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Integration and segregation of large-scale brain
networks during short-term task automatization
Holger Mohr1, Uta Wolfensteller1, Richard F. Betzel2,3, Bratislav Mišić2,4, Olaf Sporns2,5, Jonas Richiardi6

& Hannes Ruge1

The human brain is organized into large-scale functional networks that can flexibly

reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term

learning processes. However, it has remained unclear how short-term network dynamics

support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data

of a learning sample (N¼ 70) with a control sample (N¼67), we find that increasingly

efficient task processing during short-term practice is associated with a reorganization

of large-scale network interactions. Practice-related efficiency gains are facilitated by

enhanced coupling between the cingulo-opercular network and the dorsal attention network.

Simultaneously, short-term task automatization is accompanied by decreasing activation

of the fronto-parietal network, indicating a release of high-level cognitive control, and a

segregation of the default mode network from task-related networks. These findings

suggest that short-term task automatization is enabled by the brain’s ability to rapidly

reconfigure its large-scale network organization involving complementary integration and

segregation processes.
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T
he ability to adapt behaviour based on past experiences and
future goals is an important characteristic of humans
and other animals. These adaptive processes can be

observed across different timescales, ranging from seconds to
years. Recently, interest has grown in understanding how
especially humans can flexibly and rapidly transform instructed
rules into goal-directed behaviour1–3. This ability to
instantaneously transform abstract information into adequate
behaviour with high fidelity stands in contrast to long-term
learning, where behavioural patterns are repeatedly practiced over
hundreds or thousands of trials to achieve mastery4.

To understand how those adaptive processes are implemented
in the human brain, a novel approach has emerged over the past
years, in which neuroimaging data of the human brain are
modelled as a set of large-scale networks5,6. The general hypothesis
of this approach is that neural responses to a momentary challenge
(for example, stimulus or task) are not only reflected by a change
of neural activity in certain regions of the brain but also by a global
reorganization of connectivity patterns4,7–9.

Applying this approach to rapidly changing task rules,
Cole et al.2 showed that flexible adaptation to these task rules is
associated with variable connectivity patterns between a specific
cognitive control network, the fronto-parietal network (FPN) and
other large-scale networks. Cole et al. also compared novel task
rules with practiced task rules, where practice was performed in 2 h
sessions before scanning, and found stable compositional
representations of task rules in FPN connectivity patterns2.

In contrast, Bassett et al. investigated the effects of long-term
training of motor sequences on the organization of large-scale
brain networks4,7,10. Bassett et al. demonstrated that long-term
learning is associated with enhanced segregation of visual and
motor areas from other cognitive control networks, reflecting
increased autonomy of basal sensory and motor networks.

Short-term transformation of instructed rules into fluent task
processing as examined in the present study is distinctly different
from the non-repetitive, flexible implementation of novel task
rules on the one hand and long-term learning on the other hand.
We all have experienced that a limited amount of novel task
practice can quickly lead to a subjectively easier and more
efficient task performance. Until now, it has remained unclear
how those efficiency gains are achieved by the human brain.
By investigating systematic dynamic changes of large-scale
connectivity patterns, we aimed to understand how short-term
task automatization is implemented in the brain.

More specifically, we were interested in finding out whether
short-term practice of instructed stimulus–response (S–R) rules
would have a measurable effect on large-scale connectivity
patterns, and if so, whether it would be associated with changes
between high-level cognitive control networks or more low-level
visual and motor networks. Adaptation to a certain repetitive task
might be associated with stronger integration and segregation of
brain networks11 in the sense that networks necessary to process
relevant information become increasingly coupled, as shown
before8, and networks that do not contribute to task performance
are segregated from task-relevant networks12.

Motivated by the aforementioned results, we analysed the
functional magnetic resonance imaging (fMRI) data of the
instruction-based visuo-motor learning task13 to see how large-
scale brain networks dynamically change their connectivity
patterns during short-term practice of S–R rules. In this task
(see also Fig. 1), subjects were presented with an instruction screen
for 10 s, where they had to memorize S–R associations for four
visual symbols and two motor responses. After the instruction
period, a sequence of single symbols was presented, and subjects
had to respond to them as instructed before. Each of the symbols
appeared eight times (counting only correct trials), leading to a

practice phase duration of B90 s. Instruction and practice were
repeated 20 times using novel symbols each time to increase
statistical power. Subjects performed the task inside an MRI
scanner (N¼ 70). We were then interested in seeing how the
large-scale brain connectivity pattern during the first third of the
practice phase (in the following termed early practice, B30 s)
differed from the connectivity pattern of the last third of the
practice phase (in the following termed late practice, B30 s, see
also Methods for more details).

Importantly, short-term practice of instructed S–R rules is
conceptually different from reinforcement learning of S–R
associations14,15. In a trial-and-error learning set-up, subjects
start to perform the learning task without prior knowledge about
S–R contingencies, and learning is traditionally measured in terms
of decreasing error rates, typically starting at chance level16–18. In
contrast, instruction of S–R associations before response execution
should induce low initial error rates. Behaviourally, one would then
expect to find a speed-up of response times (RTs) in correct trials
in combination with stable or further decreasing error rates,
indicating an increasingly efficient transformation of stimulus
input into motor output across practice. In addition to behavioural
differences, it has been shown that instruction-based learning and
trial-and-error learning induce dissociable neural activation and
connectivity patterns19,20.

Using this kind of experimental contrast, that is, comparing the
first part of a practice block with the last part of a practice block, one
needs to carefully control for practice-unrelated effects, since it has
been shown before that general, task-independent dynamic effects
can occur during a task block21. In addition, since novel symbols
were used for each of the 20 learning sets, parts of the adaptation
process might reflect increasingly efficient visual processing of the
specific symbols. To control for adaptive processes unrelated to
practicing S–R rules, we acquired a control sample (N¼ 67), where
stimulus material and temporal structure were identical to the
learning task, but practicing S–R associations was prevented. This
was achieved by replacing the task requirements during the practice
phase. Instead of practicing instructed S–R rules, subjects of the
control sample were required to perform a 1-back working memory
task with randomized left/right manual responses to indicate a
1-back match or mismatch. The rationale behind the control task is
discussed in more detail in the Methods.

