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Abstract

Background: Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate
specific cellular processes. Numerous screens have been completed and in some cases more than one screen has
examined the same cellular process, enabling a direct comparison of the genes identified in separate screens.
Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have
relatively high levels of false positives, false negatives, or both.

Results: We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify
potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes
and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used
protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a
significant number of these genes and show that the protein interaction network is an efficient predictor of new
cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated,
high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate
the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein
complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome
lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/
Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle
transition.

Conclusions: Our results show that false positives and false negatives each play a significant role in the lack of
overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein
network data can be used to minimize false negatives and false positives and to more efficiently identify
comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are
likely to play key roles in regulating the cell cycle or cell survival.

Background
The discovery of RNA interference (RNAi) has revolu-
tionized the way in which loss-of-function studies can
be performed [1]. Activation of RNAi using double-
stranded RNA (dsRNA) that targets a transcript induces
destruction of the transcript and a corresponding reduc-
tion in the expression level of the encoded protein(s).
Genome-wide RNAi libraries that allow for efficient
knockdown of virtually any gene are now available for
studying organisms ranging from C. elegans to human

[2-7]. These libraries have opened the door for large-
scale RNAi-based screens aimed at identifying genes
involved in a wide variety of cellular processes. Com-
pleted screens have successfully identified novel regula-
tors of cell growth and viability [4,7-10], signaling
pathways [11-16], cell morphology and the cytoskeleton
[17-21], pathogen infection [15,22-24] and many other
important cellular processes [25-27]. In some cases, the
same cellular process has been examined by more than
one independent screen. Surprisingly, comparing the
results of similar screens has revealed a low level of
overlap in the genes that are identified [28-33]. This low
level of overlap suggests that these large-scale RNAi
screens result in high numbers of false positives and
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false negatives, though the relative rates at which these
are produced are largely unknown. The unknown rate
of false positives raises questions about how to best
interpret the data and what level of validation is
required. The rate of false negatives on the other hand,
limits the extent of information that can be derived
from a large-scale screen for any biological process.
One potential source of false positives in RNAi-based

screens comes from off-target effects that occur when a
dsRNA contains homology to mRNAs other than the
target mRNA. This can result in reduced expression of
non-target genes and an incorrect association between
the intended target gene and a phenotype. In cultured
cells of the model organism Drosophila where long
(300-800 bp) dsRNAs are routinely used for inducing
RNAi, off-target effects have been shown to be prevalent
[34,35]. Off-target effects have also been shown to be
present in human cells where smaller siRNAs are used
[36-38]. Improvements in the design of RNAi reagents
have helped minimize off-target effects but they have
not eliminated the problem [25,39]. One experimental
approach to identifying potential off-target effects
involves testing multiple dsRNAs for each gene identi-
fied as a hit in a large-scale screen. Multiple dsRNAs
that are homologous to different regions of a gene but
not to each other are unlikely to affect the same non-
target genes. Therefore, if two or more unrelated
dsRNAs targeting the same transcript display the same
phenotype it is likely that this phenotype is the result of
knockdown of the intended target gene and not the
result of an off-target effect. When large-scale, RNAi-
based screens first became possible the importance of
controlling for off-target effects had not been fully
appreciated. As a result, many of the early screens did
not test multiple dsRNAs for each hit and are, therefore,
likely to contain significant numbers of false positives.
In order to confirm the results of these early studies,
the hits that were identified in these screens need to be
re-examined using additional dsRNAs.
One source of false negatives in large-scale RNAi-

based screens is the inefficient knockdown of specific
target genes by some of the RNAi reagents under the
conditions used. The efficiency of knock down can be
directly monitored by quantitative assessment of target
gene mRNA or protein levels, but this is rarely practical
for a genome-wide or other large-scale screen. Another
way to gain increased confidence for a negative result is
to confirm it in an independent study, for example,
using a different RNAi reagent for the gene or different
screening conditions. However, because the number of
genes that are scored as negatives in a large-scale screen
typically far exceeds the number of genes that give a
positive result, it is more difficult to independently con-
firm the set of negatives. It is also likely that the

majority of the negative genes are indeed true negatives
and therefore re-screening the entire set of negatives
would be an inefficient approach. A more efficient
approach for identifying false negative results may be to
re-screen a subset of genes that were first enriched for
potential positives, similar to the approach proposed for
generating comprehensive interactome maps [40]. The
information that is now available in gene and protein
interaction maps has the potential to serve as a guide
for identifying such subsets of genes.
Virtually all cellular processes rely on specific physical

interactions between proteins. As a result, groups of
proteins that regulate a particular cellular process tend
to be closely connected to each other in the protein
interaction network [41-51]. By searching protein inter-
action data for the partners of known regulators of a
process, it is possible to identify new regulators of the
process [41,52-54]. This simple ‘guilt-by-association’
approach has been used to successfully predict the func-
tions of novel proteins, as have more sophisticated ana-
lyses of protein interaction networks [55-58] (reviewed
in [59]). Since these approaches use interaction data to
predict which proteins are involved in a process, they
could also predict which negatives from a large-scale
RNAi screen are most likely to be the false negatives.
Independently confirming or re-screening this group of
genes is a potentially efficient approach for identifying
all of the genes that are involved in a particular cellular
process.
One important cellular process that has been exam-

ined by multiple large-scale RNAi-based screens is the
cell division cycle [30,31,60,61]. In Drosophila, two
screens aimed at identifying cell cycle regulators have
been performed by treating cultured S2 cells with
dsRNAs targeting a large number of different genes and
screening for cell cycle defects by flow cytometry. One
screen used dsRNAs targeting each of the Drosophila
protein kinases (i.e., the kinome) [61] while the other
screen used dsRNA targeting most genes [60]. The
kinome and genome-wide screens identified 41 and
>400 putative cell cycle regulators, respectively. Among
the commonly screened genes, only 24 were identified
in both, while 17 were uniquely identified in the kinome
screen and 19 were uniquely identified in the genome-
wide screen. Neither study confirmed hits with multiple
dsRNAs to guard against off-target effects. In the cur-
rent study, we performed an independent screen exam-
ining cell cycle regulators that were identified in one or
both of the two previous large-scale screens. We also
examined a subset of the negatives from those screens
that we identified as possible false negatives based on
protein interaction data. Our results confirm many of
the originally identified cell cycle phenotypes, identify
previously unknown cell cycle regulators, and establish
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protein interaction map data as an effective tool for
guiding RNAi-based screens and for reducing false posi-
tive and negative results.

