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Abstract

The spatial dynamics of epidemics are fundamentally affected by patterns of human mobil-

ity. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow

semi-mechanistic models of movement to be parameterised even for resource-poor set-

tings. While the gravity model typically reproduces human movement reasonably well at the

administrative level spatial scale, past studies suggest that parameter estimates vary with

the level of spatial discretisation at which models are fitted. Given that privacy concerns usu-

ally preclude public release of very fine-scale movement data, such variation would be prob-

lematic for individual-based simulations of epidemic spread parametrised at a fine spatial

scale. We therefore present new methods to fit fine-scale mathematical mobility models

(here we implement variants of the gravity and radiation models) to spatially aggregated

movement data and investigate how model parameter estimates vary with spatial resolution.

We use gridded population data at 1km resolution to derive population counts at different

spatial scales (down to* 5km grids) and implement mobility models at each scale. Parame-

ters are estimated from administrative-level flow data between overnight locations in Kenya

and Namibia derived from CDRs: where the model spatial resolution exceeds that of the

mobility data, we compare the flow data between a particular origin and destination with the

sum of all model flows between cells that lie within those particular origin and destination

administrative units. Clear evidence of over-dispersion supports the use of negative bino-

mial instead of Poisson likelihood for count data with high values. Radiation models use

fewer parameters than the gravity model and better predict trips between overnight locations

for both considered countries. Results show that estimates for some parameters change

between countries and with spatial resolution and highlight how imperfect flow data and spa-

tial population distribution can influence model fit.

Author summary

The growing use of large-scale individual-based models calls for reliable modelling of

human population movement at ever finer scales. Mobility models have at times been fit

to fine-scale movement data, such as travel questionnaires and GPS data. However, the
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restricted size of such datasets make them suboptimal for parametrising large-scale simu-

lations. Larger datasets, such as census commuting data or mobile phone data, pose a dif-

ferent problem in that such datasets are usually made available at a much coarser spatial

resolution than required for individual-based simulations. Here we present a straightfor-

ward, if computationally intensive, method to obtain fine-scale movement estimates from

coarse-scale movement data. We trial the method on movement data from Kenya and

Namibia and implement two of the most common mathematical mobility models, the

gravity and the radiation models. Our findings confirm previous research that the param-

eter estimates for the mobility models differ across spatial scales and countries. We also

investigate how population spatial distribution and the characteristics of the flow datasets

influence parameter estimates.

Introduction

Over the past few years, individual-based models have been widely adopted across multiple sci-

entific disciplines [1–8]. Such models simulate population processes providing a set of rules

that determine the behaviour of individuals in the population depending on their state and on

the interactions they have with other individuals in the model. The recent growing availability

of computational power and large datasets allows for detailed and accurate modelling of syn-

thetic populations.

Data on human mobility is particularly important to accurately capture the spatial range of

interactions such as disease transmission. Typical data sources include census data on migra-

tion and commuting, satellite imagery, surveys, airline and other long-distance travel ticketing

records [9–11]. Each of these sources provides travel data at different spatio-temporal resolu-

tions and has specific sampling biases; nonetheless, they inform mobility models in a wide

variety of fields [12], including epidemiological modelling [13–16].

Most recently, the rapid uptake of mobile phones even in low-income countries has pro-

vided a new, very rich source of data on human mobility. Call Detail Records (CDRs) store the

time and routing mobile phone tower of each incoming or outgoing communication (call or

text message). Depending on the timespan of the data, it is possible to infer movement patterns

in a number of different ways [17]. CDRs are subject to specific biases [18, 19]: (1) ownership

is heterogeneous across regions, age groups and socio-economic classes, (2) usage may vary

widely between individuals. Despite this, mobile phone ownership is widespread even in

resource-poor settings such as sub-Saharan Africa [20].

Due to privacy concerns, freely available mobile phone data is spatially aggregated and fine-

scale data is accessible only through special agreements [15, 17, 21]. Aggregated mobility data

is not immediately suitable to be employed in individual-based models that represent space at

a much finer scale. In this work, we present new methods to fit models of human mobility to

spatially aggregated data on movement patterns. We will analyse a gravity model and several

variants of the radiation model, allowing the spatial resolution of the models to be higher than

that of the data itself. Past work on UK and US commuting data [13] suggests that the parame-

ter estimates for gravity models change with the scale at which space is discretised; we examine

whether similar effects can be resolved with the two CDR-based datasets from Kenya and

Namibia we analyse here.

The mobility models we fit have a wide range of potential applications; while our motiva-

tion is to inform the modelling of the transmission of diseases such as malaria, similar models
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are widely used in multiple other areas, such as the planning of service distribution, both for

commercial and healthcare purposes, and in the managing and maintenance of transport

infrastructures.

Results

Specifying mobility models at finer spatial scales resulted in a considerable increase in compu-

tational complexity; halving the spacing of the spatial grid caused an almost 4-fold increase in

the number of cells with non-zero population (Table 1).