For network construction, we used a set of network nodes that
have been demonstrated to be representative for the networks
under investigation22,23. Of these originally 264 nodes, 227 nodes
have been assigned to 10 well-established large-scale networks,
comprising low-level input and output networks (visual, auditory
and sensorimotor networks), subcortical nodes, the default mode
network (DMN), ventral and dorsal attention networks (VAN and
DAN), and cognitive control networks (FPN, cingulo-opercular
network (CON), salience network (SAN)), using a network
community detection algorithm2,23. After quality control, 222
nodes were included into connectivity analyses, and connectivity
values for all edges between the 222 nodes were computed and
averaged to obtain mean connectivity values between and within
networks for early and late practice, respectively. The change of
activation and connectivity from early to late practice was
compared between the learning sample and the control sample
to identify effects specific to S–R rule practice.

Based on these large-scale activation and connectivity analyses,
we demonstrate that short-term practice of instructed S–R rules is
associated with a reorganization of large-scale network
interactions. Specifically, we find that task automatization is
facilitated by enhanced coupling between the CON and DAN, and
complemented by decreasing activation within the FPN. In
contrast, the DMN shows increasing activation and segregation
from task-related networks, indicating a shift of resources towards
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task-unrelated processes. These findings support an integrative
view of the brain, suggesting that task-dependent plasticity is not
sufficiently reflected by locally isolated activation changes, but is
instead characterized by global activation and connectivity changes
between and within several large functional networks.

Results
Behavioural results. Behaviourally, we used relative changes of
RTs of correctly performed trials as an indicator for a practice-
related efficiency increase (see also Methods). As expected, a
comparison of relative RT changes between the learning and
control sample revealed that practicing S–R rules led to a
significantly larger relative speed-up of RTs than performing the
1-back task (P¼ 0.00004, t¼ 4.3, df¼ 135, two-sample t-test, see
also Supplementary Fig. 1), with on average 6.4% RT decrease for
the learning task and 3.5% decrease for the control task. Error rate
changes also differed significantly between the learning sample and
the control sample, for details see Supplementary Fig. 1.

Activation changes. In the FPN, activation decreased during the
practice of S–R rules but not during the 1-back task (Bonferroni-
corrected P¼ 5� 10� 9, t¼ � 6.7, df¼ 135, two-sample t-test,
corrected for 10 tests), see also Fig. 2. Moreover, DAN activation
decreased from early to late practice in the learning sample, but
not in the control sample (Bonferroni-corrected P¼ 6� 10� 5,
t¼ � 4.7, df¼ 135). In contrast, for the DMN increasing
activation was observed across practice in both samples, with a
larger increase in the learning sample than in the control sample
(Bonferroni-corrected P¼ 0.013, t¼ 3.3, df¼ 135). Activation in
the CON increased in both samples without a significant
difference between the samples (uncorrected P¼ 0.3, t¼ � 1.0,
df¼ 135). Furthermore, while a significant difference between the
two samples was found for the SAN (Bonferroni-corrected
P¼ 0.0008, t¼ � 4.1, df¼ 135), testing early against late practice
in the learning sample alone did not confirm a practice-related
effect (uncorrected P¼ 0.3, t¼ � 1.0, df¼ 69, one-sample t-test).
Activation in the visual network increased in both samples
without a significant difference between the samples (uncorrected
P¼ 0.6, t¼ 0.5, df¼ 135). The four remaining networks (auditory
and subcortical networks, sensorimotor network, and VAN) did
not show significant differences between the samples; respective
bar plots can be found in Supplementary Fig. 2. In Supplementary
Table 1, test results are reported for all 10 networks, comprising
two-sample and one-sample tests.

Connectivity changes. Connectivity matrices for the 222 nodes,
sorted by networks, reproduced the typical community structure
of high connectivity within networks (squares on the diagonal
in the top row of Fig. 3) and low connectivity between networks
on average (off-diagonal rectangles in the top row of Fig. 3) for
early and late practice in both samples (see also Supplementary
Fig. 3).

Comparing connectivity changes from early to late practice
between the two samples revealed that practicing S–R rules was
associated with a larger increase in connectivity between the CON
and DAN (Bonferroni-corrected P¼ 2� 10� 6, t¼ 5.8, df¼ 135,
two-sample t-test, correction for 55 tests), and between the DAN
and auditory network (Bonferroni-corrected P¼ 0.015, t¼ 3.7,
df¼ 135). Respective bar plots and three-dimensional (3D)
visualizations of brain images are depicted in Fig. 4. A larger
decrease in connectivity in the learning sample than in
the control sample was observed between the DMN and
CON (Bonferroni-corrected P¼ 2� 10� 6, t¼ � 5.8, df¼ 135),
between the DMN and SAN (Bonferroni-corrected P¼ 0.009,
t¼ � 3.9, df¼ 135), between the DMN and auditory network
(Bonferroni-corrected P¼ 0.015, t¼ � 3.7, df¼ 135), and
between the FPN and DAN (Bonferroni-corrected P¼ 0.025,
t¼ � 3.6, df¼ 135). See Fig. 5 for respective bar plots and 3D
visualizations of brain images.

Using the more sensitive false-discovery rate (FDR) correction
for multiple testing further revealed that practicing S–R rules was
associated with increased coupling between the CON and visual
network (FDR-corrected P¼ 0.026, t¼ 3.0, df¼ 135), and
between the CON and SAN (FDR-corrected P¼ 0.023, t¼ 3.0,
df¼ 135). In addition, increasing connectivity within networks
was found for the CON (FDR-corrected P¼ 0.025, t¼ 2.9,
df¼ 135) and SAN (FDR-corrected P¼ 0.028, t¼ 2.8, df¼ 135).
Moreover, larger segregation of the DMN from the visual
network (FDR-corrected P¼ 0.045, t¼ � 2.7, df¼ 135) and
VAN (FDR-corrected P¼ 0.041, t¼ � 2.6, df¼ 135) was
observed for the learning sample than for the control sample.