Results
A virtual protein-protein interaction screen
The results of two large-scale, RNAi-based screens in
cultured Drosophila cells have identified genes that are
potential regulators of the cell cycle [60,61]. We set out
to provide independent confirmation of the identified
regulators, and to identify potential false negatives from
the previous screens. To identify a subset of the negative
genes that were likely to be enriched for cell cycle regu-
lators, we performed a virtual protein-protein interac-
tion screen to find proteins that interact with known or
suspected cell cycle regulators. The bait proteins that we
used for the virtual screen were proteins identified as
potential cell cycle regulators in the two published
RNAi-based screens as well as all genes annotated with
a Gene Ontology (GO) biological process [62] of “cell
cycle” (see Methods). These 642 bait proteins were used
to query DroID, the Drosophila Interactions Database
[63,64] to identify 5,008 potential protein interaction
partners (Additional File 1). We filtered this data (see

Methods) to obtain a higher confidence set that con-
sisted of 1,843 interaction partners for the 642 bait pro-
teins (Figure 1A and Additional File 1). We
hypothesized that the interaction partners of the baits
would be enriched for cell cycle regulators relative to
random proteins. In support of this, analysis of both the
filtered and unfiltered protein network showed that the
bait proteins interact with each other much more than
would be expected for a random group of proteins (p-
value < 10-82) (Additional File 2A). The high level of
connectivity between bait proteins is also evident from
the size of the maximally connected component subnet-
work for the baits, which was found to be significantly
larger than for equally sized random sets of proteins (p-
value < 10-18) (Additional File 2B). This analysis demon-
strates that within the protein interaction data that we
screened, cell cycle regulators frequently interact with
each other. It also supports the hypothesis that proteins
that interact with the bait proteins that we used in the
virtual screen may be enriched for novel cell cycle regu-
lators that were false negatives in the previous screens.
Figure 1B shows a subset of the interaction map data
involving 6 members of the COP9 signalosome protein
complex that was identified as a regulator of the G1/S

B. A. 

Figure 1 A virtual protein-protein interaction screen. (A) 642 Drosophila putative cell cycle regulators were used as baits to query DroID, the
Drosophila Interactions Database. Baits included hits from the two previous RNAi-based screens for cell cycle regulators along with a set of
additional genes annotated as being involved in the cell cycle. The original interaction map was filtered to remove low confidence interactions
(see Methods). The filtered map includes 473 of the bait proteins (red nodes), and 1843 interactors (blue nodes). 94.8% of the proteins are
connected into one large network. (B) A subnetwork from (A) involving six members of the COP9 signalosome protein complex that was
previously identified as a regulator of the G1/S transition. Signalosome components are shown as triangles while their interaction partners are
circles. Proteins that were used as baits in the virtual protein-protein interaction screen are shown in red while their interaction partners are
shown in blue.
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transition in one of the previous screens [60]. As
expected for a protein complex, there are a number of
interactions that connect COP9 signalosome subunits to
each other in the map. There are also a number of
interactions between COP9 signalosome subunits and
non-complex members. These interactors potentially
function in conjunction with the COP9 signalosome to
regulate cell cycle progression and represent possible
false negatives from previous screens.

A directed RNAi screen for cell cycle regulators in
Drosophila cells
We used a previously described library of dsDNA tem-
plates [3,65] that allowed for the generation of
dsRNAs targeting 596 of the 642 bait protein genes
and 1,612 of the 1,843 interaction partner genes. We
also generated dsRNAs targeting a random set of 550

genes encoding proteins that were not known to inter-
act with the cell cycle baits or their interactors (Meth-
ods). We treated Drosophila S2R+ cells with dsRNAs
targeting a total of 2,758 genes and determined cell
cycle profiles by flow cytometry. Cell cycle profiles
were used to determine the percentage of cells with
G1, G2/M, greater than G2/M, or less than G1 DNA
content (Additional File 3). dsRNAs that induced a
significant increase (>3 standard deviations from the
mean) in the percentage of cells in any of these four
categories were considered as hits. Examples of cell
cycle phenotypes are shown in Figure 2A. Overall, the
screen identified 371 unique genes as hits (Additional
File 4). A global view of the data reveals that the
majority of the strong phenotypes were observed
for dsRNAs targeting the putative cell cycle proteins
that we used as baits or their interaction partners
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Figure 2 Cell cycle defects induced by dsRNA. (A) Examples of cell cycle profile phenotypes. Each panel shows the cell cycle profile for
Drosophila S2R+ cells that have been treated with the indicated dsRNA. The location of cell populations with G1 and G2/M DNA content is
labeled. Cell populations with >G2/M or subG1 DNA content are indicated in panels where there is a significant increase in these cell
populations. The number of dsRNAs that displayed an increase of greater than 3 standard deviations from the mean is shown below each
phenotype (# of hits). (B) dsRNA targeting cell cycle baits and their interactors cause strong cell cycle defects more frequently than dsRNA
targeting other proteins. The percentage of cells in each cell cycle phase following treatment with individual dsRNAs was determined and the
number of standard deviations that this value differs from the mean was plotted. Dot plots show data for dsRNAs targeting baits (red
diamonds), interactors of the baits (blue squares), non-interactors (green triangles), and GFP (black circles). The red horizontal line in each panel
is drawn at 3 standard deviations from the normalized mean of control dsRNA. The genes above the line were considered as hits, or potential
cell cycle regulators.
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(Figure 2B). As expected, targeting of the baits
resulted in the highest rate (26.0%) of cell cycle
defects (Figure 3A). The hit rate for bait interaction
partners was 11.8%, significantly higher than the hit
rate for the set of random non-interactors (4.5%) (Fig-
ure 3A). This was also true for interactors that were
derived just from baits that were hits in previous
screens without regard to their Gene Ontology anno-
tation. For those, 12.3% (160/1303) were hits, suggest-
ing that prior knowledge of the Gene Ontology
annotation of the baits was not necessary to enrich for
hits over random genes. Additionally, genes from the
group of interactors that were hits interacted with a
greater number of baits than did the interactors that
were non-hits (p = < .0001) (Additional File 5). We
also found that the quality of the protein interaction
data affected the hit rate in our RNAi screens. For
example, interactors connected to baits by higher con-
fidence interactions [66] were more likely to be hits
than those connected by low confidence interactions
(Additional File 6). Interestingly, the hit rate for non-
interactors was similar to the hit rate observed in
undirected genome-wide screens [4,60]. These results
show that protein interaction map data can be used to
identify a set of genes that is enriched for regulators
of a cellular process like the cell cycle. Moreover, the
identification of phenotypes for a substantial number
of genes that were negative in previous screens shows
that the interaction map-guided approach can help to
identify putative false negatives from the hits reported
in individual screens (e.g., see Figure 3B).

