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Serum exosomal microRNA pathway activation in
placenta accreta spectrum: pathophysiology and
detection

Jessian L. Munoz, MD, PhD, MPH; Brett D. Einerson, MD; Robert M. Silver, MD; Sureshkumar Mulampurath, PhD;
Lauren S. Sherman, PhD; Pranela Rameshwar, PhD; Egle Bytautiene Prewit, PhD; Patrick S. Ramsey, MD, MSPH
BACKGROUND: Placenta accreta spectrum disorders are a complex range of placental pathologies that are associated with significant
maternal morbidity and mortality. A diagnosis of placenta accreta spectrum relies on ultrasonographic findings with modest positive predictive
value. Exosomal microRNAs are small RNA molecules that reflect the cellular processes of the origin tissues.
OBJECTIVE: We aimed to explore exosomal microRNA expression to understand placenta accreta spectrum pathology and clinical use for
placenta accreta spectrum detection.
STUDY DESIGN: This study was a biomarker analysis of prospectively collected samples at 2 academic institutions from 2011 to 2022.
Plasma specimens were collected from patients with suspected placenta accreta spectrum, placenta previa, or repeat cesarean deliveries. Exo-
somes were quantified and characterized by nanoparticle tracking analysis and western blotting. MicroRNA were assessed by polymerase chain
reaction array and targeted single quantification. MicroRNA pathway analysis was performed using the Ingenuity Pathway Analyses software. Pla-
cental biopsies were taken from all groups and analyzed by polymerase chain reaction and whole cell enzyme-linked immunosorbent assay.
Receiver operating characteristic curve univariate analysis was performed for the use of microRNA in the prediction of placenta accreta spectrum.
Clinically relevant outcomes were collected from abstracted medical records.
RESULTS: Plasma specimens were analyzed from a total of 120 subjects (60 placenta accreta spectrum, 30 placenta previa, and 30 control).
Isolated plasma exosomes had a mean size of 71.5 nm and were 10 times greater in placenta accreta spectrum specimens (20 vs 2 particles/
frame). Protein expression of exosomes was positive for intracellular adhesion molecule 1, flotilin, annexin, and CD9. MicroRNA analysis showed
increased detection of 3 microRNAs (mir-92, -103, and -192) in patients with placenta accreta spectrum. Pathway interaction assessment
revealed differential regulation of p53 signaling in placenta accreta spectrum and of erythroblastic oncogene B2 or human epidermal growth fac-
tor 2 in control specimens. These findings were subsequently confirmed in placental protein analysis. Placental microRNA paralleled plasma exo-
somal microRNA expression. Biomarker assessment of placenta accreta spectrum signature microRNA had an area under the receiver operating
characteristic curve of 0.81 (P<.001; 95% confidence interval, 0.73−0.89) with a sensitivity and specificity of 89.2% and 80%, respectively.
CONCLUSION: In this large cohort, plasma exosomal microRNA assessment revealed differentially expressed pathways in placenta accreta
spectrum, and these microRNAs are potential biomarkers for the detection of placenta accreta spectrum.
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Introduction
Placenta accreta spectrum (PAS) is a
complex continuum of placental disor-
ders that are characterized by uterine
wall disruption by hypervascular pla-
cental tissue, and this leads to
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including uterine-preserving surgery,
uterine artery embolization, aortic com-
pression, balloons, and radical hysterec-
tomy, have been reported.4−7

Implementation and the use of multi-
disciplinary teams for the management
t required because no personal information or
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Why was this study conducted?
Placenta accreta spectrum (PAS) disorders are associated with significant mor-
bidity, and preoperative detection is currently dependent on ultrasonography
because effective biomarkers have not been identified.

Key findings
Exosomal microRNA from the plasma of patients with PAS enables the identifi-
cation of underlying pathology and provides a greater understanding of PAS
molecular biology.

What does this add to what is known?
Identification of PAS biomarkers remains essential for optimal patient outcomes;
this study shows feasibility and efficacy of exosomal microRNA as a potential
PAS biomarker.

