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non-random sampling leads to 
biased estimates of transcriptome 
association
A. S. foulkes1*, R. Balasubramanian2, J. Qian2 & M. p. Reilly3

Integration of independent data resources across -omics platforms offers transformative opportunity 
for novel clinical and biological discoveries. However, application of emerging analytic methods in 
the context of selection bias represents a noteworthy and pervasive challenge. We hypothesize that 
combining differentially selected samples for integrated transcriptome analysis will lead to bias in the 
estimated association between predicted expression and the trait. Our results are based on in silico 
investigations and a case example focused on body mass index across four well-described cohorts 
apparently derived from markedly different populations. Our findings suggest that integrative analysis 
can lead to substantial relative bias in the estimate of association between predicted expression and 
the trait. The average estimate of association ranged from 51.3% less than to 96.7% greater than the 
true value for the biased sampling scenarios considered, while the average error was − 2.7% for the 
unbiased scenario. The corresponding 95% confidence interval coverage rate ranged from 46.4% to 
69.5% under biased sampling, and was equal to 75% for the unbiased scenario. Inverse probability 
weighting with observed and estimated weights is applied as one corrective measure and appears to 
reduce the bias and improve coverage. These results highlight a critical need to address selection bias 
in integrative analysis and to use caution in interpreting findings in the presence of different sampling 
mechanisms between groups.

The rapid emergence of large and publicly-available data resources across -omics platforms has fueled exponential 
interest in integrative analysis methods. These approaches involve combining data collected across independent 
groups of individuals to identify novel biological and clinical relationships. For example, there is an emerging 
literature on methods for unraveling the causal mechanisms of genetic associations with complex traits, and more 
specifically, for characterizing the mediating role of cell and tissue-specific gene expression in genetic associa-
tions, e.g.1–8. Many of these approaches involve leveraging and combining transcriptome-wide association studies 
(TWAS) and independent raw or summary-level genome-wide association studies (GWAS) data in a unified 
analysis framework. While the theoretical underpinnings of these approaches may be sound, their application to 
existing data resources requires careful consideration of the defining clinical and demographic characteristics of 
the cohorts being integrated.

We hypothesize that integrating data arising from two dissimilar populations can lead to substantial bias in 
estimates of association. In the application of two-stage least squares to transcriptomics data, an increasingly pop-
ular approach for this setting, this bias manifests in the estimates of association between genotype and expression 
and, in turn, the estimates of association between predicted expression and the trait. We evaluate the magnitude 
and direction of bias through an in silico case study in which data are derived from four established cohorts, 
namely: (1) Genome-Tissue Expression (GTEx) project cohort9 and independently generated data from (2) the 
National Health and Nutrition Examination Survey (NHANES)10, a population-based cohort; (3) the Chronic 
Renal Insufficiency Cohort (CRIC)11, an example “sick” cohort; and (4) the Genetics of Niacin and Endotoxemia 
(GENE) study cohort12, a representative “healthy” cohort.

The GTEx project data are derived from a convenience sample of cadavers, and as such, the anthropometric 
traits and related adipose gene expression may not be representative of a general US population, nor a chronic 
disease or very healthy population. The NHANES data, on the other hand, are a national representative sample of 
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the general US population and therefore a referent population sample that is expected to be specifically general-
izable. The CRIC data are additionally considered in our evaluation as a population-level disease sample enriched 
for multiple chronic diseases (including, obesity, hypertension, diabetes, chronic kidney disease, atherosclerosis 
and cardiovascular disease) that are common in the US and therefore of specific interest in complex disease gene 
discovery. Finally, the GENE data are derived from highly selected healthy and young volunteers and are of rele-
vance in considering physiology and expression of optimal healthy states. These cohorts are chosen to reveal the 
range of potential bias in the estimates of association that can result from integrative analysis that disregards the 
heterogeneity between samples of individuals drawn from different populations.

A focus of this case study is the distribution of body mass index (BMI), a well-characterized quantitative trait 
with established heritability13–15 and also a known marker for multiple complex diseases and all cause mortal-
ity, e.g.16–20. Herein, BMI is used both as a surrogate measure of dissimilarly between cohorts and the primary 
phenotype under investigation. That is, we consider the setting in which the goal of analysis is to evaluate the 
mediating role of gene expression on the association between genotype and BMI through combining two inde-
pendent samples. Our study investigates how the results of this analysis vary depending on the distributions of 
BMI in the two populations from which the independent samples are drawn. Simulations are performed to reflect 
known genotype-transcriptome and transcriptome-BMI associations as well as observed BMI distributions across 
established cohorts.

