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Abstract
This paper proposes a novel fuzzy multi-criteria decision-making method based on an improved score function of connection
numbers and Choquet integral under interval-valued Pythagorean fuzzy environment. To do so, we first introduce a method
to convert interval-valued Pythagorean fuzzy numbers into connection numbers based on the set pair analysis theory. Then an
improved score function of connection numbers is proposed tomake the ranking order of connection numbersmore in linewith
reality in multi-criteria decision-making process. In addition, some properties of the proposed score function of connection
numbers and some examples have been given to illustrate the advantages of conversion method proposed in the paper. Then,
considering interactions among different criteria, we propose a fuzzy multi-criteria decision-making approach based on set
pair analysis and Choquet integral under interval-valued Pythagorean fuzzy environment. Finally, a case of online learning
satisfaction survey and a brief comparative analysis with other existing approaches are studied to show that the proposed
method is simple,convenient and easy to implement. Comparing with previous studies, the method in this paper, from a new
perspective, effectively deals with multi-criteria decision-making problems that the alternatives cannot be reasonably ranked
in the decision-making process under interval-valued Pythagorean fuzzy environment.

Keywords Interval-valued Pythagorean fuzzy set · Set pair analysis · Connection number · Multi-criteria decision-making ·
Choquet integral

Introduction

An important issue in multi-criteria decision-making
(MCDM) is to obtain a reasonable ranking order of all alter-
natives. Due to the complexity of reality, fuzzy and uncertain
information is naturally involved in MCDM process. For
this reason, the theory of fuzzy set [1], intuitionistic fuzzy
set (IFS) [2], interval-valued intuitionistic fuzzy set (IVIFS)
[3] and their applications have been put forward one after
another with the development of research [4–10]. However,
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Yager [11] proposed such an example in real life: a deci-
sion maker may express his satisfaction with an alternative
on a criterion is 0.6, but his dissatisfaction is 0.5. Because
0.6+ 0.5 > 1, the above special case cannot be modeled by
the theory of IFS or IVIFS , which requires the sum of mem-
bership degree and the non-membership degree less than or
equal to one [12]. Therefore, a concept of Pythagorean fuzzy
set (PFS) is introduced by Yager, of which the square sum of
membership degree and non-membership degree is less than
or equal to one [11]. As extensions of PFS, Smarandache
[13] introduced the refined Pythagorean fuzzy sets, Ünver
[14] defined Spherical Fuzzy Sets and Zhang [15] proposed
a concept of interval-valued Pythagorean fuzzy set (IVPFS).
As powerful tools to deal with vagueness and uncertainty
involved in MCDM problems, theories and applications of
these sets have recently been extensively studied in the lit-
erature. For instance, Ejegwa [16] solved career placement
problems under the Pythagorean fuzzy environment. Saeed
et al. [17] showed the properties, set-theoretic operations and
axiomatic results for the refined Pythagorean Fuzzy Sets. For
more details, please refer to [18–26].
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It is noteworthy that the ranking technique of fuzzy num-
bers is crucial in the fuzzy MCDM process [15]. That is,
if the ranking technique is not appropriate then no matter
what fuzzy MCDM method you use, the results are unreli-
able or even completely inconsistent with reality [27]. On
the other hand, the interval-valued Pythagorean fuzzy num-
bers (IVPFNs) involves more uncertainties than other fuzzy
numbers (e.g., intuitionistic fuzzy numbers (IFNs), interval-
valued intuitionistic fuzzy numbers (IVIFNs), Pythagorean
fuzzy numbers (PFNs),etc) which are usually able to adapt
to higher degrees of uncertainty [28]. In order to make the
solutions to MCDM problems more reliable, it is necessary
to develop a ranking method which not only ranks IVPFNs
intuitively but also loses useful information as little as pos-
sible [27]. Ever since IVPFNs’ appearance, many studies
have focused on the ranking problems under interval-valued
Pythagorean fuzzy environment. For instance, Zhang [15]
proposed a ranking method based on the closeness index of
PFNs and IVPFNs and presented a Pythagorean fuzzy hierar-
chical qualitative flexible multiple criteria approach (QUAL-
IFLEX) to solve the fuzzy MCDM problems. Although the
method is relatively simple, it relies too much on the defi-
nition of distance for PFNs and IVPFNs. That is, different
distances will get different ranking results which will bring
some inconveniences in fuzzy MCDM process. Moreover, it
is noteworthy that the score function and the accuracy func-
tion are important tools for ranking PFNs and IVPFNs [15].
Zhang [15] introduced the score function and accuracy func-
tion of IVPFNs, which generalized the definition for PFNs
in [29]. However, these definitions will lead to a certain loss
of information, because they failed to consider the influ-
ence of hesitation of IVPFNs in fuzzyMCDM process under
the interval-valued Pythagorean fuzzy environment. There-
fore, a novel accuracy function of IVPFNs [30], an improved
accuracy function [12] and an improved score function of
IVPFNs [28] were proposed by Garg considering the effect
of hesitation interval index of IVPFNs. These above ranking
methods have beenwidely used in the field of interval-valued
Pythagorean fuzzy MCDM.