Original Research ajog.org
of PAS has been shown to reduce the
associated morbidity.8−11 The greatest
challenge in referral and the concentra-
tion of PAS cases remains accurate
antenatal detection.12−14 Current char-
acterization of PAS relies on the combi-
nation of historic risk factors (previous
uterine surgery) and ultrasonography
findings (placenta previa, lacunae, and
hypervascularity among others).15,16

This approach has led to a PAS detec-
tion rate varying from 50% to 80%
depending on the center and clinical
suspicion. Although objective PAS
detection through the use of biomarkers
would be ideal, this remains elusive at
this time. Several biomarkers have been
proposed, but none are currently in
clinical use.17,18

MicroRNAs (miRs) are small (18−22
base pairs) oligonucleotides that regu-
late protein synthesis. MiRs bind to the
3ʹ or 5 ʹ untranslated regions (UTR) of
target messenger RNA (mRNA), caus-
ing suppression or degradation.19 This
process leads to a typical dyssynchro-
nous molecular signature of RNA tran-
scription with protein degradation.20

MiRs regulate key cellular processes,
such as differentiation, malignant trans-
formation, and metastasis, through this
mechanism.21−23 In cases of PAS, sev-
eral miRs play a role in pathogenesis,
including miR-34a, -125a, -193a, and
-518b.24−27 However, miR data for PAS
are limited. Chen et al28 have shown
potential benefit in using a 4 miR PAS
signature in a small cohort of patients
with placenta increta or percreta.18 The
2 AJOG Global Reports February 2024
overall stability of plasma miRs remains
a concern given the small size, circula-
tory RNase susceptibility, and impact of
collection mechanisms.29

Exosomes are biologic, nano-sized
vesicles (<100 nm) that allow effective
transportation of biologic material
between tissues and regulated cellular
communication.30,31 Exosomes are endo-
somal in origin and may contain miR,
DNA, bioactive lipids, and proteins. Once
secreted by a cell of origin, exosomes
may travel to target tissues through bodily
fluids including the blood, urine, and
lymph.32 This mechanism of action ena-
bles the use of exosomes and their cargo
for biomarker detection and to better
understand the tissue of origin through
indirect assessment.

Our primary objective was to uncover
PAS exosomal miR signatures for both
clinical applicability and to better
understand PAS pathophysiology dur-
ing pregnancy without tissue disrup-
tion. Optimization of antenatal PAS
detection remains key to enable
resource allocation and intervention
planning in these complex cases.
Materials and Methods
Patient identification and cohort
selection
Patients were enrolled in prospective
cohorts at 2 tertiary institutions (Uni-
versity of Texas Health San Antonio
and University of Utah Health) between
January 2017 and December 2021. Insti-
tutional review board (IRB) approval
was obtained from both institutions
before obtaining written patient consent
for data and biospecimen collection.
The eligibility criteria were maternal
age >18 years with a viable singleton
pregnancy and either risk factors or
antenatal suspicion for PAS based on
ultrasonography or magnetic resonance
imaging. Final patient inclusion was
dependent on the confirmation of the
absence (control groups) or presence of
PAS pathology by a board-certified
perinatal pathologist. Exclusion criteria
were the following: fetal death, gesta-
tional age <20 weeks, and multifetal
gestation.

Exosome isolation and
characterization
Maternal blood was collected in laven-
der top collection tubes (10 mL) and
centrifuged at 3000 g for 5 minutes to
achieve plasma separation. The plasma
supernatant was then collected and sub-
sequently stored at �80°C until planned
analysis. Exosomes were isolated using
the Total Exosome Isolation Kit
(Thermo Fisher Scientific, Waltham,
MA) per manufacturer’s protocol. The
recovered particle size was verified by
nanoparticle tracking analysis (NTA)
using a NanoSight NS300 instrument
(Amesbury, United Kingdom). Data
were analyzed with the NTA software
(NanoSight version 2.3) using dilutions
with deionized water. A fraction of iso-
lated exosomes was dissolved in T-PER
Tissue Protein Extraction Reagent
(Thermo Fisher Scientific, Waltham,
MA) and total proteins were quantified
by colorimetric assay (Biorad, Hercules,
CA). Western blot was performed for
protein analysis as described below.