Selection bias refers to the situation in which the sampling mechanism results in an altered relationship 
between exposure and outcome21. Also referred to as biased sampling and ascertainment bias in some contexts, 
selection bias can result from the sampling mechanism systematically favoring features related to both the expo-
sure and the outcome22. The impact of biases on -omics investigations is beginning to receive attention23, and 
an increasing body of literature exists on the resulting lack of transportability of GWAS findings24,25. Given the 
extensive and broad-based integration of GTEx cohort data in analysis pipelines – at present over 1100 PubMed 
Central citations – closer investigation into the possible implications of biased sampling in the generation of this 
cohort is warranted. Herein we consider the impact of selection bias on analysis involving integration of two 
independent data resources – specifically, the use of reference transciptome data to elucidate the biological mech-
anisms underpinning genetic associations with a quantitative trait, as described for example in26.

Inverse probability weighting (IPW) is applied (with known and unknown weights) as one potential correc-
tive measure for this setting. IPW and covariate adjustments are well-described as the preferred approaches for 
addressing selection bias, e.g.27–37. These methods have been applied extensively and to a broad range of settings, 
including to address bias in the analysis of autopsy data38; however, to our knowledge, IPW has not been applied 
to integrated transcriptome analysis. While IPW as applied in our example appears to partially mitigate the bias 
observed in this setting, further work is needed to identify an optimal strategy. Our research aims to highlight this 
need by raising question about the validity of reported findings from application of integrative strategies without 
careful consideration of the representative-ness of cohorts across data resources.

Results
BMI distributions across cohorts. The distributions of BMI across cohorts are described and compared 
as one marker to indicate whether the cohorts were derived from similar populations. These results are stratified 
by sex and race/ethnicity because of the established modifying role of sex and race/ethnicity in genetic associa-
tions with BMI39–41 and limited to individuals age 21 to 70 for consistency across the GTEx, CRIC and NHANES 
cohorts. The estimated distributions of BMI by cohort and sex for White/non-Hispanic individuals are given in 
Fig. 1 and Table 1. As expected, the CRIC cohort exhibits the largest rightward skew in the BMI distribution for 
both women and men, with the percentages of women and men with BMI >30 kg/m2 equal to 51.0% and 49.7%, 
respectively. The GTEx cohort appears to be somewhat “healthier” than the NHANES cohort with a tighter BMI 
distribution and a slightly lower median value in both men and women. The distribution of BMI in the GENE 
cohort, with 72.5% and 67.6% of women and men, respectively, in the 18.5–24.9 kg/m2 range, is reflective of the 
relatively healthy group of young individuals selected for this study. Although sample sizes are limited, the results 
within Black/non-Hispanic women and men are consistent with these findings (Supplement Table S1 and Fig. S1).

Kolmogorov-Smirnov (KS) and Wilcoxon rank sum (RS) tests are used to compare the distributions of BMI 
for each cohort to the NHANES cohort. The NHANES cohort is chosen as the referent group for these tests 
as it is a nationally representative sample, and therefore, a statistically significant test between a given cohort 
and NHANES suggests that the cohort is drawn from a population that differs from the general US population. 
P-values corresponding to each test stratified by sex are given in Table 1. In all cases, the KS test leads us to reject 
the null that the cohort is sampled from a population with the same BMI distribution as the NHANES data. 
Likewise, in all cases, the Willcoxon RS test rejects the null that the medians of the BMI distributions are equal. 
Again these results are consistent for Black/non-Hispanic women and men (Supplement Table S1) with the excep-
tion that we are unable to detect a difference in the BMI distribution for Black/Non-Hispanic men between the 
GTEx and NHANES cohorts.