Testing early against late practice in the learning sample alone
confirmed that the reported effects were indeed practice-related.
See also Supplementary Table 2 for the results on all 55 tests, both
between and within samples. Videos of the 3D visualizations of the
brain images are available online (Supplementary Video Material).

As further elaborated in the Discussion, the segregation of the
DMN from other networks combined with an activation increase
points towards a dissociation of task-relevant processes and
task-unrelated processes, which seem to run increasingly in
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Figure 1 | Design of the experimental tasks. In the learning task, subjects had to practice instructed stimulus–response (S–R) associations. (a) For

instruction, subjects were presented with four symbols simultaneously for 10 s, indicating left/right-hand responses for each symbol. The dashed box was

not presented in the learning task. (b) During the following practice phase, single symbols were presented sequentially and subjects had to respond to each

symbol as instructed before. Equal/unequal signs were not presented in the learning task. This procedure was repeated 20 times featuring a novel stimulus

set each time. As control task, a version of the 1-back task was implemented with stimulus material and temporal structure identical to the learning task.

(a) Again, subjects saw four symbols on a screen, but without right/left-hand labelling. Instead, for the last second, a dashed box highlighted the reference

symbol for the first trial of the following single-trial phase. (b) For the following sequence of trials subjects were asked to perform a 1-back task, that is,

subjects had to decide if the current and preceding symbols were identical or not. Randomly chosen left/right to same/different mappings were indicated

by respective signs presented below the stimulus symbols.
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parallel. While this finding provides interesting insights regarding
the dynamics of the DMN during practice, it might be rather a
by-product of increased efficiency than its original source. Instead,

it seems more plausible that the efficiency increase originates from
enhanced coupling between task-related networks. Hence, in the
following, we focused our further analyses on the connections
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Figure 2 | Mean activations for 6 of the 10 networks for early and late practice and for the learning and control sample respectively. (a–f) Asterisk
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network; FPN, fronto-parietal network; SAN, salience network.
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Figure 4 | Increasing connectivity between or within networks from early to late practice. Bar plots show mean connectivity values between or within

networks for early and late practice in both samples. Asterisks indicate that increases across practice in the learning sample (N¼ 70) were significantly larger

than in the control sample (N¼67), with significance levels (**) for Bonferroni correction Po0.05 and (*) indicating FDR correction Po0.05, using two-sided

two-sample t-tests. Black lines represent 95% confidence intervals. P values and t-values for all 55 between/within-network tests can be found in

Supplementary Table 2. Brain images show edge-wise connectivity changes from early to late practice in the learning sample. Edge colours represent

z-transformed correlation coefficient values. For clarity, edges with negative values are not shown. For 3D visualization, see also online Supplementary Video

Material, videos 1–6. (a,b,d,e) Mean connectivity changes between networks. (c,f) Mean connectivity changes within networks.
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between the CON and DAN, which displayed the largest
practice-related increase in connectivity.

Subdivision of CON and DAN. Both the CON and DAN were
composed of network nodes from several remote regions of the
brain. To investigate whether the average practice-related increase
in functional connectivity between the CON and DAN was driven
by a specific subcluster of network nodes, or, alternatively,
reflected a broadly distributed increase, we divided the CON
and DAN into spatially defined subnetworks. More precisely,
we divided the CON into four subclusters consisting of
anterior insula/frontal operculum, supplementary motor area
(SMA)/dorsal anterior cingulate cortex, midcingulate cortex and
supramarginal gyrus, and the DAN into four subclusters
consisting of precuneus/parietal cortex, temporal lobe, frontal eye
fields and occipital cortex. We then averaged connectivity
values, that is, the change of connectivity from early to late
practice, over all edges connecting pairs of subclusters, and
subtracted respective values of the control sample from the values
of the learning sample to distill the practice-related increase. The
obtained distribution of connectivity change values was found to
be normal (P¼ 0.58, Shapiro–Wilk test), see Supplementary
Fig. 4. This finding shows that the larger connectivity change for
practice compared with control between CON and DAN was not
driven by increasing connectivity between specific sets of regions,
but instead the mean increase reflects a broad increase across
regional subclusters.

Connectivity and RTs. Further investigating the CON–DAN
connections, we examined whether interindividual differences in
connectivity change between the CON and DAN predicted
interindividual differences in RT change in the learning sample.
This was not the case for mean connectivity values between the
two networks (P¼ 0.24, z¼ � 1.2, two-sided test for different
Pearson’s r in the learning sample versus the control sample). We
hypothesized that interindividual differences might have been lost
by averaging connectivity change across edges. Hence, we tested
the connectivity change of all pairwise connections between the
CON and DAN separately on their correlation with RTs.
Indeed, the connection between a precuneus-based (Montreal
Neurological Institute (MNI)¼ 10, � 62, 61) and an SMA-based
(MNI¼ � 16, � 5, 71) node was found to be highly predictive
for RT speed-up in the learning task (Bonferroni-corrected
P¼ 0.008, z¼ 4.1, two-sided test for different Pearson’s r in the
learning task versus the control task, corrected for 154 tests),
depicted in Fig. 6. Importantly, to confirm that this difference in
correlation between the two samples reflected a practice-related
RT speed-up specific to the learning sample, we tested the cor-
relation in the learning sample against zero, which was again
significant (r¼ 0.47, z¼ 4.2, Bonferroni-corrected P¼ 0.004).
In contrast, no significant correlation was found for the
control sample (r¼ � 0.20, z¼ � 1.6, uncorrected P¼ 0.11). For
activation and connectivity results for the two nodes, see
Supplementary Fig. 5.