Validation of Identified Cell Cycle Regulators
Comparison between the results of previous screens and
the current screen revealed a significant overlap in the
genes that were identified as hits (Figure 4A). Of the
375 hits from previous screens that were re-screened in
the current study, 138 or 36.8% were identified as hits
in the current study. However, our screen and the pre-
vious cell cycle RNAi screens each identified substantial
numbers of unique hits. We consider three possible
explanations for this lack of overlap. First, it is possible
that the screens have different levels of sensitivity and
that one screen captured a larger fraction of the true
positives than the other. This seems unlikely given that
each screen (e.g., ours and the genome-wide screen) had
similar numbers of hits (371 vs. 361) among the genes
screened in common (Figure 4A). Second, the lack of
overlap may be due to high but roughly equal rates of
experimental false negatives in each screen. Such false
negatives, for example, could result from inefficient
knock down of gene expression by specific dsRNAs. A
third possibility is that many of the novel hits in each
screen are the result of off-target effects. This possibility
must be given serious consideration since the previous
screens did not control for off-target effects and, in at
least the genome-wide screen, full-length cDNAs were
used to produce dsRNA [60]. dsRNA generated from
full-length cDNAs are more likely to lead to off-target
effects than dsRNA from smaller regions of each tran-
script [35]. We performed GO enrichment analysis [67]
on the hits from each dataset (Additional File 7). As
expected, hits from each dataset were significantly
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Figure 3 The interaction map-guided approach improves hit rate in an RNAi screen and identifies novel cell cycle regulators. (A) Hit
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number of genes tested for that class. (B) COP9 signalosome interaction map from Figure 1B showing genes identified as hits in the current
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enriched for cell cycle regulators. Moreover, the hits in
common between our screen and the previous genome-
wide screen were significantly more enriched for cell
cycle regulators than the unique hits, consistent with
the idea that the overlapping data is enriched for true
positives. However, the hits that were unique to each
screen were also significantly enriched for cell cycle reg-
ulators (p values < 10-4 and <10-16, respectively), indicat-
ing that each screen detected true positives that were
false negatives in the other screen (Additional File 7).
Interestingly, our set of novel hits was more enriched
for cell cycle regulators than the novel hits from the
previous genome-wide screen, possibly because we used
smaller dsRNAs that are less prone to off-target effects.
To confirm the putative novel cell cycle regulators that
we identified and to determine the rate at which they
may be due to off-target effects, we generated validation
dsRNAs for 256 genes. The validation dsRNAs targeted
regions of the transcripts not overlapping or only mini-
mally overlapping (<12 nucleotides) with those targeted
by the dsRNA used in the initial screen. Overall, 155
(60.5%) of the hits from the primary screen were vali-
dated by testing an additional dsRNA (Figure 4B; Addi-
tional File 3; Additional File 4). This validation rate is
similar to that of other validated RNAi-based screens

for regulators of other biological processes in cultured
Drosophila cells [68-70]. The validation rate for hits
identified in both the current screen and a previous
screen was significantly higher than for genes identified
only in the current screen (72.8% versus 50.7%) further
suggesting that genes identified in two, independent
screens are more likely to be true positives than genes
identified in only a single screen. This conclusion is also
supported by a repeat screen in which we re-screened 4
plates of dsRNAs from the original screen a second time
(Additional File 3). Of the 52 hits identified in the initial
screen, 36 were identified again in the repeat screen.
Hits identified in both the initial screen and the repeat
screen were more likely to be confirmed by a validation
dsRNA (24/33 versus 2/7). Combined, these results sug-
gest that one major reason for the low level of overlap
among different RNAi screens that probe the same bio-
logical process is the prevalence of off-target effects,
which can be as high as 40-50% in any given screen.
This is consistent with other recent studies and further
highlights the importance of validating genes identified
in RNAi screens, as previously recommended [34,35,71].
Our results also suggest that false negatives are preva-

lent in individual RNAi screens. Among the validation
dsRNAs that we tested, 142 targeted genes were hits in
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Figure 4 Comparison of genes identified in this study and two previous large-scale RNAi-based screens for cell cycle regulators. (A)
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our initial screen but not in previous screens. 72 (50.7%)
of these validation dsRNAs confirmed the results of the
primary screen (Additional File 3). This finding indicates
that these genes were false negatives in the previous
screens. Combining the complete set of validated genes
from the current study with genes that were identified
both in the current screen and a previous screen
(regardless of validation in current screen) allows us to
define a set of 210 genes that are high confidence regu-
lators of the cell cycle (Additional File 4).