Western blot
Protein extracts (10 mg) were analyzed
by western blot on 12% sodium dodecyl-
sulfate polyacrylamide gels (Bio-Rad,
Hercules, CA). Proteins were transferred
onto polyvinylidene fluoride membranes
(Perkin Elmer, Boston, MA). The mem-
branes were incubated overnight with
primary antibodies at a final dilution of
1/1000. Primary antibodies were detected
during a 2-hour incubation period with
horse radish peroxidase (HRP)−conju-
gated immunoglobulin G at 1/2000 final
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dilution. HRP activity was detected by
chemiluminescence using SuperSignal
West Femto Maximum Sensitivity Sub-
strate (Thermo Scientific, Waltham,
MA). Membranes were stripped with
Restore Stripping Buffer (Thermo Sci-
entific, Waltham, MA) before being
reprobed with subsequent antibodies.
Primary and secondary antibodies were
obtained from the Exosome Marker
Antibody Kit (Cell Signaling Technol-
ogy, Danvers, MA).

MicroRNA isolation and quantitative
polymerase chain reaction
Exosomal miR was isolated using Tri-
zol reagent (Thermo Scientific, Wal-
tham, MA). Then, global miR
detection was performed using the
OncoMir microRNA quantitative poly-
merase chain reaction (qPCR) Array
(SBI, Mountain View, CA) on a repre-
sentative cohort of 10 patients with
and without PAS. In addition, placen-
tal miR was isolated in similar fashion
and assessed by qPCR using Taqman
microRNA reverse transcriptase and
Taqman microRNA assay. Because
nuclear U6 internal control would not
be detected in exosomes, we selected
the miRs with absolute changes
between PAS and control samples. In
this regard, the selected miRs were
undetectable in control groups and
detectable in cases with PAS. The rela-
tive expression was calculated using
the 2(-Delta Delta C(T)) or reported as
CT when appropriate.

Real-time polymerase chain
reaction
RNA was extracted with Trizol reagent
(Invitrogen). Reverse transcription of
200 ng of complementary DNA
(cDNA) was performed using the
High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems,
Waltham, MA) in accordance with the
manufacturer’s recommendation.
Real-time PCR was performed on a
7300 Real-Time PCR System (Applied
Biosystems, Waltham, MA) as follows:
an initial incubation of 50°C for 2
minutes, followed by 95°C for 10
minutes. After this, the cycling
conditions were as follows: 95°C for 15
seconds and 60°C for 60 seconds
repeated for 40 cycles. The primer
sequences that were used are presented
in Supplemental File 1. Primers were
purchased from Sigma (St. Louis, MO).
The relative expression was calculated
using the 2(-Delta Delta C(T)).

MicroRNA bioinformatic analysis
Ingenuity Pathway Analysis (IPA)
(QIAGEN) was used to evaluate differ-
entially expressed gene pathways (Fold
change =1.5) to determine functional
significance and upstream regulators of
the genes of interest. STRING analysis
was performed on differentially
expressed genes to determine protein
product interactions.

Enzyme-linked
immunofluorescence assay
Whole tissue human epidermal growth
factor 2 (HER2) and p53 were quanti-
fied using human HER2/p53 ELISA
Kits (Thermo Scientific, Waltham, MA).
All assays were performed according to
the manufacturer’s specific instructions.
The unknown HER2/p53 concentration
was calculated from a standard curve
composed of serial dilutions of known
sample concentrations, measured at an
optical density of 450 nm. The back-
ground was subtracted from the data
obtained at 550 nm. The standard
curves were calculated using a linear
regression algorithm to provide the best
standard curve fit.

Statistical analysis
Normal distribution was determined
using the Shapiro-Wilk test based on a
P value threshold of >.05. Pearson’s
chi-square tests, Fisher’s exact tests,
Mann Whitney U tests, and t tests
were applied when appropriate. Cate-
gorical factors were summarized using
frequencies and percentages, whereas
continuous measurement summaries
used means§standard deviation (SD)
or median and interquartile range as
appropriate. P values <.05 were con-
sidered significant for 2-tailed analyses.
Receiver operating characteristic
(ROC) curves were developed for each
individual miR and the 3 miRs collec-
tively for PAS detection. Statistical
analysis was performed using Graph-
Pad Prism 9 (GraphPad, University of
California San Diego, San Diego, CA).

Results
Assessment of the study population
Throughout the recruitment phase of
this study, a total of 120 patients pro-
vided consent, and the biobanking of
their specimens was completed. Of
those included, 50% (60/120) had his-
topathologic confirmation of PAS. The
remaining 60 patients, collectively
labeled as non-PAS, included 60
patients with a history of cesarean
delivery; 30 of these also had placenta
previa in the current pregnancy
(Table). Patients with PAS were more
likely to be older, parous, have a
greater number of cesarean deliveries,
and deliver at an earlier gestational
age. These outcomes were anticipated
given the underlying pathology and
recommended delivery strategies.