Simulation summary. The impact of biased sampling on integrated transcriptome analysis is evaluated 
through a simulation study that draws directly from the observed distributions of BMI across the four cohorts in 
Table 1. Population level data are simulated based on the distribution of BMI in Caucasian/non-Hispanic women 
in NHANES (see Methods). Four sampling scenarios are applied, as summarized in Table 2: (1) No selection bias: 
two random samples are selected from the simulated population cohort; (2) Selection bias in the TWAS cohort: 
the TWAS dataset is sampled from the simulated population cohort in a non-random fashion to mimic the BMI 
distribution observed in GTEx and the GWAS dataset is selected as a random sample; (3) Selection bias for both 
the TWAS and GWAS cohorts (case 1): the TWAS dataset is sampled in a non-random fashion to mimic the BMI 
distribution observed in GTEx and the GWAS dataset is sampled in a non-random fashion to mimic the BMI 
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distribution in CRIC; and (4) Selection bias for both the TWAS and GWAS cohorts (case 2): the TWAS dataset 
is sampled in a non-random fashion to mimic the BMI distribution observed in GTEx and the GWAS dataset 
is sampled in a non-random fashion to mimic the BMI distribution in GENE. The four sampling scenarios are 
referred to respectively as: Random Sampling (RS); GTEx-RS; GTEx-CRIC; and GTEx-GENE.

Figure 1. Estimated distributions of BMI by sex and cohort within White/non-Hispanics. (a) White/Non-
Hispanic Women. (b) White/Non-Hispanic Men. The National Health and Nutrition Examination Survey 
(NHANES) data arise from a population-based cohort. Results are based on the 2015–2016 data and limited 
to individuals aged 21 to 70 for consistency with inclusion criteria for the Genome-Tissue Expression (GTEx) 
project cohort. The GTEx cohort is composed of deceased individuals. Ethnicity is not reported or unknown 
for 44.7% of this cohort. The results presented herein are based only on individuals recorded as White/Non-
Hispanic. The Chronic Renal Insufficiency Cohort (CRIC) is a longitudinal study of individuals with chronic 
kidney disease; baseline data are reported and limited to individuals 21 to 70 years of age for consistency. The 
Genetics of Niacin and Endotoxemia (GENE) study cohort includes healthy adults aged 18 to 45. These results 
suggest that the cohorts represent samples of individuals from different underlying populations, which is 
further supported by the Kolmogorov-Smirnov and Wilcoxon rank sum tests in Table 1.

Body Mass Index (kg∕m2, proportion by category)

KS(e) Wilcoxon RS(f ) < 18.5 18.5–24.9 25.0–29.9 ≥30.0

NHANES(a)

Women (n = 679) 0.019 0.303 0.267 0.411 — —

Men (n = 668) 0.012 0.254 0.356 0.377 — —

GTEx(b)

Women (n = 116) 0.000 0.353 0.440 0.207  < 0.001  < 0.001

Men (n = 211) 0.000 0.280 0.445 0.275  < 0.001 4.7 × 10−3

CRIC(c)

Women (n = 588) 0.015 0.252 0.223 0.510 1.5 × 10−3  < 0.001

Men (n = 841) 0.001 0.141 0.360 0.497  < 0.001 0.001

GENE(d)

Women (n = 91) 0.011 0.725 0.264 0.000  < 0.001  < 0.001

Men (n = 102) 0.000 0.676 0.314 0.010  < 0.001  < 0.001

Table 1. Summariy of BMI distributions by sex and cohort for White/non-Hispanic individuals age 21–70. 
(a)The National Health and Nutrition Examination Survey (NHANES) data arise from a population-based 
cohort. Results are based on the 2015-2016 data and limited to individuals aged 21 to 70 for consistency with 
inclusion criteria for GTEx. (b)The Genome-Tissue Expression (GTEx) project cohort is composed of deceased 
individuals. Ethnicity is not reported or unknown for 44.7% of this cohort. The results presented herein are 
based only on individuals recorded as White/Non-Hispanic. (c)The Chronic Renal Insufficiency Cohort (CRIC) 
is a longitudinal study of individuals with chronic kidney disease; baseline data are reported and limited to 
individuals 21 to 70 years of age for consistency. (d)The Genetics of Niacin and Endotoxemia (GENE) study 
cohort includes healthy adults aged 18 to 45. (e, f )Kolmogorov-Smirnov (KS) and Wilcoxon rank sum (RS) tests 
stratified by sex comparing the distribution of BMI in each each cohort to NHANES.
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Integrated transcriptome analysis with biased sampling. A standard two-stage least squares (2SLS) 
approach42 is applied to evaluate the relationship between genetically regulated gene expression and a phenotype. 
The 2SLS approach is described for this setting in26 and summarized in Fig. 2. Briefly, the first stage of analysis in 
dataset 1 (TWAS) involves estimation of the association between genotype and expression. In the second stage 
in dataset 2 (GWAS), the association of predicted expression with a quantitative trait is estimated. Estimated bias 
in this expression-trait association of stage 2 is presented under a range of plausible sampling mechanisms for 
generating the TWAS and GWAS datasets.