New cell cycle regulators
Among the 155 validated hits from the current study, 46
were neither classified as cell cycle genes (based on
Gene Ontology identifier GO:0007049 [62]) nor were
they hits in one of the previous RNAi-based screens
[60,61]. These genes are therefore novel cell cycle regu-
lators that were identified in the current study. Thirty-
three of the identified genes displayed a subG1 pheno-
type, 11 displayed a G1 phenotype, 1 (zipper) displayed
a greater than G2/M phenotype, and 1 displayed both a
G1 and sub-G1 phenotype (Additional File 4). The most
common ontology associated with the 33 genes that dis-
played a sub-G1 phenotype was mRNA processing (11/
33). This finding suggests that mRNA processing plays a
critical role in maintaining viability in these cells. A
similar dependence on mRNA processing for cell viabi-
lity has been observed in other RNAi-based screens in
Drosophila cells as well as in studies of S. cerevisiae
[72,73], C. elegans [2,74] and human cells [75]. The sin-
gle gene with a greater than G2/M DNA content pheno-
type was the Drosophila non-muscle Myosin II gene
zipper. Zipper has been identified in two previous large-
scale RNAi-based screens for cytokinesis regulators
[65,76] and has an established role in the process of
cytokinesis (reviewed in [77]). Among the 11 novel G1
regulators there were two genes, Rae1 and l(2)dtl,
encoding proteins with WD40 repeat domains [78,79].
Neither gene had been annotated with any GO terms
for molecular function or biological process. A literature
search, however, revealed a previous study that focused
on Rae1 and cell cycle regulation [79]. Interestingly, this
study also identified a G1 phenotype for Rae1 following
RNAi in cultured Drosophila cells [79]. In the case of l
(2)dtl, while the Drosophila gene had not been anno-
tated as a cell cycle regulator, data from both Droso-
phila and human cells suggest that the l(2)dtl protein
(L2DTL) is a targeting subunit of the CUL4/DDB1 ubi-
quitin ligase complex that targets critical cell cycle regu-
lators for degradation [80]. RNAi targeting the human
ortholog has been shown to cause growth arrest and an
increase in both p53 protein and the DNA replication
licensing factor CDT1 [81,82]. Additionally, human l(2)
dtl has been shown to oscillate during the cell cycle

with peak expression occurring at the G1/S transition,
consistent with a role in regulating G1/S [83]. The
remaining genes that displayed a G1 phenotype con-
tained multiple members of three structurally related
protein complexes (see below).

Three related protein complexes regulate the G1/S cell
cycle transition
An examination of genes in the list of 210 high confi-
dence cell cycle regulators that displayed a G1 pheno-
type revealed the presence of multiple members of three
structurally related protein complexes: the eukaryotic
translation initiation factor 3 complex, the COP9 signa-
losome, and the proteasome lid. These three complexes
have been referred to as “the zomes” based on their
related structures. Each complex is composed of protein
subunits that contain a domain named PCI (protea-
some-COP9-eukaryotic initiation factor) and protein
subunits that contain a domain named MPN (Mpr1-
Pad1 N-terminus) [84,85]. We sought to identify
mechanisms that underlie the G1 phenotype observed
following RNAi targeting each of these complexes. Pro-
gression of cells through the G1 phase of the cell cycle
requires activation of the Cyclin dependent kinase 2
(Cdk2) and Cyclin E (CycE) complex [86-92]. Droso-
phila Dacapo (Dap), a member of the p21CIP1/p27KIP1

family of Cdk inhibitors, can block progression from G1
into S phase by specifically inhibiting Cdk2/CycE
[93,94]. To determine if Dap mediates the G1 arrest
induced by RNAi targeting the zomes, cells were treated
with dsRNA targeting members of each zome complex
alone or in combination with dsRNA targeting the Dap
transcript (Figure 5 and Additional File 8). We observed
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Figure 5 Suppression of G1 arrest by simultaneous knockdown
of Dacapo is protein complex-specific. S2R+ cells were treated
with dsRNAs targeting the indicated members of the COP9
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that Dap knockdown completely rescued the G1 arrest
induced by RNAi targeting members of the COP9 signa-
losome, consistent with a similar demonstration by
Bjorklund et al. [60] for CSN1b, CSN2 and CSN5.
Knockdown of Dap also completely rescued the G1
arrest caused by targeting subunits of the proteasome
lid. The COP9 signalosome and proteasome lid com-
plexes both play a role in ubiquitin-mediated proteolysis
of Dap/p21/p27 in human and Drosophila cells [95-97].
RNAi targeting the proteasome lid or COP9 signalo-
some, therefore, likely stabilizes Dap leading to
increased Cdk2 inhibition and delayed progression from
G1 into S phase. Interestingly, dsRNA targeting Dap
transcripts did not have a significant effect on the G1
arrest induced by knocking down members of the eIF3
complex (Figure 5 and Additional File 8). These results
suggest that the G1 arrest induced by knocking down
eIF3 subunits is not mediated by Dap, or not solely by
Dap, and that the underlying mechanism is distinct
from that which mediates the COP9 signalosome and
proteasome lid phenotypes.
There are several lines of evidence that have pre-

viously implicated the eIF3 complex in regulation of the
G1/S transition in other organisms. In the yeast S. cere-
visiae, a cell division cycle mutant, cdc63, that arrests in
G1 encodes a component of the eIF3 complex [98-101]
and is the ortholog of Drosophila eIF3-S9 that was iden-
tified in this study. Temperature sensitive mutants of
TIF34, another yeast eIF3 component, also arrest in G1
at the restrictive temperature [102,103]. The Drosophila
TIF34 ortholog was not screened in this study but was a
negative in the previous genome-wide screen [60]. In
human tissue culture cells, overexpression of 5 different
eIF3 proteins each resulted in an increase in the percen-
tage of cells in S phase and an increased rate of cell pro-
liferation suggesting that the human eIF3 complex also
regulates G1/S and cell cycle progression [104].
Together with our results, these studies indicate an evo-
lutionarily conserved role for the eIF3 protein complex
in regulating the G1/S transition. The mechanism by
which the eIF3 complex regulates the G1/S transition of
the cell cycle however is not known, but appears to be
independent of Dap regulation.

RNAi directed against members of the eIF3 protein
complex does not affect Cyclin E expression but does
affect Cyclin E associated kinase activity
Activation of CycE transcription, increased CycE protein
expression, and the activation of Cdk2 by CycE are all
required for cells to progress from G1 into S phase
[87,105]. eIF3 is a large, multi-subunit complex that has
been shown to play a key role in regulating mRNA
translation and thus gene expression [106]. One possible
mechanism by which eIF3 could be required for G1/S is

that eIF3 may be required for CycE translation. To
explore this possibility, we treated cultured cells with
dsRNA targeting eIF3 complex subunits and determined
the effect that this had on CycE expression levels. As
expected, treating cells with dsRNA targeting CycE tran-
scripts results in a significant reduction in CycE protein
levels (Figure 6A). However, treatment of cells with
dsRNA targeting eIF3 subunits had no significant effect
on CycE protein levels (Figure 6A). This result suggests
that the increase in cells with G1 DNA content follow-
ing RNAi targeting eIF3 subunits is not the result of
reduced expression of CycE.
Activation of Cdk2 during G1 results in phosphoryla-