Analysis of plasma exosome
isolation
Exosomes were isolated from subjects
and described and assessed by nano-
particle tracking. Exosomes were suc-
cessfully isolated from all patients and
the mean particle size was 71.5 nM
(Figure 1, A). The overall quantity of
exosomes was 10-fold higher among
patients with PAS than among those in
either control group (Figure 1, B). Sub-
sequently, total proteins were isolated
and, through western blot analysis, the
exosome markers intracellular adhe-
sion morecule 1, flotilin, annexin, and
CD9 were detected in all groups
(Figure 1, C). Actin was used as an
internal control for these experiments.
As cell surface and cytoskeleton
markers, variable expression was antic-
ipated in this cellular subcompartment
despite protein quantification.

Placenta accreta spectrum
microRNA assessment
In an effort to better characterize
exosomal miR and its role in PAS,
we performed a miR PCR array with
February 2024 AJOG Global Reports 3
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TABLE
Patient demographics
Variable Non-PAS (n-60) PAS (n=60) P value

Age (y) 30.5§5.5 33.1§5.1 <.01a

Gravidity 5 (3−6) 5 (3−7) .44

Parity 2 (1−3) 3 (2−4) <.01a

BMI (kg/m2) 30.1 (26.3−33.2) 32.1 (27.6−37.6) .07

Placenta previa 30 (50) 56 (93) <.01a

Gestational age at sample collection 32 (25−36) 31 (26−34) .26a

Gestational age at delivery 36 (31−37) 34 (32−35) <.01a

History of CD 60 (100) 57 (95) 1.0

Number of previous CD 2 (1−3) 2 (2−3) <.01a

Emergent delivery 21 (35) 22 (37) 1.0
Values are presented as mean § standard deviation, median [interquartile range], or number (column percentage).

BMI, body mass index; CD, cesarean delivery.
a Indicates P<.05.
Munoz. MicroRNA regulated pathways in placenta accreta spectrum. Am J Obstet Gynecol Glob Rep 2024.
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validated miR targets and compared a
small representative cohort of these
with a control group of patients with
placenta previa, a previous cesarean
delivery, and no evidence of PAS. We
were able to identify 15 miRs that
were exclusively detected in all PAS
specimens (n=5). Several key path-
ways were noted to be regulated by
these miRs (Figure 2, A) Review of
the literature revealed 3 miRs (miR-
92, -103 and -192) with confirmed
FIGURE 1
Exosome isolation and characterizati

Plasma exosomes were isolated from all groups and
PAS, placenta accreta spectrum.

Munoz. MicroRNA regulated pathways in placenta accreta spe
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roles in cellular growth and prolifera-
tion.33−35

Plasma microRNA regulated
pathways
MiR Bioinformatic analysis was per-
formed using Ingenuity software for
miR analysis in both the control
group with previa and the PAS
cohort. This revealed that erythroblas-
tic oncogene B2 (ERBB2) expression
was highly regulated by miRs in cases
on

analyzed for size (A), quantity (B), and surface prote

ctrum. Am J Obstet Gynecol Glob Rep 2024.
of placenta previa (Figure 3, A),
whereas TP53 expression was regu-
lated in the PAS cohort in this analy-
sis (Figure 3, B).
Placental tumor protein P53 and
erythroblastic oncogene B2
regulation by microRNA
An advantage of exosomal studies is
that exomes reflect expression in the
primary tissue. Thus, placental samples
were isolated from 40 subjects (10 con-
trol, 10 placenta previa, and 20 PAS
cases). All cases were identified intrao-
peratively (Figure 4, A) and confirmed
with subsequent histology (Figure 4, B).
MiR-92, -103, and -192 were detected
by PCR and found to be significantly
elevated in PAS specimens when com-
pared with either of the control groups
(Figure 4, C).
In addition, placental mRNA and

protein expression were assessed by
reverse transcriptase−PCR and whole
tissue enzyme-linked immunosorbent
assay, respectively. ERBB2 mRNA was
noted to be significantly increased in
cases of placenta previa, whereas TP53
mRNA was 2-fold higher in PAS speci-
mens (Figure 5, A−B). Conversely,
ERBB2 (HER2) protein was signifi-
cantly decreased in placenta previa,
whereas TP53 (p53) was decreased in
cases of PAS (Figure 5, C−D). This
inverse relationship between mRNA
and protein levels is characteristic of
in expression (C).
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FIGURE 2
MicroRNA array