Analysis of the population distribution showed that the Kenyan population tends to aggre-

gate in larger centres, whereas the Namibian population is more dispersed (S1 Fig). This char-

acteristic is accentuated at finer spatial resolutions. At 5km scale for Namibia, 52% of the cells

have a population of 10 or less, accounting for 2.4% of the Namibian population. In contrast,

only 4.2% of cells at the 5km scale in Kenya have 10 or fewer individuals, accounting for only

0.01% of the total population.

We implemented one version of the gravity model, GM, and four variants of the the radia-

tion model, in order of complexity RM1, RM2, RM3, RM4 (see Materials and methods for

details).

For Kenya the grid scales perform better than the administrative unit scale; however, for

Namibia the opposite is true (Fig 1A). If we only look at the gridded scales, model fit generally

increases as grid scale decreases; the exception to this being the fit of the radiation models

RM1-RM4 to the Kenyan dataset and model RM1 to the Namibian dataset (S1 Text). As a

result, models fit the Namibian dataset best at the administrative unit scale, while the Kenyan

dataset is best fit by the gravity model at the 5km scale, and by the radiation models at the

20km scale.

Radiation models RM1-RM4 clearly outperform the gravity model in terms of log-likeli-

hood in both settings and across all scales (S1 Text), except for grid-scale models RM1 and

RM2 for Namibia. The difference between the log-likelihoods of the gravity model, GM, and

the best-fitting radiation model, RM4, is especially large for the Namibian dataset.

We sampled 100 combinations from the posterior distributions of the parameters of models

GM and RM4 across all spatial scales and models. We computed the expected origin-destina-

tion flows for each sample and computed the average and 95% credible interval (CrI) for each.

The simulated flows compare reasonably well to the input data (Fig 2). While both models

seem to predict large flows relatively well (Fig 2, yellow and green pixels), they overestimate

low and medium counts (Fig 2, blue and dark blue pixels). For Kenya, model RM4 predicts

large and medium flows well, but overestimates small flows. The gravity model, GM, repro-

duces very large flows somewhat better, but underestimates medium and low flows. For

Namibia, model GM overestimates very large and very small flows, whereas the radiation

model RM4 does better with large flows, but still somewhat overestimates small ones and

underestimates medium ones. Observed flow counts fall rarely within the 95% CrI of the

Table 1. Number of cells by spatial scale and country. We excluded cells with no population. The administrative

units are reported at level 1 for Kenya and level 2 for Namibia.

Scale Kenya Namibia

Administrative unit 68 90

20 km 1 793 2 472

10 km 6 792 8 348

5 km 26 001 23 126

https://doi.org/10.1371/journal.pcbi.1008588.t001
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simulated flows for each origin-destination administrative unit pair (S1 Table), but they never-

theless give a reasonable approximation of the overall movement patterns.

Comparing the observed distribution of cumulative trip frequency by distance with that

from models GM and RM4 at the best-fitting scales (Fig 3A), we see that the gravity model

overestimates especially short and mid distance trips, whereas the radiation model underesti-

mates mid distance and to a lesser extent also short distance trips.

The proportion of trips per distance follows a power law with exponent 1.91 for Kenya and

0.84 for Namibia (Fig 3B, S2 Table). The value for Kenya is broadly in line with measurements

from other countries, while the exponent for Namibia is decidedly lower [22–26]. This indi-

cates that distance is a stronger deterrent to travel in Kenya than in Namibia. Both models,

RM4 and GM, reproduce the patterns and power law fit well. The power law pattern can also

be recognised if we look at trip frequency by distance for the distribution of trips starting from

a single origin, in this case the locations where the most (Fig 3C, S2 Table) respectively the few-

est (Fig 3D, S2 Table) trips start.

Discussion

In this work, we explored the ability of a range of popular mathematical models of human

mobility to reproduce observed patterns of movement in Kenya and Namibia. A key aim was

to develop methods to fit such mobility models at a higher spatial resolution than the observed

mobility data. Models are applied directly when we fit models at the same spatial scale as the

mobility data, i.e. at administrative unit scale. In order to fit mobility models at a finer scale,

we define models on gridded representations of geographic space at 20km, 10km and 5km

Fig 1. Mean value and 95% credible interval (CrI) of log-likelihood and fitted parameters. Mean value and 95% credible interval (CrI) of log-likelihood and fitted

parameters of the gravity model, GM, and the best-fitting radiation model, RM4, for Kenya and Namibia at varying spatial scales across all 4 MCMC chains.

Parameters shown are the increment on the origin population, θ, the power on the origin population, α, the power on the destination population, β, the distance scale,

γ, the spatial kernel power, ε, and the over-dispersion parameter of the negative binomial distribution, disp. The exact values of the mean and 95% credible interval for

all parameter values, including the proportionality constant κ, are reported in the supplementary information (S1 Text). (A) log-likelihood of GM (blue) and RM4

(red) for Kenya and Namibia, (B) RM4 parameters for Kenya (orange) and Namibia (purple), (C) GM parameters for Kenya (orange) and Namibia (purple).

https://doi.org/10.1371/journal.pcbi.1008588.g001
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scale and we sum over all expected flows between grid squares that are associated with a partic-

ular origin and destination administrative unit pair.