However, by browsing the literature, we find that there is
one type of IVPFNs, the elements in which cannot be reason-
ably ranked in MCDM process using existing methods. This
type of IVPFNs satisfies the following two properties: first,
for each IVPFN, the lower limit of its membership degree is
equal to the lower limit of its non-membership degree, and
the upper limit of its membership degree is equal to the upper
limit of its non-membership degree; second, the square sum
of lower limit andupper limit of themembership degree of the
one set is equal to the square sum of lower limit and upper
limit of the membership degree of the other one. Accord-
ing to the existing methods, it can be concluded that these
sets are equivalent even if they are completely different ones
(see Example 4 for details). In addition, we find the value of

improved accuracy function for some IVPFNs may exceed
one even if it is not the largest IVPFN (see Example 5 for
details). Obviously, all these results are not in line with real-
ity. In view of the above analysis, it is necessary to propose
a new ranking approach for IVPFNs from a new perspective
to obtain a reasonable order between them.

The set pair analysis (SPA) theory is a new framework
combining the certainty and uncertainty into a unified way
[31]. The connection number (CN) is a principal mathe-
matical tool of SPA [32]. It uses the degree of ’identity’,
’discrepancy’, and ’contrary’ to indicate the certainty, hesi-
tancy, and uncertainty of a system, respectively [33]. Since
the SPA theory was proposed, researchers have done a lot
of in-depth studies on its theory and applications under IFS
and IVIFS environment [34–37]. For example, based on the
SPA theory, Garg and Kumar proposed some similarity mea-
sures of IFSs [38] and some series of distance measures for
IFSs [39]. In [40], they introduced a TOPSIS IVIFS MADM
method in decision-making process using the SPA theory.
And to rank different IVIFNs, Garg and Kumar proposed a
new possibility measure of IVIFS based on the CNs of SPA
[41]. Kumar and Chen [42] proposed a multi-attribute deci-
sion making method based on SPA under the interval-valued
intuitionistic fuzzy environment and introduced a score func-
tion of connection numbers, and so on. Since IVPFS is the
generalization of IVIFS, it can be inferred that the SPA theory
can also be a useful tool to deal with uncertainty in MCDM
process under interval-valued Pythagorean fuzzy environ-
ment. Unfortunately, we have not yet found any application
of the SPA theory under the interval-valued Pythagorean
fuzzy environment, let alone the research on ranking tech-
niques and multi-attribute decision making methods under
the interval-valued Pythagorean fuzzy environment. More-
over, the proposed score function of CNs [42] has some
shortcomings which are unable to get the reasonable sort-
ing of alternatives in some MCDM processes under the
interval-valued Pythagorean fuzzy environment (for details,
see Example 2).

Motivated by above analysis, this paper first develops a
novel ranking method for IVPFNs based on the SPA the-
ory. That is, in order to get a reasonable order of IVPFNs in
MCDM process, a technique to convert IVPFNs into CNs
based on SPA is introduced at first by taking the hesita-
tion interval index and Pythagorean property of IVPFNs
into consideration properly. Then we propose an improved
score function of CNs which can make the ranking order
of CNs more in line with reality. The properties of the pro-
posed score function of CNs and some examples are also
given to illustrate the advantage of our proposed ranking
method. Next, considering interactions among different cri-
teria in the decision-making process, we propose a fuzzy
MCDM approach under interval-valued Pythagorean fuzzy
environment based on SPA and Choquet integral which is
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used to aggregate the evaluation information of criteria for
each alternative.