Several microRNA-regulated pathways were noted (A). MicroRNAs were assessed and 3 microRNAs (mir-92, -103, and -192) in placenta previa
(B) were exclusively expressed in PAS specimens (C) in this cohort.
CT, cycle threshold; PAS, placenta accreta spectrum.

Munoz. MicroRNA regulated pathways in placenta accreta spectrum. Am J Obstet Gynecol Glob Rep 2024.
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posttranscriptional modifications such
as miR regulation.36

Prospective plasma microRNA
assessment
Following miR screening of the initial
cohort (n=10), exosomal miR detection
was performed using a specific, target-
ing Taqman qPCR assay (n=120)
(Figure 6, A−C). MiR-92a, -103, and
-192 were all significantly elevated in
FIGURE 3
Bioinformatic analysis

Ingenuity analysis of expressed microRNA shows p
PAS, placenta accreta spectrum.

Munoz. MicroRNA regulated pathways in placenta accreta s
the peripheral plasma of patients with
PAS when compared with either of the
control groups (P<.05).

Placenta accreta spectrum
microRNA profile as a biomarker
ROC curves were created for individual
plasma exosomal miRs as biomarkers
for PAS detection and for collective
assessment of all 3 (Figure 7). Each
individual miR had excellent
athways central to both placenta previa and PAS sp

pectrum. Am J Obstet Gynecol Glob Rep 2024.
discrimination with an area under the
ROC curve (AUC) of 0.82, 0.83, and
0.82, respectively (P<.0001). As a col-
lective panel, the AUC was 0.81
(P<.0001).

Comment
Principal findings
Exosomal miR isolation and character-
ization are feasible and reproducible in
both controls and patients with PAS. A
ecimens.

February 2024 AJOG Global Reports 5
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FIGURE 4
Placenta accreta assessment

PAS was confirmed by histopathology (B). MicroRNAs identified in previous array were detected in PAS placental specimens (B-D).
M, myometrium; P, placenta.

Munoz. MicroRNA regulated pathways in placenta accreta spectrum. Am J Obstet Gynecol Glob Rep 2024.
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significantly increased quantity of exo-
somes was encountered in the plasma
of patients with. MiR profiles identified
in PAS placentas were confirmed in the
serum of patients with PAS. In addition,
the molecular pathways regulated by
these miRs seemed to impact the overall
cellular survival and proliferation.
Understanding exosomal miRs enables
the uncovering of the molecular path-
ways involved in PAS pathology and
may improve antenatal detection of
PAS.

Results in the context of what is
known
Current PAS detection and subsequent
referral for multidisciplinary management
6 AJOG Global Reports February 2024
remains dependent on antenatal suspi-
cion and risk stratification in the absence
of available biomarkers. Our data suggest
that exosomal miR merits further study
as biomarkers for antenatal detection of
PAS. This is attractive because it is nonin-
vasive and requires only a small sample
of peripheral blood.

Clinical implications
Our data introduce the feasibility of
exploring exosomal and miR biology
into the clinical atmosphere for the
detection of complex pathologies, such
as PAS, for which accurate and timely
diagnosis are essential. In addition,
molecular pathways that provide
insights into PAS pathophysiology were
identified, which may lead to the devel-
opment of future therapeutic
approaches.

Research implications
Exosomal biology in the setting of preg-
nancy remains limited. Although
peripheral circulating RNA enable a
technically easier assessment, the overall
reproducibility, secondary to degrada-
tion, continues to limit clinical use.
Because of the highly regulated synthe-
sis, packaging, and secretion of exo-
somes, they have emerged as an
attractive potential clinical biomarker.37

In our study, TP53 was a central target
for miR regulation in PAS placentas as
detected in the plasma of these patients.

http://www.ajog.org


FIGURE 5
Placental transcription and translation of central pathways

RNA was analyzed for both HER2 (A) and TP53 (B) in all specimens. In addition, protein assessment by ELISA was performed for both HER2 (C) and
p53 (D).
ELISA, enzyme-linked immunosorbent assay; HER2, human epidermal growth factor receptor 2; TP53, tumor protein 53.