Discussion
Comparing large-scale connectivity and activation dynamics
between a learning sample and a control sample, we found that
short-term practice of S–R rules led to decreasing activation
within the FPN and DAN, accompanied by enhanced coupling
among several task-related networks, most prominently
between the CON and DAN. Practicing S–R rules was further
associated with increasing activation within the DMN combined
with a segregation of the DMN from several task-related
networks. Moreover, connectivity increase between two nodes

within the SMA (CON) and precuneus (DAN) correlated with
practice-related efficiency increase.

Generally, the idea that practice could be associated with
increased connectivity between task-processing regions has been
discussed before24,25. Recently, Bassett et al. investigated long-term
motor sequence learning in the context of large-scale networks and
found increased autonomy of visual and sensorimotor networks,
accompanied by a practice-related release of large portions of the
frontal and temporal lobe4. In the rapid learning paradigm
presented here, practice was limited to eight repetition levels. The
associated short-term learning processes were characterized by
distinct connectivity changes among high-level cognitive control
networks as well as primary sensory networks. In the next sections,
we will discuss our findings, specifically the FPN activation
decrease and decoupling from the DAN, the connectivity increase
between CON and DAN, possible interactions with the SAN, and
the role of the DMN.

Activation decrease observed during practice is typically
interpreted as increasingly efficient task processing in the
respective region, possibly combined with a reorganization of
processing pathways involving a shift of processing streams to
other regions24. The drop of activation within the FPN in the
learning sample, together with the reduced functional connectivity
between the FPN and DAN, indicate that high-level computations
of correct responses were only necessary at the beginning of the
practice phase. It has been shown before that immediately after the
instruction of S–R rules, the resulting representations of these rules
are being held in working memory26. Hence, at the beginning of
practice, abstract representations about the correct response had to
be retrieved from working memory and transformed into an actual
motor response involving high-level processing13,27. Working
memory-related processes typically recruit the FPN28,29, which
was also observed in the control sample of the current study. In
addition, direct evidence for an implication of the FPN in rule
processing has been presented before, indicating that difficult S–R
rules increase FPN activation, compared with easier rules30.
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Figure 6 | Correlation of connectivity change with response time (RT)

decrease. The plot shows connectivity change between a node of the CON

(within the SMA) and a node of the DAN (within the precuneus) on the x-axis

and percentage of RT decrease on the y-axis. For the learning task, a higher

increase in connectivity predicted a larger decrease in RTs during practice

(Pearson r¼0.47, z¼4.2, Bonferroni-corrected P¼0.004). The difference

between the learning sample (N¼ 70) and the control sample (N¼67) was

also significant (z¼4.1, Bonferroni-corrected P¼0.008). No significant

correlation was found for the control sample (r¼ �0.20, z¼ � 1.6,

uncorrected P¼0.11). Data points represent values of individual subjects. For

activation and connectivity results for the two nodes, see Supplementary Fig. 5.

RT, response time; SMA, supplementary motor area; Prec., precuneus; CON,

cingulo-opercular network; DAN, dorsal attention network.
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Consistent with our results, an activation decrease in parts of the
FPN combined with an activation increase in parts of the DMN
has also been observed for longer practice sessions31. In contrast, in
the control task, online response computation had to be repeatedly
performed in each trial, since the comparison of the current and
preceding symbol and the mapping of equal/unequal to left/right-
hand responses changed from trial to trial. Accordingly, FPN
activation remained stable during the 1-back task. Additional to
the activation decrease, the segregation of the FPN from the DAN
provides further evidence that the FPN disengaged from S–R
transformation during practice. Specifically, as high-level control
was provided by the FPN primarily during the early practice phase,
the connectivity decrease indicates that the DAN became less
dependent on abstract, high-level S–R representations. Instead,
stimulus inputs seemed to be transformed into associated motor
outputs more directly, as the DAN did not only reduce functional
connectivity with the FPN, but also increased connectivity with the
CON, which we will discuss in the following section.

As practice proceeded, retrieval of abstract S–R representations
and general guidance by the FPN was needed to a lesser extent.
Instead, visual inputs were transformed into appropriate motor
responses more directly, supported by increasing functional
coupling between the CON and DAN. The notion that this short-
term task automatization and the associated efficiency increase were
indeed facilitated by a strengthened coupling between the CON and
DAN was supported by the predictive power of connectivity
strength between two specific network nodes within SMA and
precuneus for RT acceleration. In addition, functional connectivity
increased between the CON and the visual network, indicating that
low-level stimulus representations were integrated more directly
into the response selection process during late practice.

While recent studies have begun to characterize task-dependent
modulations of large-scale functional networks8,9,32–36, little is
known about the specific functional relevance of task-dependent
connectivity changes between the CON and DAN. The DAN itself
has been associated with short-term memory of visual features and
also with linking relevant visual stimulus features to responses33,37,38,
that is, functions that are also implied in the instruction-based
learning task. In a carefully controlled design, Rushworth et al.38

showed that rule switching activated the posterior parietal cortex,
indicating that S–R transformation could be processed in this region.
In addition, posterior parietal cortex connectivity has been associated
with faster learning rates39. Together, these findings suggest that the
activation decrease in the DAN reflects an increasingly efficient S–R
transformation in this network.

The CON is mainly known for its tonic activation during task
blocks, and supposed to maintain a stable, across-trial represen-
tation of the task set and to support downstream sensorimotor
processes21,40. Intriguingly, Dosenbach et al.41 proposed that
‘feedback signals received by the CON, rather than causing
immediate adjustments, might perhaps be integrated over many
repetitions in a more protracted iterative fashion’. Corroborating
this hypothesis, practice of S–R transformations led to a more
distinct connectivity profile of the CON, involving strengthened
pathways to the DAN, SAN and visual network, as well as higher
within-network connectivity and better segregation from the
DMN. Concerning the link between precuneus and SMA, which
predicted practice-related RT decrease, a recent MEG study
provided converging evidence for an essential involvement of
this connection in S–R execution42. In this study, it was shown
that Brodmann area 7 (precuneus/parietal cortex) exerts
influence on Brodmann area 6 (SMA/premotor cortex) during
the performance of S–R mappings, supporting the conclusion
that stimulus inputs are first processed within the DAN and
then transformed into appropriate motor responses via the
DAN–CON pathway.