Therefore, the innovations of this paper are summarized
as follows :

(i) A novel technique of converting IVPFNs into CNs
based on SPA is proposed to rank IVPFNs in MCDM
process from a new perspective for the first time in
the literature. In addition, the idea of transformation
fully takes into account the influence of hesitation
interval index and Pythagorean property on informa-
tion uncertainty under the interval-valued Pythagorean
fuzzy environment.

(ii) An improved score function of CNs is presented which
can make the ranking order of CNs more in line with
reality, and overcome the shortcomings of existing for-
mulas;

(iii) The aggregation of alternative evaluation information
using SPA and Choquet integral considers uncer-
tainty and interactions among criteria in MCDM under
interval-valued Pythagorean fuzzy environment simul-
taneously.

This paper is organized as follows. The basic concepts of
PFS, IVPFS, the SPA theory, the score function and accu-
racy function of CNs as well as fuzzy measure and Choquet
integral are reviewed in the next section. The technique to
convert IVPFNs into CNs and an improved score function
of CNs are proposed and some examples are given to ver-
ify the advantage of the proposed converting method from
IVPFNS into CNs in the following section. A novel MCDM
approach based on SPA and Choquet integral under interval-
valued Pythagorean fuzzy environment is introduced in the
next section. An example of online learning satisfaction sur-
vey and a brief discussion and a comparative analysis with
other existing methods are studied to illustrate the simplicity
and viability of the proposed fuzzy MCDM approach in the
following section. Conclusion of this paper is given in the
last part.

Preliminaries

In this section, we first review the basic concepts of PFS,
IVPFS, the SPA theory, fuzzy measure and Choquet integral.

Interval-valued Pythagorean fuzzy set

Definition 1 [11]. Let X be a universe of discourse, then a
Pythagorean fuzzy set (PFS) P in X can be denoted as

P = {〈x, t(x), m(x)〉 |x ∈ X},

where t(x) : X → [0, 1] , m(x) : X → [0, 1], 0 ≤
(t(x))2 + (m(x))2 ≤ 1 for all x ∈ X . The t(x) is the mem-
bership degree and m(x) is the non-membership degree of x ,
respectively, and πp(x) =√

1 − (t(x))2 − (m(x))2 is said to
be the hesitancy degree of x to P . For convenience,

〈
tp, m p

〉

is called a Pythagorean fuzzy number (PFN) by Zhang and
Xu [29] with 0 ≤ tp, m p ≤ 1 and 0 ≤ t2p + m2

p ≤ 1.

Definition 2 [15]. Let X be a universe of discourse. An
interval-valued Pythagorean fuzzy set (IVPFS) P in X is
defined as

P = {
〈
x, [t L

p (x), tU
p (x)], [mL

p(x), mU
p (x)]

〉
|x ∈ X},

where [t L
p (x), tU

p (x)] ⊆ [0, 1] and [mL
p(x), mU

p (x)] ⊆ [0, 1]
such that 0 ≤ (tU

p (x))2 + (mU
p (x))2 ≤ 1 for all x ∈

X . For convenience, an IVPFS can be expressed by an
interval-valued Pythagorean fuzzy number (IVPFN) P =
〈[a, b], [c, d]〉 with the constrains [a, b] ⊆ [0, 1], [c, d] ⊆
[0, 1], and b2 + d2 ≤ 1, and πp = [√1 − b2 − d2,√
1 − a2 − c2] is denoted the hesitation interval index of P .

Specially, for any x ∈ X , if a = b = tp, c = d = m p, an
IVPFN can reduce to a PFN P = 〈

tp, m p
〉
.