We implemented a gravity model and several versions of the radiation model adapted for

trips between overnight locations [13, 14, 16], since we are mostly interested in applications to

malaria control and elimination. We equipped the gravity model with a power law distance

kernel designed to fit long-distance trips [13]. The main text describes four different radiation

models, more models and their results are described in the supplementary information S1

Text. The simplest radiation models RM1 and RM2 are based on the original parameter-free

formulation given by [27]. Models RM3 and RM4 are based on adaptations put forward by

[28] to better fit trips between overnight locations; RM3 and RM4 introduce an additional

parameter to RM1 and RM2, respectively. Classic radiation models require knowledge of the

proportion of travellers in the population. This proportion is then assumed to be the same for

each origin location. Neither of the datasets we used provided this population-wide datum;

therefore, we estimated this quantity from the data. We implemented the classic approach

assuming a constant proportion of travellers across all origin locations (models RM1 and

RM3), and more sophisticated hypotheses (models RM2 and RM4) assuming e.g. a power law

Fig 2. Simulated origin-destination flows. Origin locations are plotted along the y-axis, destination locations against the x-axis. Each pixel of the plot represents the

average estimated flow across 100 parameter combination samples from the posterior distributions between the respective origin and destination administrative units.

The Kenyan dataset did not report on within-unit trips, and radiation models do not predict within-unit trips. For this reason, the pixels on the diagonal, representing

within-unit flows, have been removed for all models and settings. Top row: plots relative to Kenya; bottom row: plots relative to Namibia. Left column: input flow

data; central column: best-fitting scale of the gravity model GM (5km scale for Kenya, administrative unit level for Namibia); right column: best-fitting scale of

radiation model RM4 (20km for Kenya and administrative unit level for Namibia).

https://doi.org/10.1371/journal.pcbi.1008588.g002
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Fig 3. Trip frequency by distance. Empirical data (black) and simulated data using the gravity model, GM, (blue) and the best-fitting radiation

model, RM4 (red). For Kenya, we use the 5km scale for GM and the 20km scale for RM4. For Namibia, we use the administrative unit level for GM

and RM4. Left column panels relate to Kenya, right column panels to Namibia. (A) Cumulative trip frequency by distance across all origin-

destination pairs. (B) Trip frequency by distance across all origin-destination pairs (points) and power law fits (lines). (C) Trip frequency by

distance restricted to trips originating in the administrative unit where the most trips start (Nairobi Province (now Nairobi County) for Kenya, the

union of Windhoek rural and Windhoek west constituencies of the Khomas region for Namibia) and power law fits (lines). (D) Trip frequency by

distance restricted to trips originating in the administrative unit where the fewest trips start (Moyale District (now part of Marsabit County) for

Kenya, Uuvudhiya Constituency of the Oshana region for Namibia) and power law fits (lines).

https://doi.org/10.1371/journal.pcbi.1008588.g003
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dependence on the origin population. Overall, the gravity model has five parameters, whereas

the radiation models have between one and three parameters. In addition to these, we estimate

the negative binomial dispersion parameter disp for all models.

[14] have also fitted model RM1 to the same Kenyan data. However, the authors con-

strained the proportionality constant, κ, to be between 0 and 1. In this formulation of the

model, κ represents the proportion of the population that travels outside of their administra-

tive unit of residence. Constraining this parameter is correct if we fit data that contains trips

commenced on a specific day, e.g. commuting data recounting the typical work location vis-

ited in the previous week, where each individual has made up to one trip. The Kenyan travel

data has been collected across a year and hence contains many more trips than the population

size of Kenya. Simply allowing κ to be greater than 1 allows for a strikingly better fit, and elimi-

nates much of the model’s shortcomings as described by the authors.

MCMC chains converge well and consistently when started from different initial condi-

tions. Radiation models generally fit better than the gravity model (Fig 1, S1 Text). The differ-

ence in log-likelihood between the gravity model, GM, and the best-fitting radiation model,

RM4, is most pronounced for Namibia, suggesting that the gravity model is less adequate to fit

datasets with a sparse population. The more sophisticated radiation models, RM3 and RM4,

perform better than the gravity model (S1 Text). The simpler radiation models, RM1 and

RM2, fit better than the gravity model for the Kenyan dataset at all scales and for Namibia at

the administrative unit scale. The ability of the radiation models to fit data from heterogeneous

as well as sparse, homogeneous population better than the gravity model, highlights their

greater flexibility compared with the gravity model. This finding is particularly notable given

that even the most sophisticated radiation model we tested has only three parameters com-

pared to the gravity model’s five.

If we look at gridded scales alone, the log-likelihood generally improves as the grid is made

finer with the exception of radiation model RM4 for Kenya (Fig 1). For Kenya, grid scales fit

better than the administrative unit scale, whereas for Namibia the opposite holds true. [13]

similarly notice that gravity models fit better on the coarsest spatial scale they implemented

and speculate this to be due to the level of heterogeneity in population distribution at finer

scales. Since our finer spatial scales are gridded, we hypothesise the difference between the

administrative unit scale and the gridded scales to be due to the way the grids split up the pop-

ulation. Moreover, for Namibia another reason could be that we are fitting the number of days

spent at each destination administrative unit rather than the number of trips, thereby likely

exaggerating the number of long-distance trips in the data.