The results of the first stage analysis based on 2,000 simulations are provided in Fig. 3. The relative estimation 
bias, defined as the difference between the estimated and true parameter (for the genotype-expression association 
model) divided by the true parameter value and multiplied by 100 is provided in Fig. 3a. The RS scenario yields 
unbiased estimates, consistent with the extensive literature on maximum likelihood estimation, e.g.43,44. Results 
for all three biased sampling scenarios are included for completeness although the results are expected to be sim-
ilar as these are the first stage modeling results. In all cases, the model intercept as well as both SNP level coeffi-
cients considered are biased downward. As shown in Fig. 3b, this results in underestimation of both the predicted 

Scenario & Description

Source of sampling weights(a)

AbbreviationTWAS GWAS

(1) No selection bias none(b) none Random Sampling (RS)

(2) Selection bias in TWAS GTEx none GTEx-RS

(3) Selection bias in both TWAS and GWAS (case 1) GTEx CRIC GTEx-CRIC

(4) Selection bias in both TWAS and GWAS (case 2) GTEx GENE GTEx-GENE

Table 2. Simulations scenarios for evaluating impact of selection bias. (a)Data are generated by sampling from 
the observed NHANES BMI data using sampling weights based on the distribution of BMI in indicated dataset 
(b)No sampling weights are used; the data are are sampled at random from the NHANES BMI data.

Figure 2. Two-stage least squares approach. Two-stage least squares (2SLS) is one established approach to 
evaluating the relationship between genetically regulated gene expression and a phenotype26. In the current 
study, we investigate how sampling of the TWAS (top panel) and GWAS (bottom panel) cohorts impacts the 
expression-trait association analysis. The observed data are defined as = = …D x i nz{( , ): 1, , }i i1 1  and 
D y j n nz{( , ): 1, , }j j2 1= = + … , where zi, xi and yi are respectively, individual level genotype, expression and 
trait, and n1 and n2 are the sizes of two independent cohorts. We let n1 = 750 and n2 = 1500 which is consistent 
with the GTEx data and a small GWAS. In the first stage of the 2SLS analysis, a linear model is fitted using D1 by 
regressing xi on zi. The estimated intercept, α

0, and coefficients, α, are recorded and using these estimates and 
D2 in the second stage, predicted expression is calculated as αα= +


x zj j0 . The association between predicted 

expression and the trait is then evaluated by regressing yj on 
xj, again based on a linear model with parameter 

estimates denoted γ
0 and γ

1.
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expression and the prediction error for these three cases [scenario 2: mean = 906.4 Reads Per Kilobase Million 
(RPKM), standard deviation (sd) = 25.3; scenario 3: mean = 903.6 RPKM, sd = 26.0; scenario 4: mean = 900.2 
RPKM, sd = 26.0]. The distribution of predicted expression for the RS case (mean = 1339.7 RPKM, sd = 56.1), 
on the other hand, is centered around the true population-level mean expression of 1336.4 RPKM.

The results of the second stage analysis are given in Table 3 and Fig. 4. Relative estimation bias is again defined 
as the ratio of the difference between the estimated and true parameter (in this case for the expression-BMI asso-
ciation) to the true parameter value and reported as a percentage. The estimate of association tends to be approxi-
mately unbiased for the first scenario with random selection [mean relative bias = −2.7%, median = −12.7, IQR 
= (−35.4, 16.1)]. This estimate tends to be biased upward for scenarios 2 [mean relative bias = 73.6%, median 
= 50.7, IQR = (4.3, 113.6)] and 3 [mean relative bias = 96.7%, median = 65.6%, IQR = (15.3, 135.9)] and biased 
downward for scenario 4 [mean relative bias = −51.3%, −56.7%, IQR = (−78, 4, −31.2)].