Definition 3 [15]. Let P = 〈[a, b], [c, d]〉 be an IVPFN, a
score function T of P can be shown as

T (P) = a2 + b2 − c2 − d2

2
, T (P) ∈ [−1, 1], (1)

and an accuracy function of IVPFN P can be shown as

V (P) = a2 + b2 + c2 + d2

2
, V (P) ∈ [0, 1]. (2)

Suppose there are two IVPFNs P1 = 〈[a1, b1], [c1, d1]〉
and P2 = 〈[a2, b2], [c2, d2]〉, then

(a) T (P1) > T (P2) ⇒ P1 
 P2( ’
’ refer ’preferred to’);
(b) T (P1) = T (P2), and
(i) V (P1) > V (P2) ⇒ P1 
 P2 ;
(ii) V (P1) = V (P2) ⇒ P1 ∼ P2 ( ’∼’ refer ’equivalent

to’).

Especially, if Pmax = 〈[1, 1], [0, 0]〉, then T (Pmax ) = 1 and
V (Pmax ) = 1; if Pmin = 〈[0, 0], [1, 1]〉, then T (Pmin) = −1
and V (Pmax ) = 1.

Definition 4 [28]. An improved score function R of an
IVPFN P = 〈[a, b], [c, d]〉 is denoted by

R(P) =
(a2 − c2)

(
1 + √

1 − b2 − d2
)

2

+
(b2 − d2)

(
1 + √

1 − a2 − c2
)

2
.

(3)

123



Complex & Intelligent Systems

It is clear that R(P) ∈ [−1, 1]. If P1 = 〈[a1, b1], [c1, d1]〉
and P2 = 〈[a2, b2], [c2, d2]〉 are two IVPFNs, then an order
between P1 and P2 can be denoted as follows:

(i) R(P1) > R(P2) ⇒ P1 
 P2.

(i i) R(P1) = R(P2) ⇒ P1 ∼ P2.

Definition 5 [12]. Let P = 〈[a, b], [c, d]〉 be an IVPFN. An
improved accuracy function C of P is denoted by

C(P) =
a2

(
1 + √

1 − b2 − d2
)

+ b2
(
1 + √

1 − a2 − c2
)

2
(4)

where C(P) ∈ [0, 1]. Let P1 = 〈[a1, b1], [c1, d1]〉 and P2 =
〈[a2, b2], [c2, d2]〉 be two IVPFNs, then the following order
holds:

(i)C(P1) > C(P2) ⇒ P1 
 P2.

(ii)C(P1) = C(P2) ⇒ P1 ∼ P2.

Set pair analysis and connection numbers

Definition 6 [31]. Let L(S1, S2) is a set pair consisting of two
sets S1 and S2 for a given problem G . Suppose that there are
total N features, I identical features , C contrary features ,
and D = N − I − C discrepancy features in the problem G,
respectively. The connection number (CN) μ of the set pair
L(S1, S2) for the problem G is defined as

μ = a + bi + cj, (5)

where a = I
N , b = D

N and c = C
N show ’identity’, ’discrep-

ancy’, and ’contrary’ degree between S1 and S2, respectively.
It is clear that 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1, and
a + b + c = 1. In general, i ∈ [−1, 1] is the discrepancy
coefficient; j = −1 is the contrary coefficient.

Definition 7 [37]. For any two CNs μ1 = a1 + b1i + c1 j
and μ2 = a2 + b2i + c2 j defined by Eq. (5), the following
order between μ1 and μ2 holds:

(i) μ1 = μ2 ⇔ a1 = a2, b1 = b2, c1 = c2;
(ii) a1 ≥ a2 and b1 ≤ b2 ⇒ ¯1 ≥ ¯2.

Definition 8 [42]. For two CNs μ1 = a1 + b1i + c1 j and
μ2 = a2 +b2i + c2 j defined by Eq. (5), a score function SF1

of μk(k = 1, 2) can be denoted by

SF1(μk) =
{

(ak − ck)(1 − bk), i f ak �= ck;
ak(1 + bk), i f ak = ck,

(6)

where SF1(μk) ∈ [−1, 1]. In addition, the following order
between μ1 and μ2 holds:

(i) SF1(μ1) > SF1(μ2) ⇒ μ1 
 μ2;
(ii) SF1(μ1) < SF1(μ2) ⇒ μ1 ≺ μ2;
(iii) SF1(μ1) = SF1(μ2) ⇒ μ1 ∼ μ2.