tion of proteins that mediate entry of cells into S
phase. We examined the possibility that RNAi target-
ing eIF3 subunits could affect Cdk2 expression or acti-
vation of Cdk2/CycE kinase activity. We
immunoprecipitated CycE complexes from cells that
had been treated with dsRNAs targeting eIF3 subunits
and examined their ability to phosphorylate histone
H1, a model Cdk2 substrate. We observed a significant
decrease in CycE-associated kinase activity for com-
plexes purified from cells treated with dsRNA targeting
eIF3 subunits in comparison to cells treated with con-
trol dsRNA (Figure 6B). Surprisingly, simultaneously
targeting Dap rescued CycE-associated kinase activity
in these cells even though it did not rescue their ability
to efficiently progress from G1 into S phase (Figure 6C
and Figure 5). Thus, reduction in CycE-associated
kinase activity is not sufficient for the G1 phenotype
observed following knockdown of eIF3 subunits. These
results suggest that eIF3 is required for a G1 to S rate-
limiting process that is independent of Cdk2/CycE
activation.

Discussion
Large-scale RNAi-based screens have begun to play a
critical role in defining sets of genes that regulate speci-
fic cellular processes [27]. Numerous screens have been
completed and new screens are being published at a
rapid pace. As the data from these screens accumulates,
it becomes increasingly important to understand how to
interpret the results that they report particularly in light
of the fact that similar screens have shown relatively low
levels of overlap. In the current study we re-screened,
using a different RNAi library, the genes that were iden-
tified as hits in two previous screens for cell cycle regu-
lators, and we were able to confirm many of the original
phenotypes. However, our screen also failed to confirm
a significant number of genes from both of the original
screens. These genes must be considered as potential
false positives that may have been originally identified in
the previous screens as a result of off-target effects. We
failed to confirm 62.6% of the phenotypes for genes
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screened in common with the genome-wide study (Fig-
ure 4A). The rate of off-target effects that we observed
in our own screen (39.5%), as defined by phenotypes
generated by the first dsRNA that were not confirmed
with a second unrelated dsRNA (Figure 4b), suggests
that false positives could account for a significant pro-
portion of the unconfirmed phenotypes. Thus, while
other factors could contribute to the lack of overlap
between screens (e.g. differences in RNAi protocol,
knockdown efficiency, cell type), our results suggest that
off-targets are an important factor. Our findings again
highlight the importance of confirming hits from an
initial screen by using multiple dsRNAs. Genes with
phenotypes confirmed in our study can now be consid-
ered as likely true positive cell cycle regulators. These
genes begin to define a complete list of genes that regu-
late the cell cycle in cultured Drosophila cells and they
could be given priority over genes identified only in a
single study when determining what genes are to be
examined further for their specific roles in regulating
cell cycle progression.

In addition to rescreening genes that were hits from
previous screens, we also re-screened a subset of the
genes that were negatives in the previous screens. We
identified the subset of negatives to rescreen by search-
ing the DroID database for protein interaction partners
of putative cell cycle regulators. By screening a group of
these interactors as well as a group of non-interactors
we showed that the rate at which cell cycle phenotypes
were identified was significantly higher for interactors
than for non-interactors. Confirmation of phenotypes by
testing additional dsRNAs indicates that many of these
genes were indeed true positives. This means that they
were false negatives in the previous screens. These
results demonstrate that protein interaction data can be
used to guide an RNAi-based screen to be more efficient
than a random screen. A similar network-guided
approach has been used to predict RNAi knock down
phenotypes in C. elegans [107,108]. Our results indicate
that use of a confidence scoring system to select a
higher confidence protein network can improve the per-
formance of this approach (Additional File 6). Our data

A. 

dsRNA:  GFP       CycE      eIF3-s4    eIF3-s8    eIF3-s9   
Cyclin E 

αα-Tubulin 

B. 

+GFP +Dap 

GFP     eIF3-S8    CSN3    Cdk2 GFP     eIF3-S8    CSN3    Cdk2 

IP Cyclin E 
Kinase Assay 

Cyclin E 
Western Blot 

C. 

IP CycE 
Kinase assay

β-Tubulin 
Western blot 

dsRNA:  GFP    eIF3-s4   eIF3-s8  eIF3-s9  eIF3-s10  

Figure 6 RNAi directed against members of the eIF3 protein complex does not affect Cyclin E expression but does affect Cyclin E-
associated kinase activity. (A) Western blot for Cyclin E expression in whole cell extracts from S2R+ cells treated with the indicated dsRNAs. (B)
Kinase activity on histone H1 of Cyclin E immunoprecipitates from S2R+ cells treated with the indicated dsRNAs. (C) Kinase activity on histone
H1 of Cyclin E immunoprecipitates from S2R+ cells treated with dsRNA targeting the indicated members of the COP9 signalosome, proteasome
lid or eIF3 protein complex in combination with either dsRNA targeting GFP or Dacapo.

Guest et al. BMC Systems Biology 2011, 5:65
http://www.biomedcentral.com/1752-0509/5/65

Page 9 of 16



also support the use of protein interaction data to set
thresholds for distinguishing hits from non-hits in large-
scale RNAi-based screens, as has been previously sug-
gested [109,110]. Interaction network-guided screening
approaches will be particularly important for screens
where an undirected, genome-wide approach is not fea-
sible, such as genome-wide combinatorial RNAi screens
where pairs of genes are targeted simultaneously.
How are we to interpret the results of large-scale