Coverage defined as the percentage of simulations in which the 95% confidence interval for the expression-trait 
association parameter covers the true population level value, is estimated to be: 75.0%, 69.5%, 63.1% and 46.4% 
for the four respective sampling scenarios. Coverage is expected to be less than 95% even under settings of no 
sampling bias (RS), as 2SLS is based on single mean imputation, as described for example in8; however, this result 
indicates that selective sampling in the context of integrated analysis can further reduce coverage substantially.

Application of inverse probability weighting (IPW). As one corrective measure to address selective 
sampling, we apply inverse probability weighting (IPW)27 in the first-stage model fitting procedure using known 
and estimated sampling weights (see Methods) using data simulated according to scenario 2 (Table 2. IPW is an 
established approach for single cohort analysis to account for differences due to the non-random sampling from 
a target population, and involves applying a weight to each observation equal to the inverse of the probability 
that the observation was selected into the sample. Application of IPW partially mitigates the impact of biased 
sampling as the mean relative bias is reduced from 73.6% [median = 50.7%, IQR=(4.3, 113.6)] to 24.4% [median 
= 16.2%, IQR = (−20.4, 67.8)] and 44.5% [median = 27.2%, IQR = (−11.1, 80.8)] with known and estimated 
weights, respectively. The distributions of relative bias over the 2000 simulations using this corrective measure 
are illustrated Fig. 4b. Finally, the IPW coverage rates are 75.1% and 75.8% for known and estimated weights, 
respectively representing a marked improvement in coverage compared to scenario 2 without IPW (69.5%), and 
comparable to the RS scenario in which we see 75.0% coverage.

Discussion
In summary, integrative analysis approaches that leverage independent data resources are increasingly popular as 
they offer substantial opportunity for novel discovery using existing datasets. However, consideration of funda-
mental design principles relating to sampling is imperative to ensure the validity and reproducibility of findings 
in this context. In the present investigation, in silico simulations that mirror characteristics of established cohorts 

Figure 3. Results of first stage analysis with and without selection bias in sampling. (a) Relative bias 
α α α∗ −


[100 ( )/ ] in parameter estimates from eQTL analysis with (blue, green, purple) and without (grey) 
sampling bias. Results for all three biased sampling scenarios are shown for completeness; the same result is 
expected as the GTEx data distribution is used for sampling weights in all three scenarios. Biased sampling in 
this case study leads to under estimation of the stage one regression model parameters. (b) Distribution of 
average normalized predicted expression in GWAS sample based on stage 1 model fits with and without 
sampling bias. The dotted vertical line represents the population-level mean expression. The underestimation of 
model parameters in the biased sampling scenarios (Fig. 3a) leads to corresponding predictive distributions that 
are shifted downward with smaller variance compared to the RS scenario.
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arising from a range of different populations revealed the potential for systemic bias that can result from selective 
sampling. Importantly, as seen in the case studies, the magnitude of bias relative to the true parameter value for 
association between expression and a trait can be large, and the direction of this bias can be positive or negative, 

Average(a)

Coverage(d)Estimate(b) Relative Bias(c) (%) 95% CI length

1: RS 0.146  − 2.7 0.167 0.750

2: GTEx-RS 0.260 73.6 0.385 0.695

3: GTEx-CRIC 0.295 96.7 0.398 0.631

4: GTEx-GENE 0.073  − 51.3 0.211 0.464

2: GTEx-RS + IPW (known) 0.187 24.4 0.297 0.751

2: GTEx-RS + IPW (estimated) 0.217 44.5 0.331 0.748

Table 3. Expression-trait association estimates obtained in the second stage, with and without selection bias. 
(a)Average is based on 2000 simulations. (b)Estimate of predicted expression-trait association based on two stage 
regression imputation where the true population parameter for the observed expression-trait assocation is 
γ1 = 0.15. (c)Relative bias is defined as γ γ γ∗ −


[100 ( )/ ]1 1 1  where γ

1 is an estimate of association between 
predicted expression and the trait and γ is the true population parameter for the observed expression-trait 
association. (d)Coverage is defined as the proportion of 95% CIs that cover the population-level expression-trait 
association parameter. This is expected to be less than 95% in scenario 1 as the prediction of expression in the 
two-stage regression imputation approach introduces measurement error.