See supporting information S1 Text for a short guide on how to interpret the parameter val-

ues for the negative binomial distribution and the human mobility models. Estimates for the

dispersion parameter, disp, of the negative binomial distribution are consistently greater than

0 for all datasets and spatial scales (Fig 1, S1 Text). Parameter values are estimated in the range

1.61–2.20, indicating considerable levels of over-dispersion in the datasets. Application of a

Poisson likelihood to such data (i.e. counts with high values) is therefore unlikely to be

appropriate.

Parameter values obtained fitting the gravity model, GM, differ substantially between the

two assessed countries (Fig 1C, S1 Text). For Kenya, the symmetrised model cannot distin-

guish between the power on the origin and destination populations, α and β. However, there is

a clear difference in the estimates for these two values. If we assume α> β as in Fig 1C, then

the estimates of power on the origin population, α, are consistent across spatial scales and are

an indicator of the high travel propensity of individuals from large urban centres. The value of

the power of the destination population, β, on the other hand is well below one, suggesting

that high population locations attract a proportionally lower number of travallers. Should we
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instead assume α< β, then the estimates for α would be below one, indicating that individuals

from lower population density areas have a higher propensity to travel than individuals from

high population density areas. In that case, estimated values for β would be well above one and

be an indicator of the attractiveness of high population density areas as journey destinations.

We chose to impose α> β, but it has to be kept in mind that it is not possible to determine

which estimates truely pertain to α and which to β. The underlying mobility data indicates that

there is a consisten flow of travellers to and from the two major cities of Kenya, Nairobi (popu-

lation of 3.4 million) and Mombasa (population of 1.2 million); however, it is not possible to

distinguish between travelling residents and visiting travellers. Estimates for the distance scale,

γ, are fairly low and question the necessity of the parameter itself, suggesting a pure power law

kernel be used instead. The spatial kernel power, ε, is consistently estimated at approximately

2.3, which broadly agrees with estimates obtained by the authors of the source paper for the

Kenya dataset in subsequent studies [14]. These parameter estimates are lower than the typical

estimates of 3.9-4.5 obtained using UK or US commuting data [13]. At first sight, this seems to

indicate that distance is a bigger deterrent to travel in the US and the UK than in Kenya, even

though the former countries have a vaster transport network. However, this incongruence

might be explained by the fact that the estimates for the US and the UK were obtained by fit-

ting only to work-related trip counts, which might be biasing the data towards journeys with a

shorter average distance.

Gravity model parameter estimates for the source population power, α, obtained for

Namibia are slightly above 1 for the administrative unit scale and close to 1 for the grid scales,

suggesting individual’s origin population density has little or no influence on their propensity

to travel. Estimates for β are consistently around 1, indicating that attractiveness of destina-

tions varies linearly with the size of the destination population. Namibia is very sparsely popu-

lated (less than 3 inhabitants per km2 and a total population of 2.4m) and the capital,

Windhoek, only has a population of 325 000 inhabitants (in 2011). Hence, there are few loca-

tions that are able to attract travellers. The distance scale, γ, is estimated at values too low to

play any role in the gravity model. Hence, also for the Namibian dataset the distance kernel

resembles a pure power law, with the exception of within-cell flows. Estimates for the spatial

kernel power scale, ε, are consistently close to 1. A power close to 1 yields uncommonly large

numbers of long-distance journeys. This could be due to the fact that we are fitting to the num-

ber of days spent at each administrative unit rather than the number of trips made.

Parameter values obtained with the best-fitting radiation model, RM4, also vary between

Kenya and Namibia (Fig 1B, S1 Text). Estimates for the increment on the origin population, θ,

are relatively similar for both countries, at between 221 000 and 288 000. For Namibia, these

estimates seem to be consistent across scales, whereas for Kenya estimates seem to decrease

with decreasing grid spacing. Conversely, parameter estimates for the power on the origin

population, α, show differing trends. Estimates using the Kenyan dataset show an increase

from 1.21 to 1.53 as spatial scale is made finer, whereas estimates for Namibia indicate a

decrease from 1.24 to 1.06. This suggests that for Kenya, individuals from higher population

density areas have a higher propensity to travel, but that this trend is much less pronounced

for the lower population density setting of Namibia.

Parameter estimates for the two models vary substantially between Kenya and Namibia. [13]

and [16] have found, similarly, that parameter estimates for the gravity and radiation model

were not comparable between different countries. Estimates for the dispersion parameter, disp,

of the negative binomial distribution are clear evidence of over-dispersion supporting the use of

negative binomial instead of Poisson likelihood for count data with high values. The spatial ker-

nel power ε is estimated at higher values for Kenya than for Namibia, suggesting that distance

is a bigger deterrent to travel in Kenya than in Namibia. But this seems unlikely, as in both
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countries just under 17% of roads are paved [29, 30]. Moreover, Euclidean distance, like we

used, has been shown to yield better fits than travel time or road distance in Kenya [14]. We

thus hypothesise that this uncommonly large number of long-distance trips produced by the

gravity model for Namibia are again due counting too many long-distance trips in the data.

