA), and the exact ingredients
of the product cannot be known due to confidentiality. However, commonly used corrosion
inhibitors form a corrosion-resistant film on the metal surfaces, resulting in a decrease of
the corrosion rate [39–43]. The chemical cleaning was performed in two steps: first, each
PCHE segment was immersed in a static reaction cell containing the chemical cleaning
solution at 93 ◦C for 12 h; in the second step, specially made jigs were mounted to both
ends of the PCHE segment, so that the cleaning solution could be circulated through the
flow channel holes via a circulation pump at a flow rate of about 30 mL/min, as depicted
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in Figure 4a. Under this condition, chemical cleaning further proceeded at 93 ◦C for 12 h.
The solution was refreshed before the second step cleaning. After the cleaning in each step,
the concentrations of iron ions dissolved in the chemical cleaning solutions were analyzed
using inductively coupled plasma–atomic emission spectroscopy (ICP-AES).
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Figure 4. Schematic diagrams of the chemical cleaning apparatus: (a) circulation cleaning for a PCHE
segment; (b) circulation cleaning for a full-length PCHE.

On the other hand, after the second fouling test, the full-length PCHE was used for
chemical cleaning without sectioning. As shown in Figure 4b, the chemical cleaning solution
was fed into the PCHE inlet at a flow rate of about 30 mL/min by a circulation pump and
the temperature of the solution was maintained at 93 ◦C by the heaters and a hot plate.
The chemical cleaning was performed for a total of 42 h, and sampling was periodically
conducted to measure the iron concentrations dissolved in the cleaning solutions. After
sampling, the cleaning solution was always replaced with a new one.

2.4. Corrosion Test

The corrosion of the PCHE material, which may occur during chemical cleaning, was
evaluated from the weight change of corrosion coupons in the EDTA-based solution at
93 ◦C. All of the coupons were polished using 100 grit silicon carbide paper to simulate the
actual surface roughness of the PCHE flow channels (average roughness (Ra) = 1.38 µm).
As shown in Figure 5, the tests were conducted under two different conditions. For the
stagnant immersion test, corrosion coupons were placed on a Teflon holder. The test under
the flowing condition was designed to simulate corrosion during the solution circulating
cleaning. Coupons were mounted on a Teflon holder with a regular dodecagonal shape
and the holder was rotated using a motor. From the angular velocity, the flow rate of the
solution at the surface of the specimens was controlled to be 6 m/min, analogous to that
of the circulating cleaning for the full-length PCHE. The weight change was periodically
measured using an electrical balance with a readability of 10 µg. The surfaces of the
coupons were also examined using SEM to compare the corrosion behavior before and after
the chemical cleaning process.
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Figure 5. Schematic diagrams of the corrosion test apparatus under (a) the stagnant condition; (b) the
flowing condition.

3. Results and Discussion
3.1. Characterization of Deposits

Figure 6 shows optical and SEM images of the flow channel surfaces after the fouling
test. The surfaces of the flow channels were entirely covered with black-colored deposits.
The deposits consisted of polyhedral particles with various sizes from tens of nanometers to
about 2 µm and were accumulated so densely that the original surface of the flow channels
could not be observed.
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Figure 6. Images of the PCHE flow channels after the fouling test: (a) optical and (b) SEM.

Particles deposited on the channel surface were milled to make STEM specimens
using FIB. However, it was very challenging to extract the TEM foils from the grooved and
narrow channel surface. Figure 7a shows the STEM images and EDS analysis results of the
deposits. It can be seen that some particles were deposited on the matrix. The result of the
EDS point analysis revealed that the chemical composition of the deposit particles had a
stoichiometry corresponding to that of magnetite.

Figure 7b shows the X-ray diffraction patterns of the deposits collected from the flow
channel surfaces. The Miller indices for each peak indicated that the particles had a cubic
spinel structure in the Fd-3m space group. Furthermore, all the Bragg planes coincided
with the reference XRD patterns of crystalline magnetite with a cubic spinel structure, and
no other distinct diffractions were observed. The chemical composition, morphology and
crystal structure of the deposits accumulated within the PCHE were similar to the actual
SG tube deposits in PWRs [44–47]. Therefore, the above results provide a solid basis for the
selection of the EDTA-based chemical cleaning solution.
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Figure 7. Chemical composition and crystal structure of the deposits within the PCHE: (a) STEM
image and EDS spectra, and (b) XRD patterns.