RNAi-based screens in cultured cells? Our data, as well
as data from other studies, show that these screens can
contain relatively high numbers of false positives and
false negatives. Any gene identified as a hit in an initial
screen should be considered a potential false positive
until it has been confirmed by additional dsRNAs or
functional assays. Likewise, genes that are negative in an
initial screen remain potential false negatives and the
probability that a particular negative is actually a false
negative can in part be determined by examining pro-
tein interaction data. In light of the presence of both
false positive and false negative results in RNAi-based
screens, it is not surprising that there is a lack of perfect
overlap between the results reported by similar screens.
Our results show that retesting genes that were positive
in a particular screen can help validate their role in the
biological process being examined. In addition, retesting
genes that were negative in previous screens can lead to
a more comprehensive list of regulators for a particular
process.
Our results can be combined with the results of pre-

vious studies to identify a set of genes that are con-
firmed, high-confidence cell cycle regulators in cultured
Drosophila cells (Additional File 4). Among the G1 reg-
ulators from this list are multiple members of three
related protein complexes that are known as the zomes.
Although knocking down members of zomes complexes
causes a G1 arrest, we showed that the mechanisms
responsible for this arrest differ between zomes. The G1
arrest and reduced CycE-associated kinase activity that
is induced by targeting subunits of the COP9 signalo-
some or the proteasome lid is suppressed by simulta-
neously targeting the Drosophila Cdk2 inhibitor Dap.
This suggests that the COP9 signalosome and protea-
some lid function under normal conditions to destabilize
Dap as has been shown for p27KIP1 in vertebrate cells
[97,111,112]. In cultured Drosophila cells, RNAi target-
ing the signalosome subunit CSN1 results in increased
levels of Dap protein [95] providing further evidence
that the G1 phenotype observed following signalosome
subunit knock down is the result of increased Dap stabi-
lity. Like the other zomes, targeting eIF3 subunits
resulted in G1 arrest. Knock down of eIF3 also reduced
levels of CycE-associated kinase activity, which could be
rescued by targeting Dap. This is consistent with a

possible role for eIF3 in regulating Dap levels, similar to
the way that eIF3 regulates p27KIP1 in human cells.
Reducing expression of human eIF3a causes an increase
in protein levels of p27KIP1, while overexpressing eIF3a
leads to a decrease in p27KIP1 protein levels [113,114].
Surprisingly, while knock down of Dap rescued CycE-
associated kinase activity to normal levels in cells with
eIF3 targeted, it did not overcome the G1 arrest. The
persistence of the G1 phenotype when eIF3 subunits
and Dap are targeted simultaneously indicates that eIF3
knockdown affects G1/S progression through a Cdk2-
independent mechanism. It is possible that in addition
to Dap, eIF3 regulates genes that function downstream
of active Cdk2 in promoting G1/S progression; e.g., eiF3
may regulate genes important for executing initiation of
DNA synthesis. Further support for this hypothesis
comes from RNAi experiments targeting the human
DNA damage response gene TopBP1 [115]. RNAi tar-
geting TopBP1 results in a G1 arrest and activation of
the Cdk2 inhibitors p21CIP1 and p27KIP1. Simultaneously
targeting the Cdk2 inhibitors rescued Cdk2 activity in
these cells but did not affect the G1 phenotype, similar
to what we observed for eIF3. Interestingly, RNAi tar-
geting TopBP1 led to defects in the loading of replica-
tion factors onto DNA demonstrating a mechanism
whereby knockdown of genes that function downstream
of Cdk2 can result in a G1 arrest phenotype that per-
sists in the presence of active Cdk2.

Conclusions
Our results indicate that large-scale RNAi-based screens
contain significant numbers of both false positives and
false negatives. Protein interaction network data can be
used to guide re-screening efforts to generate more
comprehensive and accurate lists of the genes involved
in specific biological processes. In the case of the cell
cycle, protein interaction data helped us efficiently iden-
tify false negatives from previous screens, while re-
screening with secondary dsRNAs validated many genes
as authentic cell cycle regulators. Combining our data
with data from previous screens allowed us to define a
set of high confidence Drosophila cell cycle regulators.
Among the high confidence regulators of the G1/S tran-
sition we showed that eiF3 complexes regulate the cell
cycle by CycE/Cdk2-dependent and independent
mechanisms.

Methods
Virtual protein-protein interaction screen
The bait proteins used in the virtual protein-protein
interaction screen were taken from the published hits
that were identified in two large-scale, RNAi-based
screens for cell cycle regulators in cultured Drosophila
cells [60,61]. Only genes that gave a G1 or G2/M
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phenotype were taken from the Bjorklund et al. [60]
study while all hits were taken from the Bettencourt-
Dias et al. [61] study. In addition, the baits included all
genes with a Gene Ontology that contained the biologi-
cal process term “cell cycle”. These genes were obtained
as a batch download from the Flybase database [116] on
09/26/07. The complete list of 642 baits was used to
search DroID, the Drosophila Interactions Database [63]
using the dynamic graphing tool, IM Browser [117].
Seven datasets of protein-protein interactions (PPI) from
DroID were searched, including data from three large-
scale yeast two-hybrid studies [44,118,119], and pub-
lished data curated by other PPI databases. The remain-
ing three datasets contained interactions predicted for
Drosophila proteins based on experimental interaction
data for S. cerevisiae, C. elegans, and human. The rela-
tively high rate of false positives reported for large-scale
protein interaction map data [120,121] suggests that not
all of the interaction partners that were identified by
querying DroID are true interactors. In some cases false
positives result from so-called sticky proteins that have
many interaction partners in the interaction map [122].
In an effort to reduce the number of false positives, all
bait proteins with >30 interactions had their interaction
partners removed. Any removed interactors that were
identified in more than one independent study were
then added back. Finally, all interaction partners for
Cdk1 and Cdk2 were added back because of the central
role that these proteins play in cell cycle regulation. The
results of this analysis identified the set of proteins that
we referred to as interactors. By using somewhat arbi-
trary criteria for selecting interactions (e.g., interactions
with baits that had <30 interactors, and inclusion of all
Cdk1 and Cdk2 interactors) we effectively included
some low confidence interactions. This enabled us to
test whether high or low confidence interactions are
more useful in the network-guided RNAi screen (Addi-
tional File 6). The set of non-interactors was randomly
selected from genes in DroID that were in the overall
protein interaction map in DroID, but that did not con-
nect with any of the baits or their direct interactors. It
is interesting to note that protein interaction data for
organisms other than Drosophila performed as well as,
or in some cases better than, protein interaction data
that is available for Drosophila proteins (Additional File
6 and Additional File 9). Any screening approach that
takes advantage of protein interaction data should there-
fore consider not just interactions available for a parti-
cular organism, but all available interaction data.