Comparing heatmaps drawn using observed origin-population flows with heatmaps

obtained from modelled flows show how the models are able to pick up most of the patterns

present in the data (Fig 2). However, it should be noted that all the models we tested have a

poor record of including the observed flow data in the credible intervals of the modelled data

(S1 Table). Models are hence good at estimating the relative importance of travel routes, but

not the actual flow counts.

When comparing the modelled flows with observed flows, we found a good overlap

between the two models (S2 Fig). Both models tend to overestimate low trip counts. [14] con-

firm this finding for the gravity model on Kenya, but they reach the opposite conclusion for

the radiation model whose proportionality parameter, as we discussed, has been needlessly

constrained. For very high trip counts on the top right of the panels, we see that the gravity

model slightly underestimates high trip counts. [27] also observed this phenomenon, albeit

more pronounced, on data from the US; however, [14] produced the best fit for the gravity

model on high trip counts.

The distance profiles produced by the models highlight their major shortcomings (Fig 3).

The gravity model is prone to overestimating the number of short-distance trips, while the

radiation model underestimates these. The opposite holds true for long-distance trips, whose

number the radiation model overestimates, and the gravity model underestimates. [27] draw

similar conclusions about the gravity model missing most long-distance and some medium-

distance trips. [13] note how the gravity model fails to pick up rare long-distance trips that

might play an important role in infectious disease transmission. We cannot reproduce results

seen in [16] who state that radiation models fair better at shorter and gravity models at longer

distances.

The assumption underpinning this analysis, is that large scale human travel is driven by the

same mechanisms as small scale travel. In other words, we are assuming that metrics on popu-

lation distribution are sufficient to describe travel propensity across all spatial scales. A lack of

very fine scale travel data make it impossible to verify this assumption empirically.

Radiation models do not estimate within-administrative unit trips, and the Kenyan dataset

did not provide data on within-unit travel. Hence, we were only able to fit within-administra-

tive unit trips to Namibian data via the gravity model. At the grid scales this meant that, for

most of the implemented models, we did not estimate trips between grid cells belonging to the

same administrative unit.

The growing use of large-scale individual-based models calls for reliable modelling of

human population movement at ever finer scales. Mechanistic mobility models aim to estimate

flows between discrete locations and thereby condensate potentially vast amounts of travel data

in a compact mathematical formula and parameter estimates. This provides a huge advantage

as mathematical formulae are more easily tractable and consume less computational power

when employed in a model of infectious disease transmission. Moreover, if fit to sufficiently

large datasets, mathematical mobility models would be able to avoid overfitting and thereby

reduce the noise in the travel patterns. However, these models have to be fitted to the empirical

data they are trying to approximate. Imperfect data can hugely distort predictions made by

mathematical mobility models and hence need to be analysed more closely. In this research, we

have shown how mobility model parameter estimates are influenced by (1) the scale at which

space is discretised (Fig 1), (2) the population distribution and geographic conformity of a

country (S2 Text), (3) the method by which the movement data has been collected and
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processed (S2 Text), (4) the positioning of the spatial grid (S2 Text), and (5) whether we have

partial or complete knowledge of the movement data for the geography of interest (S2 Text).

The dependence of estimates for the origin population power on spatial scale (Fig 1) sug-

gests that the finest resolution considered here, 5km, may still be too coarse to give reliable

parameter estimates for use in fine-scale, i.e.<1km scale, simulation models of infectious dis-

ease transmission. Thus further research to explore how estimates change as one further

refines the spatial scale down to the 1km level is a priority. However, model fitting at the 1km

scale would encounter prohibitive computational costs using the methods we described in this

chapter; hence, further methodological innovation is needed. A random sampling algorithm

of origin-destination pairs could be employed in order to reduce computational complexity.

We have shown how this could reach satisfying results in the supporting information S2 Text,

but would need to evaluate this method at finer spatial scales.

The dependence of parameter estimates on the geography and population density of a

country can cause important variations in the log-likelihood and parameter estimates of the

gravity and radiation models (S2 Text). Moreover, Kenyan and Namibian estimates remain

incompatible even following efforts to improve the similarity between their spatial population

distribution. This means that parameter estimates computed for a specific country cannot be

transferred to another country, thus effectively preventing the implementation of mobility

models when these cannot be fit to observed mobility data.

The quality and means of extraction of movement data clearly influence parameter esti-

mates and log-likelihood (S2 Text). This makes data quality and consistency across datasets

from different countries a prime concern. Symmetricity of travel flows has the greatest effect

on log-likelihood values and parameter estimates. Since prime sources of movement data are

hard to access, mobility models are often forced to use secondary data that has been extracted

using often very different methods to define trips and trip origins [17, 21]. Further research

into the relationship between the quality of the observed mobility data and parameter esti-

mates is a priority.