3.2. Dissolution Behavior of Magnetite Deposits within the PCHEs

Figure 8 shows the SEM micrographs of the flow channel surfaces of the PCHE
segments before and after the two-step chemical cleaning process. After the first step
cleaning, some small particles dissolved and the sharp facets of the particles became
relatively roundish, but significant amounts of deposits still remained undissolved on the
channel surfaces as shown in Figure 8b,e. After the second step cleaning, the remaining
deposits had almost disappeared, so that the original channel surfaces were clearly exposed,
as shown in Figure 8c,f. It is assumed that the magnetite dissolution and removal proceeded
through reactions (1) and (2) [48]. One molecule of magnetite contains one ferrous ion
and two ferric ions. Therefore, magnetite is reductively dissolved by hydrazine according
to reaction (1), and then the dissolved ferrous ions are chelated by EDTA according to
reaction (2).

2Fe3O4 + N2H4 + 4H2O→ 6Fe2+ + 12OH− + N2 (1)

Fe2+ + (NH4)2EDTA→ Fe-EDTA + 2NH4
+ (2)
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Figure 8. SEM micrographs of the PCHE flow channel surfaces: (a,d) before chemical cleaning; (b,e)
after the first step cleaning for 12 h; (c,f) after the second step cleaning for 12 h.

Figure 9a shows the magnetite dissolution behavior of the full-length PCHE under the
circulation cleaning condition. The magnetite dissolution reaction proceeded quickly in the
early stage of chemical cleaning, and approximately 96% of the total deposits were dissolved
in 6 h. The dissolved iron concentration was no longer increased after a cumulative cleaning
time of 30 h, indicating the magnetite deposits were completely dissolved within 30 h.
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Figure 9. (a) Change in the iron concentrations dissolved from the full-length PCHE with cleaning
time under the circulation condition. The solid black circle and red triangle denote the iron concentra-
tion dissolved in the first and second step, respectively. (b) Derivation of the empirical equation of
dissolution percent using the dissolved iron concentration change curve with time.

The magnetite dissolution at each time during the PCHE full-length cleaning can be
expressed as an asymptotic equation. An empirical equation for the magnetite dissolution
was derived from the data in Figure 9a, and is shown in Figure 9b. The blue solid squares
represent the dissolution percent at each cleaning time that is calculated in Figure 9a,
while the red line is the asymptotic fitting line of the blue squares. The fitting yielded the
following formula.

Predicted dissolution percent (%) = 100− 97.5
(
0.75t) (R2 = 0.974

)
(3)

From this formula, the percent of magnetite deposit dissolution can be estimated as a
function of cleaning time (t). However, magnetite dissolution can be relative depending
on the following factors: the inventory of magnetite deposits, EDTA concentration and
the temperature of the cleaning solution, and the circulation rate of the cleaning solution.
Therefore, it is important to identify the total mass and distribution of deposits accumulated
in a PCHE using non-destructive methods prior to chemical cleaning. In future studies, it
will be meaningful to derive optimal cleaning conditions using factors related to various
magnetite dissolution behavior. Meanwhile, chemical cleaning should be applied efficiently
and safely to PCHEs. That is the reason the traditional SG cleaning process is monitored
by analyzing solution samples and corrosion coupons periodically. As a result, endpoint
determination of cleaning is important. From the dissolution behavior described above, the
best time for cleaning would be between 6 h and 12 h.

Figure 10 shows the dissolution behavior of the magnetite deposits depending on
each zone of the main flow channels during the two-step cleaning process. To compare the
cleaning efficiency of each cleaning step, the iron concentration dissolved in each step was
obtained by summing up the iron concentration of each zone, which yielded 3419 mg/L
in the first step for 12 h and 3230 mg/L in the second step for 12 h. Please note that
the iron concentration in Figure 10 resulted from only one of the two symmetrical main
flow channels. As a result, the above two values were obtained by multiplying the sum
of the iron concentration of each zone by two. At first glance, these values may lead to
misjudgment that the dissolution kinetics of deposits are similar to each other in each
step. For comparison, the iron concentrations dissolved in the first and second steps were
superimposed in Figure 9. This clearly indicates that the iron concentration dissolved
under the static immersion cleaning condition (i.e., the first step) is not even half of what
it is expected from the full-length circulation cleaning. Dissolution is a process by which
a solute in a solid phase dissolves in a solvent to form a solution. Thus, the rate at which
a solid substance dissolves is a function of the collision frequency between the substance
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and the solvent and can be increased by the following methods: reducing the particle size,
increasing the temperature, and increasing the mixing or stirring rate [49–52]. Accordingly,
when a PCHE segment was statically immersed in the chemical cleaning solution, collision
between deposits and solvent may not actively occur, resulting in a significant decrease
in the dissolution and chelation rate. However, the circulation of the cleaning solution
facilitates not only the supply of the fresh solution inside the small and complex channels
but also the removal of the iron-EDTA chelates from the channels, thereby resulting in
a faster dissolution of deposits than under the static immersion cleaning condition. As
a result, it is expected that the deposits remained after the first step had already been
dissolved before the second step cleaning was terminated. This inference can also be
supported by the result that 96% of the total deposits were dissolved in 6 h during the
full-length circulation cleaning, as shown in Figure 9a.
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Figure 10. Iron concentrations dissolved from the main flow channels during the two-step clean-
ing process.