Besides displaying increasing connectivity with the CON, the
DAN also strengthened its coupling with the auditory network.
As no auditory stimuli were presented during the task, this
connectivity increase indicates that repetitive inner speech has
been used to support S–R transformations by assigning verbal
labels to the presented visual stimuli43,44. Supporting this
interpretation, a recent study showed that fronto-parietal
regions disengage during short periods of verbal working
memory maintenance, whereas an area located at the parietal–
temporal boundary displayed stable activation, corresponding
with the location of the nodes of the auditory network45.
Thus, supporting the transformation of visual input into motor
output, verbal representations of S–R associations might have
been integrated into task processing via enhanced coupling of the
DAN with the auditory network.

By automatizing responses during practice, the deactivation of
the FPN allowed for an activation of the antagonistic DMN.
Increasing activation of the DMN did not coincide with increasing
error rates in the learning task, instead errors were slightly
decreasing, in contrast to Eichele et al.46, see also Anticevic
et al.12. This could be explained by an increasing segregation of the
DMN from networks relevant for automatized task-processing,
especially the CON. Possibly due to this segregation, activation in
the DMN did not impair task performance, but instead putatively
task-unrelated cognitive processes might have been instantiated in
parallel to and independent of task-related processes. Consistent
with the present results, a practice-related activation increase in the
DMN after several days of practice was reported by Mason et al.47

Decreasing activation in subregions of the FPN, in combination
with increasing activity in subregions of the DMN, was
also reported by Chein and Schneider31 for longer practice
sessions. Generally, the DMN is not only involved in off-task
activities but can also support task-relevant, internally directed
cognition48,49. However, since there is no obvious need for
internally directed cognition during the instruction-based learning
task, it seems to be more likely that task-irrelevant processes were
instantiated in parallel to task-related processes than an active
involvement of the DMN in task processing.

Several studies have explored the influence of the SAN50 on
activation and connectivity of other brain areas. The majority of
those studies reported a regulatory function for the SAN, and
specifically for the anterior insula51–53. Especially, the SAN seems
to be involved in suppressing DMN activation in tasks that require
externally focused attention54,55. In contrast, Chen et al. found
that parts of the FPN exhibited regulatory influence on DMN
connectivity56. Liang et al. reported increased connectivity between
the SAN and DMN, and the SAN and FPN, for task conditions
with higher cognitive load29. In the present study, connectivity
between the SAN and DMN decreased during practice, and
concurrently DMN activation increased. In connection with the
aforementioned literature, we are tempted to speculate that the
regulatory influence of the SAN on the DMN was relaxed during
practice, resulting in higher DMN activity. In addition, reduced
coupling between the SAN and DMN during late practice could
indicate some form of shielding of the DMN from task-relevant
processes. Following this interpretation, and taking into account
that the SAN is engaged slightly before other control networks51,53,
the strengthened coupling between the SAN and CON might
indicate that the SAN was putting the CON into an alert state
at trial onset, to facilitate response execution when S–R
transformation had been accomplished via the DAN–CON
pathway. Adding to this line of reasoning, both the CON and
SAN have nodes within anterior cingulate/medial superior
prefrontal cortex and the anterior insula, with the SAN being
located anterior to the CON23. The threefold connectivity increase
within the CON and SAN, and between both networks could thus
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be seen as a tendency towards the unification of these anatomically
similar networks during practice.

In the presented study, rapid learning was investigated by an
instruction-based S–R learning task. While the ability to rapidly
learn arbitrary associations between stimuli and responses
constitutes an important component of human cognition, various
other types of learning paradigms have been investigated that
are also highly relevant for a general understanding of adaptivity
in the brain. Specifically, a large body of literature is dedicated
to procedural learning tasks involving more complex motor
responses than used in the current study57. An interesting
question is then to which degree the findings presented here
generalize to those learning paradigms. As numerous studies have
provided evidence for an engagement of the dorsal visual stream
in the visual control of complex motor responses58,59, it is
conceivable that the initial stage of learning in this domain
might also be accompanied by enhanced coupling between the
CON and DAN. In contrast, for longer timescales, it has been
shown that procedural learning induces increased autonomy
among task-related large-scale functional networks4. Given the
dichotomy of short-term integration and long-term segregation
of task-related networks during learning, characterizing this
putative transition of large-scale connectivity will be crucial for a
deeper understanding of adaptivity in the brain.

The findings presented here were based on a comparison
between the learning task and a control task. This control task was
carefully designed taking both theoretical and practical considera-
tions into account. Using a working memory paradigm as a
control task was theoretically motivated by prior studies, showing
that working memory plays a crucial role during the early phase of
instruction-based learning13,26. On the practical side, the control
task was matched to the learning task in terms of stimulus
material, timing of events and response options. However, to
prevent any implicit S–R contingencies in the control task and to
balance the number of left/right responses, the left/right responses
were randomly assigned to 1-back equal/unequal judgements on
each trial. This also led to generally increased RTs and different
error rate changes in comparison to the learning task, which limits
the comparability of the underlying cognitive and neural processes
between the two tasks. From another point of view, however,
behavioural performance changes were expected to be different
between the learning task and the control task as specific
learning-related changes (that is, decreasing RTs in combination
with decreasing error rates) should only occur in the former. The
finding that changes in brain activation and connectivity were
more pronounced in the learning sample than in the control
sample strongly suggests that significant group differences were
primarily driven by features of the learning task. Yet, the specific
design choices of a control task remain to some degree arbitrary,
and these choices might influence the overall results. Further
studies with varying (control) task designs might be useful to
estimate to which degree the presented results generalize across
specific task operationalizations. Follow-up studies could also
investigate potential effects of relevant trait variables (for example,
working memory capacity and various measures of intelligence) on
rapid learning processes. While the large sample sizes employed in
the present study render systematic group differences in relevant
trait variables rather unlikely, no inferences could be made here
about potential modulatory effects as these data were not collected.