Parameter estimates and goodness of fit are mostly unaffected by changes in the positioning

of the spatial grid (S2 Text); however, in some cases they have a noticeable impact. Dividing

spatial scale into regular squares might be convenient for computational purposes, but is a

highly unusual geography on which to observe human movement. The consequences of spatial

grids splitting densely inhabited metropoles or sparsely populated rural lands have to be fur-

ther investigated.

Travel data that is freely available to researchers might at times be patchy, i.e. only detail-

ing trip counts for a subset of possible travel routes (S2 Text). Sampling 15 random locations

from the Kenyan and Namibian dataset achieves satisfying log-likelihood estimates, but the

estimates of the powers on the origin and destination popopulations vary somewhat from

the default estimates. Increasing the sample size to 30 or even 50 locations considerably

improved log-likelihood and parameter estimates. A few of the parameter estimates had

larger credible intervals; however, their means were similar to those yielded by the default

simulations.

Analyses in this project used freely available CDR-derived data that is aggregated to the

administrative unit scale and lacks temporal data altogether. Even though this provides a valu-

able insight into travel at national level, it lacks fine-scale spatial and temporal detail. Hard-to-

access raw CDR data is a much richer source of information. CDR data records time and loca-

tion (at the granularity of the mobile phone tower) of a large number of anonymised subscrib-

ers, and can thus be used to extract information on the spatial range, duration and periodicity

of journeys. Combining CDR data with questionnaires on travel and mobile phone usage

potentially allows to associate CDR-based travel patterns with specific demographic groups for
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targeted public health interventions [28]. Access to fine-scale CDR data would hence greatly

increase our understanding of the spatial and temporal patterns of human movement. At the

same time it will be a priority to develop more sophisticated mobility models that account for

timing and periodicity of travel, and heterogeneity in patterns of travel between individuals

and between population groups.

Past decades have seen a considerable increase in human travel, even in low-income coun-

tries [19]. As a consequence, pandemics spread wider and faster [31], and promising elimina-

tion efforts of widespread endemic diseases are hindered by continuous reimportation from

disease foci [17, 21]. Accurate modelling of human movement is thus a priority in epidemic

modelling. Indeed, including movement data directly into models of disease spread is not

possible where data is patchy or is provided at a coarser scale than the epidemic transmission

model.

Materials and methods

Mobility data

We analysed two CDR-based datasets, one for Kenya [17] and one for Namibia [21], that are

published as population flows between administrative units. Both datasets only record trips

that resulted in overnight stays, since the authors were primarily interested in malaria trans-

mission, which takes place mostly at night through mosquito bites [32].

The Kenyan dataset counts the journeys of almost 15 million subscribers (roughly 32% of

the population at the time of data collection) between 69 districts (administrative unit 1 level,

Fig 4 left) from June 2008 to June 2009. The data does not inform on within-district travel and

lacks directionality: the subscriber’s administrative unit of residence is not known nor

inferred, making it impossible to distinguish between outbound and return journeys. This is

confirmed by inspecting the origin-destination matrix, which is close to symmetric (S3 Fig).

Fig 4. Population density per*1km2. Population counts are plotted on a grey log-scale by spatially aggregating*100 × 100 m level data obtained from WorldPop

[33, 34]. Red dots represent population-weighted centroids for the administrative unit level.

https://doi.org/10.1371/journal.pcbi.1008588.g004
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The Namibian data contains journeys between 107 constituencies (administrative unit 2

level, Fig 4 right) of 1.19 million subscribers (about 54% of the population at the time of data

collection) from October 2010 to September 2011. This data is provided as the proportion of

nights residents of a specific constituency spend in each constituency (including their constitu-

ency of residence). To obtain an integer count of journeys, we multiply these values by the

number of residents in the respective constituency. As a result, we count each night a resident

of a specific constituency spends in a different administrative unit as an outbound journey,

thereby exaggerating the number of journeys made. Administrative units that are not present

in the mobility dataset or have zero ambient population, have not been included in the

analysis.

Population data

We used population density data from LandScan [35] and administrative boundary informa-

tion from GADM [36] to compute the ambient population for the administrative units present

in the mobility datasets (Fig 4), and for each square cell resulting from grids of 20km, 10km

and 5km spacing over each country. For all administrative units and cells, we computed the

population-weighted centroids and the distance (in metres) between all centroids. We associ-

ated each cell with the administrative unit of most of its area. A number of administrative

units for Namibia were not associated with any grid cell at one or multiple grid scales as they

were too small. For consistency, we wanted to fit cells associated with the same list of adminis-

trative units across all spatial scales. Therefore, we merged administrative units that failed to

be associated with any cell in at least one of the grid scales with their closest neighbouring

administrative unit across all grid scales.