Fuzzymeasure and Choquet integral

In the MCDM process, the criteria usually have interactions
with each other [43]. To illustrate these interactions, a fuzzy
measure (or a non-additive measure) of the criteria is pro-
posed by Sugeno [44].

Definition 9 [44]. Let X is a universe of discourse. A fuzzy
measure μ on X is a set function μ : £(X) → [0, 1], satis-
fying the following conditions:

(i) μ(∅) = 0, μ(X) = 1;
(ii) A ⊆ B ⇒ μ(A) ≤ μ(B),∀A, B ∈ £(X),

where £(X) is the power of universe X .

Definition 10 [45]. A λ-fuzzy measure gλ on a finite set X =
{X1, X2, . . . , Xn} satisfies the following conditions:

(i)A1, A2 ∈ £(X), A1 ∩ A2 = ∅, A1 ∪ A2 �= X

⇒ gλ(A1 ∪ A2) = gλ(A1) + gλ(A2) + λgλ(A1)gλ(A2)

(7)

(ii)
1

λ

(
n∏

i=1

[1 + λgλ(Xi )] − 1

)

= 1, (8)

where λ ∈ [−1,∞) but λ �= 0.

From Eq. (8), we can obtain

n∏

i=1

[1 + λgλ(Xi )] = λ + 1. (9)

Therefore, λ can be uniquely determined by all gλ(Xi )(i =
1, 2, · · · , n) and the Eq. (9).

Definition 11 [46] The discrete Choquet integral of function
f : X → R+ with respect to a fuzzy measure μ on X can
be defined by

Cμ( f ) =
n∑

i=1

(μ(A(i)) − μ(A(i+1))) · f (X(i)) (10)

where the subscript ((1), (2), · · · , (n)) indicates a permuta-
tion on X such that f (X(1)) ≤ f (X(2)) ≤ · · · ≤ f (X(n))

and A(1) = {X(1), X(2), · · · , X(n)},A(2) = {X(2), X(3), · · · ,

X(n)}, · · · , A(i) = {X(i), X(i+1) · · · , X(n)}, · · · , A(n) =
{X(n)}, A(n+1) = ∅.
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Rankingmethod for IVPFNs based on SPA

In this section,wedealwith the issue of ranking IVPFNs from
a new perspective. First, based on the SPA theory, we propose
amethod to convert IVPFNs intoCNsby taking the hesitation
interval index and Pythagorean property into consideration
simultaneously. Then an improved score function of CNs
is given in the following part to make the ranking order of
IVPFNs more in line with reality in fuzzy MCDM process.

Conversion from IVPFNs into CNs

Through the literature, we have three findings as follows:

(i) Themembership degree and non-membership degree of
IVPFNare very close to the identity degree and contrary
degree of CN respectively;

(ii) The hesitation interval index of IVPFN is an important
influence factor for MCDM problems with interval-
valued Pythagorean fuzzy information.

(iii) Since IVPFNs are the generalization of IVIFNs, the
Pythagorean property should be fully considered to
avoid the lack of uncertain information under interval-
valued Pythagorean fuzzy environment as much as
possible.

In view of the above three findings, we introduce the follow-
ing definition of conversion from IVPFNs into CNs.

Definition 12 For an IVPFN P = 〈[a, b], [c, d]〉 with 0 ≤
a ≤ b ≤ 1,0 ≤ c ≤ d ≤ 1 and b2 + d2 ≤ 1, the CN μp of
P can be determined by

μp = ap + bpi + cp j, (11)

where

ap = a2
√
2 − b2 − d2 + b2

√
2 − a2 − c2

2
, (12)

cp = c2
√
2 − b2 − d2 + d2

√
2 − a2 − c2

2
, (13)

and

bp = 1 − ap − cp. (14)

Theorem 1 Let P = 〈[a, b], [c, d]〉 be an IVPFN with 0 ≤
a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1 and b2 + d2 ≤ 1. Then the
C N μp = ap + bpi + cp j of P given by Eqs. (12–14) in
Definition 12 is a rational CN.