The iron concentration in the cleaning solution results from the dissolution of mag-
netite deposits. Therefore, the amount of magnetite deposits can be calculated using the
dissolved iron concentration and solution volume. Figure 11 shows the total weight of
the magnetite dissolved during the full-length cleaning (Figure 9a) and main flow chan-
nel cleaning (Figure 10), respectively. The deposit amount removed from the full-length
PCHE was approximately 7% greater than that from the sectioned channels, and the reason
for that can be discussed as follows: despite all of the precautions, a proportion of the
deposited particles were inevitably detached from the channel surfaces during the PCHE
sectioning process. In addition, the value of the sectioned channels was obtained only
from the segments of the main flow channels, except for the PCHE inlet and outlet sections
(Figure 3).
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Figure 11. Total weight of magnetite dissolved from each cleaned PCHE.

3.3. Corrosion Behavior of the PCHE Base Material

Figure 12 shows SEM micrographs of the STS 316L coupons before and after the
corrosion tests in the EDTA-based solutions for 42 h. Abrasive marks produced by silicon
carbide paper during the specimen preparation were intact after the exposure to the
solutions, regardless of the solution flow. This indicates that the general corrosion rate of
STS 316L is significantly slow during the chemical cleaning process. In addition, localized
corrosion such as pitting was not observed. This means that STS 316L had a significantly
low corrosion rate in the EDTA-based cleaning solution, and the circulation of the cleaning
solution did not affect corrosion.
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Figure 12. SEM micrographs of the STS 316L corrosion coupon surfaces: (a) before the corrosion test;
(b) after the corrosion test under the stagnant condition for 42 h; (c) after the corrosion test under the
flowing condition for 42 h.

Figure 13 shows uniform corrosion penetration of the STS 316L coupons in the EDTA-
based solutions. Corrosion coupons were weighed before and after the corrosion test. The
corrosion of the coupons was calculated using the following equation.

Corrosion (cm) =
Weight loss (g)

Density of the coupon (g/cm3)× Surface area (cm2)
(4)

The corrosion increased with cleaning time, but the values were extremely low, at
about 0.02 µm, even after 42 h. It was also confirmed that the corrosion was not affected
by the solution flow. According to the EPRI guidelines [36], the allowable corrosion limits
are 254 µm for low alloy steels and 6 µm for Alloy 600 tubing in the classic PWR SGs
during a chemical cleaning period. This indicates that the chemical cleaning method using
an EDTA-based solution can be implemented for fouled PCHEs within well-controlled
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base metal corrosion. Furthermore, it is confirmed that all of the iron ions dissolved in
the cleaning solution resulted from the dissolution of the deposits formed on the PCHE
channel surfaces during the cleaning process.
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Figure 13. Corrosion of the STS 316L coupons under (a) the stagnant condition and (b) the flow-
ing condition.

4. Conclusions

The dissolution behavior of magnetite deposits within PCHEs and the corrosion of
the PCHE material were investigated when chemical cleaning was performed with an
EDTA-based solution, and the following conclusions were obtained.

(1) The deposits on the flow channels of the PCHE were black-colored polyhedral-shaped
particles, which had a stoichiometry and a crystalline structure corresponding to that
of magnetite. The characteristics of the PCHE deposits were analogous to the deposits
which accumulate in the shell-and-tube SGs of PWRs. These results provided a solid
basis for selecting the EDTA-based chemical cleaning process to remove the magnetite
deposits within the PCHEs.

(2) The magnetite deposits attached on the channel surfaces of the PCHEs were easily
removed by the 20% EDTA-based chemical cleaning solution. In particular, most of
the magnetite deposits were dissolved in the early stage of the full-length circulation
cleaning, and all of the deposits were completely removed within 30 h. From the
full-length cleaning process, an empirical equation of magnetite dissolution percent
with cleaning time was derived.

(3) The surfaces of the STS 316L coupons were uniform even after the 42-h corrosion tests
in the EDTA-based solution, and localized corrosion such as pitting was not observed.
In addition, the corrosion values were significantly lower than the allowable corrosion
limit of various SG materials specified in the guideline, regardless of the circulation
of the cleaning solution. These results indicate that the fouling layer within PCHEs
can be effectively removed by the EDTA-based chemical cleaning process without
concern about base material corrosion.

(4) For future research, it is necessary to quantify various factors affecting the dissolution
behavior of the deposits. Chemical cleaning is a follow-up measure that causes eco-
nomic and operational burden for fouled PCHEs. Therefore, proactive methodologies
for mitigating the generation and transport of corrosion products are essential for
future works.
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