Mathematical models of human mobility

Gravity and radiation models are among the most commonly used mathematical models of

human movement. While both models have their origin in physics, they are conceptually dis-

tinct. Gravity models borrow from classical mechanics and adapt Newton’s law of gravitation

to describe population flows as depending on the population of origin and destination loca-

tions, as well as some function of the distance between them [16, 37]. Radiation models are

influenced by the emission-absorption process of electromagnetic radiation: atoms (origin

locations) emit particles (individuals) in all directions; these can be absorbed by other sur-

rounding atoms (destination locations) depending on their energy level (the population within

the same distance from the origin location) [16, 27]. Thus, the radiation model does not explic-

itly employ distance in its equations.

We implemented a gravity model and a range of radiation models adapted for trips between

overnight locations [13, 14, 16, 27]. The main text focuses on results for the gravity model and

four radiation models; a description and results for further radiation model variants can be

found in the supplementary information together with a short guide on how to interpret the

model parameters introduced in the following (S1 Text).

Gravity model. The gravity model we use here describes the expected population flow

between all possible origin and destination locations. The flow, GMij, from location i with pop-

ulation mi to location j with population mj at a distance dij is assumed to be proportional to

ma
i m

b
j

f ðdijÞ
: ð1Þ
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For our implementation of the gravity model, we pick a spatial kernel function, f(dij),
designed to penalise long-distance trips by reducing the probability at which they occur [27].

An offset power law,

f ðdijÞ ¼ 1þ
dij

10g

� �ε

; ð2Þ

represents a common choice [38] and has been shown to fit human mobility flows well at long

distances [16, 22].

Note that the gravity model (1) is a directional model: it describes outflows of individuals

resident in i to j. This is appropriate for Namibia where we define the following model

GMðNÞ
ij :¼ 10k

ma
i m

b
j

1þ
dij
10g

� �ε : ð3Þ

Here, κ, α, β, γ and ε are parameters to be estimated.

Since the Kenyan dataset does not distinguish between outbound and return journeys, the

‘origins’ in that dataset do not necessarily correspond to individuals’ residential administrative

units. To allow for this, we sum journeys from i to j and journeys from j to i in the mobility

dataset and define a symmetrised gravity model

GMðKÞ
ij :¼ 10k� gε

ðma
i m

b
j þma

j m
b
i Þ

1þ
dij
10g

� �ε : ð4Þ

Given that the Kenyan dataset does not inform on within-admin travel, we choose the fac-

tor 10κ − γε to enhance convergence of parameter κ (S4 Fig). Indeed, note that we can rewrite

the non-symmetrised gravity model (3) as

GMðNÞ
ij ¼

10kþgεma
i m

b
j

10gε þ dεij
: ð5Þ

Now, whenever i = j, the distance vanishes and the expression simplifies to

GMðNÞ
ii ¼ 10k � 2 �maþb

i : ð6Þ

Thus, the within-patch flows provide information to infer κ. However, for the Kenyan data-

set, we never compute GMðKÞ
ii because we have no corresponding within administrative unit

travel data to fit it to; thus, for values of γ and ε for which 10gε � dεij (as is the case for our

Kenya estimates), only the expression κ + γε can be inferred, as is seen in the right hand panels

of S4 Fig.

Radiation model. The radiation model proposed by Simini et al. in 2012 [27] does not

explicitly depend on distance but rather the radial distribution of population about the origin

location. In its original formulation the flow from location i with population mi to location j
with population mj is defined as

Ti

mi mj

ðmi þ rij þmjÞ ðmi þ rijÞ
; ð7Þ

where Ti is the number of travellers resident in location i and rij is the population contained in

a ring centred at location i and of radius equal to the distance between i and j (N.B. rij excludes

mi and mj).
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We also examined a variation of the model that downweighted local journeys by artificially

increasing the origin population by an amount θ [16]

Ti

ðmi þ yÞmj

ðmi þ yþ rij þmjÞ ðmi þ yþ rijÞ
: ð8Þ

For the datasets we analyse here, the number of travellers, Ti, per administrative unit is

unknown and has to be estimated from the data thereby introducing further parameters that

have to be estimated. Combining models (7) and (8) with different estimates for Ti, we evalu-

ated the following models (in order of complexity):

RM1ðNÞij :¼
X

ij

kmi

mi mj

ðmi þ rij þmjÞ ðmi þ rijÞ
; ð9Þ

RM2ðNÞij :¼
X

ij

10k ma

i

mi mj

ðmi þ rij þmjÞ ðmi þ rijÞ
; ð10Þ

RM3ðNÞij :¼
X

ij

10k mi

ðmi þ yÞmj

ðmi þ yþ rij þmjÞ ðmi þ yþ rijÞ
; ð11Þ

RM4ðNÞij :¼
X

ij

10k ma

i

ðmi þ yÞmj

ðmi þ yþ rij þmjÞ ðmi þ yþ rijÞ
: ð12Þ

Here, κ, α and θ are parameters to be estimated.

Alternative hypotheses for the radiation model and the estimate for the number of travellers

have been investigated, but fitted less well (see Materials and methods, S1 Text). The above

equations are valid for the directional flows of the Namibian dataset. The implementation of

the Kenyan variant is again symmetrised to match the symmetry seen in the data.