Generating double stranded RNAs
Templates available in the Drosophila RNAi Library
Release 1.0 and 2.0 (Open Biosystems) were used to
generate dsRNA [3,65]. To determine the gene that was

targeted by each template in the library we performed
BLAST analysis of the predicted amplicon sequences
that were provided by the distributor. In some cases,
there was no amplicon information provided. For these
positions in the library, we obtained amplicon informa-
tion from the library developer in order to determine
the targeted gene [3,65]. Templates were PCR amplified
using the library universal primer (5’ TAA TAC GAC
TCA CTA TAG GGA GAC CAC GGG CGG GT 3’) to
generate fresh template. 1.5 μl of fresh template was
used in in vitro transcription (IVT) reactions to generate
dsRNAs targeting baits, interactors, and non-interactors.
Control templates targeting the GFP gene were gener-
ated by amplification of GFP template DNA using a T7-
containing primer pair (5’-GAA TTA ATA CGA CTC
ACT ATA GGG AGA TGC CAT CTT CCT TGA AGT
CA-3’, and 5’-GAA TTA ATA CGA CTC ACT ATA
GGG AGA TGA TGT TAA CGG CCA CAA GTT-3’).
Templates were arrayed into 96-well PCR plates with 1
to 3 GFP templates/plate and 6 μl IVT reactions were
performed using either MegaScript (Ambion) or Ampli-
scribe (Epicentre Biotechnologies) T7 kits according to
the manufacturer’s instructions. dsRNA was purified
from IVT reactions using MultiScreenHTS-96-well filter
plates (Millipore) in conjunction with a Biomek NX MC
Laboratory Automation Workstation. 95 μl of nuclease-
free water was added to each IVT reaction before trans-
fer onto the filter plate. Reactions were passed through
the filter plate by application of vacuum pressure for 35
minutes. dsRNA was eluted from the filter into 110 μl
of nuclease-free water by shaking at 1100 rpm for 10
minutes. Purified dsRNAs were analyzed by spectropho-
tometry and stored at -80°C.

Cell Culture, RNA interference, and Flow Cytometry
Drosophila S2R+ cells were obtained from the Droso-
phila Genomics Resource Center (Indiana University)
and cultured in Schneider’s media (Invitrogen) supple-
mented with 10% Fetal Bovine Serum and 0.1 mg/ml
Gentamicin (GIBCO). For induction of RNAi, cells were
re-suspended in Schneider’s media at a density of 4 ×
105 cells/ml and 75 μl of cell suspension was added per
well to duplicate 96-well cell culture plates that had
been spotted with 5 μl of dsRNA per well. Cells were
incubated for 1.5 hours before addition of 150 μl of
Schneider’s media containing 10% fetal bovine serum
and 0.1 mg/ml gentamicin. After a 6-day incubation
period, media was removed from cells and cellular DNA
was stained by adding Schneider’s media containing 2
μl/ml Vybrant DyeCycle Orange stain (Invitrogen). Cells
were dislodged from the growth surface by pipetting
and incubated at room temperature in the dark for 1
hour. Cell cycle profiles were obtained by analyzing cells
on a FACSArray flow cytometer (BD Biosciences). The
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percentage of cells with G1, G2/M, greater than G2/M
and subG1 DNA content was determined using the BD
FACSArray system software with user-defined gates for
each measured parameter.

Data Analysis
In order to normalize the data across plates, a global
average (g) for each measured parameter was calculated
using all non-GFP well values and a plate average (p)
was calculated for each measured parameter using all
non-GFP well values for each plate. Raw data on each
plate was normalized by multiplying the raw data by the
factor g/p. Normalized averages for each dsRNA were
determined by calculating the average of the normalized
duplicate values. A mean of the normalized values from
wells treated with GFP dsRNA was calculated. This
mean was used to calculate standard deviations from
the mean of normalized values for each non-GFP
dsRNA. A dsRNA was considered a hit (i.e., affecting
cell cycle progression), if the percentage of cells in a
phase was >3 standard deviations from the mean for
that phase. Gene Ontology analysis of hits was done
using the GO term enrichment tool DAVID [67] and
data in the GO database release 2010-10-30 [62].

Validation dsRNAs
For 258 of the genes that scored as hits in the primary
screen, we generated templates for preparing a mini-
mally overlapping (0-11nt) validation dsRNA. Ampli-
con sequences from the Open Biosystems library were
compared with amplicon sequences from the Droso-
phila RNAi Screening Center (DRSC) RNAi library
[25]. If amplicons showed overlap of <12 nucleotides,
primer pairs for generating the DRSC amplicon were
ordered. If no DRSC amplicon with <12 nucleotide
overlap was available, primer pairs for generating a
minimally overlapping amplicon were manually
designed. Templates for generating dsRNA were pre-
pared using the DRSC or manually designed primer
pairs and a 2-step PCR approach. The first step PCR
reaction was performed with primers containing a GC
rich anchor 5’GGGCGGGT3’ and the products of this
reaction were amplified in the second step PCR reac-
tion using the T7-containing universal primer (above).
dsRNA generation, cell treatment, data acquisition and
analysis were all performed as described above for the
primary screen.

Combinatorial RNAi
Drosophila S2R+ cells were re-suspended in Schneider’s
Media at a density of 4 × 105 cells/ml and 75 μl of cell
suspension was added to 96-well cell culture plates that
had been spotted in triplicate with 5 μl of dsRNA tar-
geting individual zomes subunits and 5 μl of dsRNA

targeting GFP or Dacapo. Cellular DNA was stained and
flow cytometry was performed as described above.

Western Blot
Drosophila S2R+ cells were re-suspended in Schneider’s
media at a density of 6 × 106 cells/ml and 1.5 ml of cell
suspension was added to 25 cm2 cell culture flasks. 20
μg of dsRNA was added to cells and they were incu-
bated at 25°C for 1.5 hours before addition of 3 ml
Schneider’s media containing 10% FBS and 0.1 mg/ml
gentamicin. Following a 6-day incubation, cells were
resuspended in 1× RIPA lysis buffer (Cell Signaling) and
placed on ice for 30 minutes. Cells were further dis-
rupted by 10 needle strokes through a 21-gauge needle.
Clarified cell lysates were collected, run on SDS-PAGE,
then immunoblotted using anti-Cyclin E antibody
1:1000 (Santa Cruz SC-33748), anti-beta-tubulin 1:5000
(E7 antibody) or anti-alpha-tubulin 1:10000 (Sigma B-5-
1-2).