A more technical limitation concerns the transformation of
raw fMRI data into interpretable results. Specifically, whole-brain
connectivity analyses depend on the definition of network nodes,
which can be selected using some predefined atlas, or alternatively
the nodes and networks can be determined based on the data
at hand. Although the Power regions have been shown to be
reliable regarding test–retest reliability and homogeneity22,60, the

presented activation and connectivity results depend to a certain
extent on the regions of interest (ROIs), the definition of
networks and further steps of network construction. The
advantage of predefined nodes and networks lies in good
comparability to other studies that have used the same regions
and networks. However, predefined networks do not allow for
testing changes of the network structure, as it was performed for
instance by Bassett et al.4 Yet, as we hypothesized that rapid
learning processes might mainly evoke connectivity changes
between cognitive control networks, we chose a set of regions
that are representative for several established control networks.

Using large-scale networks for connectivity analyses can
provide novel insights into the functional organization of the
brain, based on the integrative view that remote brain regions
collectively engage in task processing. In addition, this approach
mitigates the multiple comparison problem in connectivity
analysis, for instance by reducing the number of tests from
222� 221/2¼ 24,531 edges between 222 regions to 55 between/
within-network-wise tests for 10 networks. However, as a
drawback, local specificity is inherently reduced in this kind of
analysis. Taking for example the increased mean connectivity
between the relatively small CON (14 nodes) and the DAN
(11 nodes), it would be a nontrivial task to determine a significant
subset of the 154 edges that caused this increase without
falling into statistical traps61. Moreover, investigating changes in
large-scale functional connectivity can only shed light on the
global organization of adaptive processes underlying learning
in the brain, which originate from dynamic changes at finer spatial
and temporal scales62.

Our findings contribute to the characterization of large-scale
network dynamics in the human brain by investigating
learning-induced connectivity changes. Previously, task-depen-
dent changes of functional connectivity between these networks
have been shown to be associated with long-term learning
processes across hundreds of task repetitions and also for the
non-repetitive reconfiguration of the current task space. In our
work, we demonstrated that short-term task automatization
during the first few practice trials of instructed novel tasks led to
substantial and systematic changes in functional connectivity
between these large-scale networks. This rapid functional network
reorganization, based on global integration and segregation
processes, together with complementary changes in activation
dynamics, provided a comprehensive characterization of adaptive
processes during short-term task automatization in the human
brain. Generally, the findings support an integrative view of the
brain, where task-dependent plasticity is not solely reflected by
locally specific activation or connectivity changes but instead by
systematic activation and connectivity changes between and
within several large functional networks.

Methods
Samples. Two samples were used in this study, a learning sample (comprising
N¼ 70 subjects) and a control sample (1-back task, N¼ 67). Sample sizes were chosen
to ensure adequate power to detect medium-sized effects, based on a G*Power cal-
culation (effect size d¼ 0.5, type I error a¼ 0.05, power 1�b¼ 0.8), which resulted
in a minimum sample size of 64 subjects for each group63. Data of the learning sample
have been published before with a different focus (outcome-related)64,65. The learning
sample originally consisted of two subgroups with different outcomes contingencies
(N¼ 2� 35), which were collapsed in the current study, since the current study had
its focus on practice-related effects irrespective of outcome contingencies. fMRI data
of 71 subjects were collected and one subject was excluded from further analyses after
quality control due to excessive head movement. As error rates were generally low for
the learning task (all subjectso20% error rate), no subjects of the learning sample
were excluded based on this behavioural measure. The control sample originally
consisted of fMRI data of 73 subjects. Subjects were randomly sampled from the same
population as the learning sample. Six of the 73 subjects showed high error rates
(420%) and were removed from further analyses to improve comparability of the
control sample with the learning sample. The learning sample consisted of 44 females
and 26 males with a mean age of 24.4 (s.d.¼ 4.1) years. The control sample comprised
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42 females and 25 males with a mean age of 23.9 (s.d.¼ 3.3) years. Statistical tests
confirmed that the two samples were balanced with respect to age (two-sample t-test,
P¼ 0.43, t¼ 0.8, df¼ 135) and gender (w2-test, P¼ 0.98). The experimental
protocol was approved by the Ethics Committee of the Technische Unversität
Dresden and conformed to the World Medical Association’s Declaration of Helsinki.
All participants gave written informed consent before taking part in the experiment
and were paid h8 per hour for their participation or received course credit.

Learning task. In the instruction-based learning task, subjects were asked to
practice S–R associations between four symbols and two responses (left/right-hand
index finger button presses). Before practice, S–R associations were explicitly
instructed. To this end, an instruction screen was presented for 10 s showing four
symbols simultaneously, two on the right side and two on the left side, with side
indicating the required response. The instruction screen was followed by a
sequence of single trials (practice phase). In each trial, one of the four symbols was
presented and subjects had to respond as instructed. Symbols were presented in
randomized order. Feedback was given after a response or after maximally 1.5 s. In
case of a correct response, the symbol was highlighted in a colour for 0.5 s, whereas
after an erroneous response (or after 1.5 s elapsed without response), the symbol
was highlighted in grey. In case of an erroneous response (or miss), the trial was
repeated, and both trials were excluded from analysis. Trials were jittered with
randomized 0.8 or 3.5 s inter-trial intervals. From each symbol, eight correctly
performed trials were collected, that is, 32 trials per stimulus set. The whole
procedure (that is, instruction screen and practice phase) was repeated 20 times,
each time using a novel set of symbols.

1-Back task. During task performance, learning effects can potentially occur in
various domains and might also include more general adaptive processes that are not
specific for practicing S–R rules. For instance, subjects may visually adapt to the
specific symbols presented within each task block, or might get used to the general
structure of the task (for example, trial timing, alternating instruction and practice
phases and so on). To control for effects unspecific for practicing S–R rules, it was
necessary to compare the learning task with a control task. This control task was
instantiated in a separate, independent sample. The between-subject design was
chosen to avoid any interference effects potentially associated with a within-subject
design (for example, task-switching costs), and large sample sizes were provided
accordingly.