Fitting fine-scale mobility models to aggregated mobility data

The models described above are used directly when we fit at the same spatial resolution as the

mobility data, i.e. at administrative unit level. To fit the mobility models at a finer scale than

the mobility data, we sum over all flows between cells that are associated with a particular ori-

gin and destination administrative unit pair. Taking {ci} as the set of fine scale cells associated

with administrative unit i, the gravity model (3) for Namibia becomes

GMðNÞ
ij :¼

X

ci ;cj

10kma
ci
mb

cj

1þ
dci ;cj
10g

� �ε ; ð13Þ

where mci
and mcj

denote the populations of the fine scale cells ci and cj respectively, and dci;cj

is the distance between fine-scale cells ci and cj. Analogous modifications apply to all other

models.

We fit the parameters of the gravity and radiation models to the observed flows between

administrative units using Latin Hypercube Sampling and Markov Chain Monte Carlo

(MCMC) methods. For each model, we performed Latin Hypercube Sampling to find suitable

candidates to start 4 MCMC chains with. Each MCMC chain ran for 1.3 million iterations. We

computed results only on the converged portion of each chain.
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We assume a negative binomial likelihood function with dispersion parameter disp to

describe the count data of flows between administrative units

LðModel j DataÞ ¼

¼
Y

ij

GðDataij þ 1=dispÞ
Dataij! Gð1=dispÞ

Modelij
Modelij þ 1=disp

 !Dataij
1=disp

Modelij þ 1=disp

 !1=disp

;

ð14Þ

where i and j are administrative units.

The choice of the negative binomial (as compared with a Poisson distribution) allows for

possible over-dispersion in the mobility data. Presence of over-dispersion in the data is indi-

cated by disp> 0. Conversely, if disp = 0, the negative binomial coincides with a Poisson

distribution.

Specifying mobility models at a 5km scale resulted in prohibitive computational costs, forc-

ing us to exclude cells with up to 10 individuals from the model. The computational gain

derived from removing low population cells was considerable for Namibia, but only limited

for Kenya (S1 Fig).

Supporting information

S1 Text. Expanded methods and results. More in-depth description of the models discussed

in the main text (GM and RM1-RM4) together with additional radiation models implemented

as part of this project. Additional tables for parameter interpretation, goodness of fit of all

implemented models, and parameter estimates for all implemented models.

(PDF)

S2 Text. Sensitivity analyses. Description and parameter estimates for a range of sensitivity

analyses. Additional graphs for sensitivity analyses: simulated origin-destination flows and trip

frequency by distance.

(PDF)

S1 Table. Proportion of origin-destination flow counts that fall within the 95% credible

intervals (CrIs) of the estimated flows.

(PDF)

S2 Table. Estimated parameter values of the power law fit in Fig 3 of the main text.

(PDF)

S1 Fig. Distribution of cell population across spatial scales. Top row: cumulative frequency

of cells by their population; bottom row: cumulative proportion of population contained in

cells with a log population size smaller or equal than the values reported on the x-axis. Col-

umns refer to different spatial scales: administrative unit, 20km, 10km and 5km scales. Data

for Kenya is in orange, data for Namibia in purple.

(PDF)

S2 Fig. Empirical vs. modelled flow counts. We plotted the best-fitting scale of the gravity

model, GM, (5km scale for Kenya, administrative unit level for Namibia) and the best-fitting

scale of radiation model, RM4, (20km for Kenya and administrative unit level for Namibia).

Modelled flow counts are computed as the mean across the flows resulting from 100 parameter

combinations sampled from the posterior distributions of the models. The Kenyan dataset did

not report on within-unit trips, and radiation models do not predict within-unit trips. (A)

Kenya, (B) Namibia. Note that since the mobility models for Kenya are symmetric, we plot
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each point twice and therefore they appear to be darker in panel A than in panel B.

(PDF)

S3 Fig. Symmetry of the origin-destination matrices for Kenya (left) and Namibia (right).

Each pixel represent an origin-destination administrative unit pair. Origin locations are plot-

ted along the x-axis, destination locations against the y-axis. Let i and j be an origin and a desti-

nation location, and let fij be the flow from i to j as reported in the empirical data. For each i
and j we compute Fij: = (fij − fji)/max(fij, fji) and plot it. This yields a value between -100 and

100: red and orange pixels (values > 25) indicate that the journeys from i to j where consider-

ably more numerous that the journeys from j to i, dark blue and bluish pixels (values < -25)

indicate that the journeys from j to i where considerably more numerous that the journeys

from i to j, yellow pixels (-25 < values< 25) indicate that the journeys form i to j where about

as numerous as the journeys from j to i demonstrating thus that the flow between the two

administrative units is symmetric. For Kenya the absolute value of values Fij is 11.04 (95%CrI

0.00-42.86), whereas for Namibia the average lies at 45.59 (95%CrI 0.00-100.00).

(PDF)

S4 Fig. Trade-off between parameters κ and γ for the gravity model, GM, for Kenya. Left

column: default model fitted for Kenya (as described in the main text); right column: we

implemented the same model with the exception that the model scaling factor was 10κ. The

10km and 5km grid scales were not fit for the model in the right column.

(PDF)
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