Proof For an IVPFN P = 〈[a, b], [c, d]〉, to prove that the
CNμp = ap +bpi +cp j given by Eqs. (12–14) is a rational

CN, we need to prove that 0 ≤ ap ≤ 1, 0 ≤ bp ≤ 1 and
0 ≤ cp ≤ 1. Since ap ≥ 0, cp ≥ 0, then ap + cp ≥ 0. In
view of bp = 1−ap −cp, we just need to prove ap +cp ≤ 1.

In fact, since 0 ≤ a2 + c2 ≤ b2 + d2 ≤ 1, then

ap + cp = a2
√
2 − b2 − d2 + b2

√
2 − a2 − c2

2

+ c2
√
2 − b2 − d2 + d2

√
2 − a2 − c2

2

= (a2 + c2)
√
2 − b2 − d2 + (b2 + d2)

√
2 − a2 − c2

2

≤ (a2 + c2 + b2 + d2)

2

√
2 − a2 − c2

=
⎛

⎝

√
(a2 + c2 + b2 + d2)

2

⎞

⎠

2
√
2 − a2 − c2

≤
⎛

⎝
(a2+c2+b2+d2)

2 .2 + 2 − a2 − c2

3

⎞

⎠

3
2

=
(
2 + b2 + d2

3

) 3
2

≤ 1
3
2 = 1

The above result is obtained using Mean inequality
(
i.e. x12+x22+x32

3 ≥ 3
√

x12x22x32,∀x1, x2, x3 ≥ 0
)
. Since

0 ≤ ap + cp ≤ 1 as proved above, then 0 ≤ ap ≤ 1 and
0 ≤ cp ≤ 1. Recall that bp = 1 − ap − cp , we also obtain
0 ≤ bp ≤ 1. ��

Obviously, for the largest IVPFN Pmax = 〈[1, 1], [0, 0]〉,
the CN of Pmax is μpmax = 1 + 0i + 0 j ; for the smallest
IVPFN Pmin = 〈[0, 0], [1, 1]〉, the CN of Pmin is μpmin =
0 + 0i + 1 j ; for P = 〈[0, 0], [0, 0]〉, the CN of P is μp =
0 + i + 0 j .

In the following, a simple example is given to show how
to calculate the CN of an IVPFN.

Example 1 There are two IVPFNs: P1 = 〈[0.3, 0.6], [0.2,
0.8]〉 and P2 =

〈
[√0.20,

√
0.35], [√0.3,

√
0.6]

〉
. Then the

CN of P1 by Eqs. (12–14) are

ap1 =
0.32

(√
2 − 0.62 − 0.82

)
+ 0.62

(√
2 − 0.32 − 0.22

)

2
= 0.2911

cp1 =
0.22

(√
2 − 0.62 − 0.82

)
+ 0.82

(√
2 − 0.32 − 0.22

)

2
= 0.4576

bp1 = 1 − ap1 − cp1 = 0.2513.

That is, μp1 = 0.2911 + 0.2513i + 0.4576 j . In the same
way, we get the CN of P2 is μp2 = 0.3168 + 0.1621i
+ 0.5211 j .
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Improved score function of CNs

Generally speaking, the methods for ranking CNs can be
divided into two categories. One is to compare the identity
degree and the discrepancy degree between CNs as men-
tioned before in Definition 7. However, by this method, only
a partial order of IVPFNs can be obtained rather than a total
order of IVPFNs. The other is to compare the values of score
function of CNs to determine the ranking order of CNs as
mentioned in Definition 8. However, as shown below, the
score function in Definition 8 is unable to rank CNs correctly
in some cases.

Example 2 Let μ1 = 0.6+ 0i + 0.4 j, μ2 = 0.5+ 0i + 0.5 j
and μ3 = 0.4 + 0.2i + 0.4 j are three CNs. Using Eq. (6)
in Definition 8, we get SF1(μ1) = 0.2, SF1(μ2) = 0.5 and
SF1(μ3) = 0.48. Since SF1(μ1) < SF1(μ3) < SF1(μ2), we
obtain μ1 ≺ μ3 ≺ μ2. Obviously, this result is not only
inconsistent with the result using Definition 7 ( by which we
can get μ3 ≺ μ2 ≺ μ1 ), but also not in line with reality.

Therefore, to get a reasonable ordering of CNs, an
improved score function of CNs is presented as follows.