The control task was designed such that basic features of the task (that is,
stimulus material, motor responses and timing) were identical to the learning task.
Hence, adaptive processes that occurred in these domains in the learning task were
assumed to occur in the control task as well, and subtraction of the control task from
the learning task was assumed to remove these effects of no interest. However, to
serve as a control task for S–R learning, it was crucial to remove any S–R associations
in the control task: if subjects were enabled to perform the control task by exploiting
(hidden) S–R associations, they could potentially activate similar processes as in the
learning task, and in this case, subtraction would remove the effects of interest.

As instructed S–R rules have to be held in working memory initially before
being transformed into more pragmatic S–R associations during practice
(cf. Meiran et al.26), we selected a control task that would, in contrast to the
hypothesized release of working memory in the learning task, require a constantly
high level of engagement of working memory-related processes.

These considerations motivated the choice of a 1-back task with randomized
left/right response mappings as control task. In this 1-back task, subjects were also
presented with 20 stimulus sets, each set consisting of four symbols. However,
while temporal structure (that is, stimulus presentation/response window and
jittering) and stimulus material were identical to the learning task, subject were
instructed to perform a 1-back task during the single-trial phase. In each trial,
subjects had to decide if the current symbol was identical to the preceding symbol
or not. Erroneous responses were indicated but trials were not repeated to avoid
response ambiguities. To remove any potential S–R associations and to balance the
number of left/right responses, response mappings were cued randomly, that is, in
each trial the equal/unequal symbols indicated left/right-hand responses. The 10 s
starting screen did not instruct S–R associations but was still presented to visually
familiarize subjects with the upcoming symbols. During the last second, one of the
four symbols of the instruction screen was marked by a frame to indicate the
preceding symbol to the first trial.

Behavioural analysis. For the analysis of RT and error rate changes induced by
practice, trials were assigned to repetition levels according to the number of a
symbol’s appearance. That is, all first appearances of the four symbols counted as
repetition level 1 trials, all second appearances of the four symbols as repetition
level 2 trails and so on until repetition level 8. We then defined early practice as the
mean of repetition level 1 and 2 trials, and late practice as the mean of repetition
level 7 and 8 trials. For RTs, erroneous trials were excluded and only correctly
performed trials were taken into account. Furthermore, the very first trial of each
practice phase was excluded, since these trials could be influenced by starting costs
or switch costs occurring at the very beginning of practice. The analysis of the
control task was identical to the analysis of the learning task.

While trial-and-error learning studies typically put their focus on error rates, we
suggest RT decrease as the primary behavioural marker for instruction-based
learning. First, we hypothesized that practice goes along with increased efficiency,
and a putative RT speed-up of correctly performed trials would be an appropriate
marker to confirm this hypothesis. Moreover, instruction-based learning was
characterized by a very low error rate with 3.1% error (median) on average during
early practice already, indicating that the instruction was presented successfully.
The minor drop to 1.9% error (median) during late practice could be influenced by
ceiling effects as well as superimposed reinforcement learning occurring due to
feedback in case of erroneous responses, rendering error rates a suboptimal
behavioural marker for efficiency increase.

Since the learning task had generally considerably faster RTs than the control
task (581 ms compared to 839 ms overall mean values), we used relative RT
decreases to compare the two samples. Relative RT decreases were computed as
100� (1�RTlate/RTearly).

RT changes were normally distributed in both samples as assessed with
the Shapiro–Wilk test (P¼ 0.49 and P¼ 0.18 for the learning and control sample,
respectively). Error rate changes deviated from the normal distribution in the
learning sample (P¼ 0.002) but not in the control sample (P¼ 0.063).

fMRI scanning. Functional and structural images of both samples were acquired
on the same Siemens 3 T Trio Scanner equipped with a 16-channel circularly
polarized head coil. A gradient echo planar sequence with repetition time
(TR)¼ 2 s, echo time (TE)¼ 30 ms and flip¼ 80� was used for functional imaging.
Volumes consisted of 26 slices with an in-plane resolution of 4� 4 mm and a
thickness of 5 mm. Presentation 12.0 (Neurobehavioral Systems) software was used
to run the experiment. Structural images were also obtained but were only used for
neuroradiological assessment in the current study.

Preprocessing. Preprocessing of functional data from both samples was
performed with SPM8 running in Matlab 7.12. Preprocessing consisted of slice-
time correction, rigid body movement correction (three translation and three
rotation parameters), normalization of the mean functional image to the SPM MNI
EPI template (resampling to 3� 3� 3 mm resolution) and smoothing with a
Gaussian kernel, full width at half maximum¼ 8 mm.

General linear model (GLM). As in the behavioural analysis, practice trials were
assigned to repetition levels 1 to 8. The linear model consisted of 12 design-related
regressors plus the 6 movement regressors generated by SPM during standard
movement correction. We used only these six movement regressors, since it has
been shown that excessive use of nuisance regressors can remove network structure
from fMRI data66. The 12 design regressors consisted of 8 event-related repetition
level regressors plus 2 regressors for the instruction phase (one event-related and
one with a duration of 10 s). Moreover, erroneous trials and first trials of practice
phases were modelled with two separate regressors. The high-pass filter was set
to a cutoff of 128 s, and the model was estimated with ordinary least squares
(that is, AR(1) off). The model for the control task was the same as the model for
the learning task.

Regions of interest. ROIs were taken from Power et al.23 The Power regions have
been shown to provide higher test–retest reliability for global and local network
properties than the frequently used AAL atlas60. Of the originally 264 ROIs in
Power et al., 227 were assigned to 10 brain networks in Cole et al.2 based on the
originally 13 networks of Power et al. For each of these 227 ROIs, a sphere
(or 3D cross) consisting of seven voxels (each voxel of size 3� 3� 3 mm3) was
defined. For each subject, individual ROIs were included into analysis if at least five
of the seven voxels were inside the SPM whole-brain mask. ROIs were completely
excluded from analysis if o90% of the subjects of the learning sample had values in
there. This procedure led to the exclusion of five ROIs, leaving 222 ROIs for the
analysis, see also Supplementary Table 3.