Munoz. MicroRNA regulated pathways in placenta accreta spectrum. Am J Obstet Gynecol Glob Rep 2024.
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FIGURE 6
Maternal plasma exosomal microRNA expression

Expression of PAS-associated microRNA in the plasma of all subjects was performed (A−C).
CT, cycle threshold; PAS, placenta accreta spectrum.

Munoz. MicroRNA regulated pathways in placenta accreta spectrum. Am J Obstet Gynecol Glob Rep 2024.
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In addition, survival pathways (MAP-
kinase), cell-cycling regulation (CCNE1,
CCNE2 and CDK7), and cellular devel-
opment (SMAD2/3, E2F3) were also
found to be regulated by these miRs.
Further research on the importance and
potential roles of these pathways in PAS
pathology remains essential for a com-
prehensive understanding of PAS. For
research efficacy, we focused on a small
subset of miRs previously validated to
impact cellular migration and invasion,
FIGURE 7
ROC curve analysis

Individual PAS-associated microRNA expression (A
ROC curves.
PAS, placenta accreta spectrum; ROC, receiver operating characterist

Munoz. MicroRNA regulated pathways in placenta accreta spe
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and future studies could be expanded in
terms of transcriptomics and metabolo-
mics but were beyond the scope of this
study.

Although our study focused on exo-
somal miR, several other mechanisms
remain unexplored. In the field of
oncology, long mRNA-like, noncoding
RNA, GAS5, SNORD50, telomerase
RNA, and Y RNA, have been shown to
regulate cellular processes.38,39 With
respect to extracellular circulatory
−C) and collective microRNA expression (D) were a

ic.

ctrum. Am J Obstet Gynecol Glob Rep 2024.
vesicles, microvesicles, microparticle,
apoptotic bodies, large oncosomes,
and migrasomes are alternatives to cel-
lular communication that may be
exploited for clinical detection of
PAS.40−42

Clinical research on the identification
of PAS biomarkers remains essential for
coordinated patient care. Based on our
data, prospective evaluation of exoso-
mal miR for the detection of PAS is
warranted. In addition, several miRs
ssessed in terms of predictive capabilities using

http://www.ajog.org
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(miR-101, -23a, -3118) were found to
regulate pathways within placenta pre-
via without evidence of PAS, and the
underlying importance of these miRs
and regulated pathways (MYC-N,
ATM, and MCL-1) have not been
explored.
Strengths and limitations
Our study has several strength and
limitations. Samples were collected at 2
institutions in different states with
varying population ethnic distributions
using the same standardized operating
protocols, thereby allowing for a large
biologic repository for PAS patients.
Both centers were high-volume PAS
referral centers with standardized ante-
natal assessment and management.
Clinically, no difference was noted
between second-trimester and third-
trimester detection of PAS by plasma
miRs. This would allow for potentially
earlier detection before the third tri-
mester.
The greatest limitation remains the

overall technical aspects of exosome
isolation and miR detection. In con-
trast with free circulatory RNA, exoso-
mal RNA requires specialized isolation
and confirmation of nano-sized par-
ticles. Furthermore, total exosomes
were collected without distinction for
placental-derived exosomes. This was
done to facilitate translational capabili-
ties in biomarker development. Clini-
cal application of exosomes and miR
are currently not part of clinical care,
however, studies have shown that a
large number of exosomes in plasma
circulation are placental in origin dur-
ing pregnancy.43 In addition, all cases
of PAS that were enrolled in our study
were identified using ultrasonographic
evaluation prenatally, thus precluding
a direct comparison of ultrasono-
graphic PAS evaluation with exosomal
miR detection without prospective
blinded analysis. Finally, the sample
size was not large enough to permit
validation. The use of these biomarkers
for clinical prediction of PAS should
be assessed and validated in prospec-
tive external cohorts.
Conclusion
Biomarkers of PAS remain elusive and
essential for the coordination and opti-
mization of patient care with complex
pathology. Exosome-derived miR pro-
vides an excellent tool for obtaining a
greater understanding of PAS pathol-
ogy and the development of PAS bio-
markers. &
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