Figure 4. Relative bias in expression-trait association estimates obtained in the second stage, with and without 
selection bias in sampling. Relative bias γ γ γ∗ −


[100 ( )/ ]1 1 1  in estimate of association between predicted 

expression and log BMI.This result suggests that the magnitude of bias can be large with average effects 
estimates as much 96.7% greater than the true value (median = 65.6%) as seen for scenario 3, and a high degree 
of variability across samples within a given scenario. Moreover, the direction of bias upward or downward 
depends on the sampling scheme. The percentage of data points outside of the visual range are <1%, 6.2%, 5.4%, 
<1%, 6.2% and 4.2%(from left to right). Application of IPW reduces the average relative bias that results from 
selective sampling from 73.6% (median = 50.7%) to 24.4% (median = 16.2%) and 44.5% (median = 27.2%), 
respectively, for known and estimated weights. Estimated weights are subject to error and as a result not 
expected to be as efficient as known weights.
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depending on the specific sampling mechanism. This degree of bias represents a grave matter, particularly in 
light of growing concerns over reproducibility and generalizability in genomics research. In practice, for most 
integrated -omics analysis involving independent datasets, the sampling mechanisms are not known although, in 
many cases, it will be clear that the populations from which the samples arise are dissimilar. Inverse probability 
weighting is one well-established approach used in single cohort analysis to address bias and our application sug-
gests that it partially mitigates the errors introduced by selective sampling. In the case that the sampling weights 
are unknown, they can be estimated using observed covariate values. The precision of these estimates will impact 
the degree to which IPW attenuates the impact of sampling bias. Overall, this research suggest that judicious 
approaches to address pervasive sampling biases are critically required to ensure validity and generalizability of 
transcriptome association findings based on integrative analysis.

Methods
Datasets. The Centers for Disease Control and Prevention National Health and Nutrition Examination Survey 
(NHANES) data10 are designed to assess the health and nutritional status of adults and children in the United States 
through a combination of interviews and physical examinations. We use the NHANES 2015-2016 Demographics and 
Examination Data (https://wwwn.cdc.gov/nchs/nhanes/) with a combined dataset of n = 9544 individuals aged 0 to 
80 years [51.0% Female, 49.0% Male; 21.5% Black/non-Hispanic, 30.9% Caucasian, 19.2% Mexican American, 12.9% 
other Hispanic, and 15.5% Other or Multi-Racial]. The median age is 27 [IQR = (9.0, 53.0)] and the median BMI is 
25.20 kg/m2 [IQR = (19.90, 30.60)]. We limit this sample to include only White/non-Hispanic and Black/non-Hispanic 
individuals aged 21 − 70 years for consistency with the GTEx project data (see below). The NHANES data are used as 
the basis for our simulation as it is a sample that is expected to be representative of the general US population.

The Genotype-Tissue Expression (GTEx) project9 is an established and comprehensive public resource that 
includes whole genome sequencing (WGS) and cell and tissue-specific gene expression across 54 non-diseased 
sites. Our analysis is based on publicly available dbGaP Accession phs00424.v7.p2 data (https://www.gtexportal.org/
home/datasets). The GTEx cohort is composed of n = 752 post-mortem donors aged 20 to 70 years [34% Female, 
66% Male; 13% African American, 86% Caucasian, and 1% Other]. The median age is 56 [IQR = (47.0, 63.0)] 
and the median body mass index (BMI) is 27.26 kg/m2 [IQR = (24.28, 30.30)]. Information on exclusion crite-
ria are described in9. Clinical conditions of relatively high prevalence in this cohort as compared to the US Adult 
population include Chronic Respiratory Disease or Chronic Lower Respiratory Disease (19.0%), Cerebrovascular 
Disease (9.6%), Ischemic Heart Disease (19.2%), Hypertension (55.5%), Renal Failure (13.4%) and Diabetes mellitus 
type II (21.8%). The heterogeneity of this cohort is further evidenced by the presence of conditions ranging from 
Schizophrenia (2.7%) and Major Depression (8.5%) to Arthritis (8.7%) and Pneumonia (9.6%). Individuals missing 
ethnicity (44.7%) are excluded from analysis.