Moreover, one large ROI (‘PowComp’) was defined by taking the complement
of the union of all 264 ROIs, where this time spheres consisted of 33 voxels. This
procedure ensured that voxels in PowComp were sufficiently far away from the
Power ROIs. The PowComp ROI was used to define a nuisance signal for
connectivity analysis (see below).

Activation analysis. For activation analysis, we defined contrast images for early
and late practice as repetition levels 1þ 2 and repetition levels 7þ 8, respectively.
For each of the 222 ROIs, mean values were extracted from the early and late
contrast images. Then, mean values for the 10 networks were computed by averaging
across all ROIs of each network. For statistical analysis, the change from early to late
practice (that is, late–early) was computed for each network. Finally, two-sided
two-sample t-tests (learning against control) were applied to the late–early network
activation values. The P values were then Bonferroni-corrected for 10 tests.
Moreover, activation changes of the learning sample were tested post hoc against zero
(one-sample t-tests) to check if differences were indeed practice-related, and not only
driven by differences between the learning and the control sample.
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Connectivity analysis. For connectivity analysis, mean residual time series from
the GLM were extracted for each ROI. This procedure was motivated by Cao et al.,
who demonstrated that regressing out average task-related activity can improve
test–retest reliability in fMRI connectivity analyses60.

Moreover, a mean time series from the PowComp ROI was extracted (see
above), and regressed out of the 222 ROIs of interest. Please note that this (relaxed)
‘global signal regression’ step does not induce circularity as described in Murphy
et al.67 since the source voxels of the ‘global signal’ are spatially separated from the
ROIs of interest.

Besides the high-pass filter of the GLM no further filtering was applied,
following the argument of Cole et al. that task-relevant frequency bands in fMRI
have not yet been sufficiently characterized2. Furthermore, in a test–retest study,
Braun et al. found that global signal regression and a broad frequency range
provided highest reliability for various graph theoretical measures68.

Each practice phase comprised B47 functional volumes. The first two volumes
were discarded to account for putative starting costs related to the first trial, in
accordance with behavioural and activation analysis. Then, practice phases were
cut into three equidistant sections with the first and last third representing early
and late practice, respectively. Resulting time series windows of early and late
practice had a length of B30 s, which can be sufficient for robust connectivity
analysis69,70.

As a measure of functional connectivity, the Pearson correlation coefficient for
each pair of ROIs and for each of the 20 practice phases was computed for
early and late practice separately. The correlation coefficients were then Fisher
z-transformed. No threshold was applied to the correlation coefficients, that is,
resulting networks were weighted and signed. This was done in anticipation of
repeated averaging of correlation coefficients across practice phases and sets of
edges, which should be preferably done with normally distributed variables.

The 20 values per subjects for early and late practice were averaged across
practice phases to obtain mean connectivity values for early and late practice,
respectively. Mean connectivity between and within networks was computed as the
average across all edges between/within those networks. The change of connectivity
from early to late practice was computed for each pair of networks and within
networks by computing the difference of late minus early practice. Finally,
two-sided two-sample t-tests were applied to assess the statistical significance of
connectivity change differences between the learning and the control task.
The 55 tests were corrected for multiple testing using Bonferroni correction as well
as the less conservative FDR correction. Moreover, connectivity changes of the
learning sample were tested post hoc against zero (one-sample t-tests) to check if
differences were indeed practice-related, and not driven by potential effects in the
control sample.

Note that, given the above described analysis strategy, connectivity analyses
were orthogonal to activation analyses, since activation analyses were based on the
beta estimates of the GLM, whereas connectivity analyses were based on the
residuals of the GLM.

Glass brain images and videos were generated with the BrainNet toolbox71.
In images/videos with mainly decreasing connectivity, increasing edges were not
shown (DMN–Visual: 486 of 1,674, 29.0%; DMN–CON: 40 of 756, 5.3%;
DMN–SAN: 148 of 972, 15.2%; DMN–VAN: 107 of 486, 22.0%; DMN–Auditory:
67 of 702, 9.5%; FPN–DAN: 64 of 275, 23.3%), and in images/videos with
mainly increasing connectivity, decreasing edges were not shown (CON–Visual: 81
of 434, 18.7%; within CON: 4 of 91, 4.4%; CON–SAN: 28 of 252, 11.1%;
CON–DAN: 9 of 154, 5.8%; within SAN: 13 of 153, 8.5%; DAN–Auditory: 8
of 143, 5.6%).

Subdivision. The CON and DAN were subdivided into smaller clusters of nodes
based on their spatial arrangement. For the CON, four subclusters were defined,
namely, anterior insula/frontal operculum, SMA/dorsal anterior cingulate cortex,
midcingulate cortex and supramarginal gyrus, and for the DAN also four sub-
cluster were defined, namely, precuneus/parietal cortex, temporal lobe, frontal eye
fields and occipital cortex. For coordinates of the ROIs of each cluster see
Supplementary Table 4. Pairwise mean connectivity values between subclusters
were computed as the average across all connections for both samples and then the
difference between the learning sample and the control sample was computed,
leading to 16 values. The distribution of the values was tested for normality with
the Shapiro–Wilk test.

RT correlations with connectivity changes. The change of mean connectivity
between the CON and DAN from early to late practice was correlated across
subjects with relative RT speed-up from early to late practice. The Pearson
correlation coefficient was computed for each sample and transformed into
z-scores; the difference between the two samples was then tested for significance.

The same procedure was applied to connectivity changes of the 14� 11¼ 154
single edges between the CON and DAN. After Bonferroni correction for 154 tests,
one connection was found significantly correlated with RT changes. As a post hoc
test for this specific connection, the correlation coefficient of the learning sample
was tested against zero to confirm a correlation between this connection and
practice-related RT changes. The resulting P value was also corrected for
154 tests.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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