Immunoprecipitation and Kinase Assays
Drosophila S2R+ cells were re-suspended in Schneider’s
media at a density of 2.3 × 106 cells/ml and 1.5 ml of
cell suspension was added to 25 cm2 cell culture flasks.
20 μg of dsRNA was added to cells and they were incu-
bated at 25°C for 1.5 hours before addition of 3 ml
Schneider’s media containing 10% FBS and 0.1 mg/ml
gentamicin. Following a 6-day incubation, cells were dis-
lodged from the growth surface and resuspended in lysis
buffer (0.2% NP-40, 200 mM Tris-HCl, 200 mM NaCl,
100 mM Na2EDTA, 20 mM EGTA, 200 mM NaF,
Na3VO4, 100 mM glycerol phosphate, 40 mM PMSF, 1×
Protease Inhibitor Cocktail [123]) and incubated on ice
for 30 minutes. Clarified lysates were collected and
stored at -80°C. For immunoprecipitation, 10 μl of anti-
Cyclin E antibody (Santa Cruz sc-33748) was added to
400 μg of protein extract and incubated 30 minutes at
room temperature with agitation. 20 μl of Protein A-
agarose (Santa Cruz sc-2001) was added to immunopre-
cipitations and tubes were placed at 4°C with agitation
overnight. Immunoprecipitations were pelleted and
washed twice with kinase assay buffer (10 mM MgCl2,
10 mM DTT, 50 mM Hepes pH7.5). After the second
wash, pellets were resuspended in 13 μl kinase assay
buffer. To initiate the kinase assay reaction, 0.2 μg of
histone H1 in kinase assay buffer and 5 μl of [g32P]-ATP
(1.0 μCi/μl) was added. Kinase reactions were incubated
30 minutes at room temperature before being termi-
nated by the addition of gel loading buffer.

Additional material

Additional file 1: Baits and their interaction partners from DroID.
This file contains information for the genes that were used as baits in
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our virtual protein interaction screen as well as a list of the interactions
that were discovered by querying DroID. Both the unfiltered and filtered
sets of interactions are shown.

Additional file 2: Baits are more significantly connected to each
other in protein-protein interaction data than are random sets of
proteins. (A) Number of protein-protein interactions between the
proteins that were used as baits for the virtual protein-protein interaction
screen (red dot) as compared to random groups of proteins containing
the same number of nodes. A PPI network was generated for each of
1000 random groups of proteins (see below) by searching DroID for
interactions. The number of within-group interactions was counted and
plotted for each network. (B) Size of the largest connected subnetwork
component for the proteins used as baits (red dot) as compared to
random groups of proteins containing the same number of nodes. As in
(A), an interaction network was generated for each of 1000 random
groups of proteins (see below). The largest connected subnetwork
component for each network is the number of nodes in the largest
subnetwork of nodes that are connected either directly or indirectly in
each network. For both A and B the random groups of proteins were
selected to have the same distribution of interactions/protein (degree) as
the baits. To do this we counted the number of baits with degrees in
four ranges and found that 374 baits had degrees from 1-49, 99 baits
had degrees from 50-99, 75 baits had degrees from 100-199, and 37
baits had degrees from 200-982. Each random group of proteins was
selected by randomly sampling from all proteins in the interaction data
the same number of nodes from each of the four degree ranges; e.g.,
374 with degrees from 1-49, 99 with degrees from 50-99, and so on.
1000 such random groups were independently sample for each figure A
and B.

Additional file 3: Data table for the initial screen, validation screen
and repeat screen. Raw and normalized data and gene information for
each amplicon used in the initial screen, validation screen, and repeat
screen.

Additional file 4: Initial screen hits, validation screen hits, and high
confidence regulators. Gene information for the initial screen hits, the
validated hits, and the high confidence regulators.

Additional file 5: Genes that displayed a phenotype are more
highly connected to the baits than are genes that did not display a
phenotype. The number of interactor-bait interactions for each protein
classified as an interactor in the unfiltered interaction data. The graph
shows a comparison between the interactors that displayed a phenotype
in the initial screen (hits) versus those that did not (non-hits). The box
plots show median values (horizontal line) and 25th and 75th percentiles
in the box below and above the line, respectively, while the whiskers
show the 91st and 9th percentile.

Additional file 6: Performance of protein interaction data sets in
guiding discovery of novel cell cycle regulators. The chart shows the
percentage of interactions between a bait and an interactor where the
interactor was a validated hit from the screen. The percentage is based
on all bait-interactor interactions from each indicated data set (dark grey)
or only high confidence bait-interactor interactions (light grey). The high
confidence interactions are those with confidence scores >0.5 as
determined in [66]. All datasets are from DroID. The “Drosophila” dataset
includes only experimentally measured protein-protein interactions (PPI).
Other datasets (S. cerevisiae, C. elegans, and human) are predicted PPI
based on experimental detection of interactions with orthologous
proteins from the indicated organisms.

Additional file 7: Cell cycle gene enrichment in the RNAi screens.
The chart shows the percentage of the genes from each data set that
are annotated with a Gene Ontology [62] biological process of cell cycle
(GO: 0007049). The level of enrichment for the cell cycle term, relative to
all Drosophila genes, was determined by the GO term enrichment tool,
DAVID [67] located at http://david.abcc.ncifcrf.gov/home.jsp. p-values are
enrichment scores calculated by DAVID with a modified Fisher’s exact
test. q-values are p-values corrected for multiple testing using the false
discovery rate (FDR) method [67].

Additional file 8: Suppression of G1 arrest by simultaneous
knockdown of Dacapo is protein complex-specific. S2R+ cells were

treated with dsRNAs targeting the indicated members of the COP9
signalosome or eIF3 protein complex (A), or the proteasome lid complex
(B) in combination with either dsRNA targeting GFP (light grey) or
Dacapo (dark grey). The percentage of cells with G1 DNA content was
determined by flow cytometry.

Additional file 9: High confidence protein interaction data contains
a higher percentage of bait-bait interactions. The chart shows the
percentage of bait-bait interactions from each of the indicated protein
interaction data sets (dark grey) or only the high confidence data from
each indicated data set (light grey). The high confidence interactions are
those with confidence scores >0.5 as determined in [66].
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