The Chronic Renal Insufficiency Cohort (CRIC) Study is an ongoing observational study to characterize risk 
factors for progression of chronic kidney disease (CKD) and cardiovascular disease (CVD) among individuals 
with chronic renal insufficiency (CRI) (https://repository.niddk.nih.gov/studies/cric/). The cohort used for anal-
ysis is composed of n = 3939 individuals with CRI aged 21 to 75 years [45.1% Female, 54.9% Male; 41.6% White/
non-Hispanic, 45.8% Black/non-Hispanic; 12.6% Other]. The median age is 59 years [IQR = (52, 66)], n = 1908 
(48.4%) have diabetes mellitus, and the median BMI is 30.87 kg/m2 [IQR = (26.81, 36.09)]. We again limit analy-
sis to individuals aged 21−70 years for consistency.

The Genetics of Evoked Response to Niacin and Endotoxemia (GENE) study is an NIH-sponsored investi-
gation of the genomics of inflammatory and metabolic responses during low-grade endotoxemia12,45,46 in 294 
healthy volunteers aged 18 to 45 years [51.4% Female, 48.6% Male; 65.6% White/non-HIspanic, 34.4% Black/
non-Hispanic]. Participants were genotyped at baseline and multiple clinical variables including temperature 
and five plasma biomarkers were recorded repeatedly over 48 hour hospital visit after an endotoxin challenge. The 
median age is 24 [IQR = (21, 28)] and the median BMI is 23.32 kg/m2 [IQR = (21.70, 26.15)].

Statistical approach. Data are simulated according to a composite model of association given by 
yi = γ0 + xiγ1 + ϵi and xi = f(zi) + δi, where  ~ σN(0, )i

2 , δ σδ~ N(0, )i
2 , ϵi⊥δi, yi is a quantitative trait, xi is cell or 

tissue-specific expression for a single gene, and zi is a vector of SNPs for individual i = 1, …, n. We let f(zi) be a 
linear function given by α0 + zi1α1 + zi2α2 with additive effects of each of two SNPs and minor allele frequencies 
of 0.20. Parameter values are selected to result in an average expression equal to the mean whole blood (WB) 
interleukin 1β (IL-1β) log 2 normalized expression in GTEx (μ1 = 10.39) and a distribution of natural log BMI 
that is consistent with the observed distribution for White/non-Hispanic women in the NHANES cohort 
(μ2 = 3.36): α1 = α2 = 0.06; α0 = μ1 − 0.4*(α1 + α2) = 10.23; γ μ γ= − x0 2 1; γ1 = 0.15; σδ = 1.6; and σϵ = 0.065. 
A population of size n = 100, 000 is generated.

For the unbiased analysis (scenario 1), n = 2250 observations are sampled and randomly divided into two 
groups with n1 = 750 and n2 = 1500. For the biased sampling analysis (scenarios 2−4), n1 observations are sam-
pled from the population with replacement using individual level sampling probabilities given by = ∑ =p w w/i i i

n
i1

1  
where wi is defined as the proportion of GTEx observations that fall in the same decile of BMI distribution in the 
population as individual i. Additionally, for scenarios 3 and 4, n2 observations are sampled from CRIC and GENE 
respectively using similarly defined weights based on the corresponding cohorts. IPW is applied to scenario 2 
using inverse probability weights for each individual equal to 1∕pi where pi is as defined above. IPW-known uses 
the true values of pi used in sampling while IPW-estimated uses estimated values pi based on predicted BMI. 
Estimates are derived by first fitting a model for BMI in the observed NHANES data with age and weight as pre-
dictor variables. A predicted BMI for each individuals in the GTEx data is then calculated based on the observed 
age and weight in GTEx and the fitted model from the NHANES data. Finally, inverse probability weight esti-
mates are defined as above where predicted BMI values are used in place of observed values.

https://doi.org/10.1038/s41598-020-62575-x
https://wwwn.cdc.gov/nchs/nhanes/
https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
https://repository.niddk.nih.gov/studies/cric/
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Software. All analyses were performed using R version 3.5.2 (https://www.r-project.org/). Code and associ-
ated documentation is available at: https://github.com/andrea-foulkes/twas-transport.
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