Definition 13 Let μ = a + bi + cj be a CN denoted by Eq.
(5). An improved score function SF of μ is defined as

SF (μ) =
{

a2 − c2, i f a �= c,

a2(1 − a), i f a = c.
(15)

According to Definition 13, we can obtain the following
properties of the proposed score function SF (μ):

(P1)μ = 1 + 0i + 0 j ⇒ SF (μ) = 1.

(P2)μ = 0 + 1i + 0 j ⇒ SF (μ) = 0.

(P3)μ = 0 + 0i + 1 j ⇒ SF (μ) = −1.

(P4)∀μ = a + bi + cj(0 ≤ a, b, c ≤ 1, a + b + c = 1)

⇒ SF (μ) ∈ [−1, 1].
Obviously, from above, we can obtain that the value of score
function SF (μ) of μ is between -1 and 1 for any CN μ =
a + bi + cj . In addition, the larger the value of SF (μ), the
more forward position of CNs will take in the ranking order.
That is,

Definition 14 For two CNs μ1 = a1 + b1i + c1 j and μ2 =
a2+b2i +c2 j , the following order betweenμ1 andμ2 holds:

(i) SF (μ1) > SF (μ2) ⇒ μ1 
 μ2;
(ii) SF (μ1) < SF (μ2) ⇒ μ1 ≺ μ2;
(iii) SF (μ1) = SF (μ2) ⇒ μ1 ∼ μ2.

Example 3 If we apply the score function as given in Eq. (15)
to the Example 2, we get SF (μ1) = 0.2, SF (μ2) = 0.125

and SF (μ3) = 0.096. Since SF(μ1) > SF(μ2) > SF(μ3),
we obtain that the ranking order is μ1 
 μ2 
 μ3. It is clear
that the result is consistent with the result by Definition 7.

In the following, a few examples are presented to illustrate
the advantage of proposed approach in this section.

Example 4 Suppose there are four different IVPFNs:

P3 = 〈[0.3, 0.7], [0.3, 0.7]〉 ,

P4 =
〈
[√0.08,

√
0.5], [√0.08,

√
0.5]

〉
,

P5 =
〈
[√0.29,

√
0.29], [√0.29,

√
0.29]

〉
,

P6 =
〈
[0.4,√0.42], [0.4,√0.42]

〉
.

Acording to Defination 3, we get the value of score function
for the four IVPFNs T (P3) = T (P4) = T (P5) = T (P6) =
0 by Eq. (1), and the value of accuracy function for them
V (P3) = V (P4) = V (P5) = V (P6) = 0.58 by Eq. (2). At
the same time, according to Eq. (3) in Definition 4, we obtain
R(P3) = R(P4) = R(P5) = R(P6) = 0. Therefore, we can
get P3 ∼ P4 ∼ P5 ∼ P6. Obviously, P3 �= P4 �= P5 �= P6.

In the following, we use the proposed approach in this
paper to reorder the four IVPFNs. That is,

Step 1. Convert the four IVPFNs into CNs by Eqs. (12–14),
then get

μp3 = 0.3760 + 0.2481i + 0.3760 j;
μp4 = 0.3791 + 0.2418i + 0.3791 j;
μp5 = 0.3456 + 0.3089i + 0.3456 j;
μp6 = 0.3584 + 0.2833i + 0.3584 j .

Step 2. Calculate the score value of CNs by Eq. (15), then
get

SF (μp3) = 0.0882, SF (μp4) = 0.0892,

SF (μp5) = 0.0782, SF (μp6) = 0.0824.

Step 3. Compare the above score values, then get

SF (μp5) < SF(μp6) < SF (μp3) < SF (μp4).

Therefore, the order of CNs is μ5 ≺ μ6 ≺ μ3 ≺ μ4. It is
noticed that the order is also consistent with the result by
Definition 7.

Hence, based on above steps, the ranking order of the four
IVPFNs is P5 ≺ P6 ≺ P3 ≺ P4.

Example 5 Let P7 = 〈[1, 1], [0, 0]〉 and P8 = 〈[0.9, 0.9],
[0, 0]〉 be two IVPFNs. According to the improved score
function of IVPFNs defined in Eq. (4), we get C(P7) = 1
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and C(P8) = 1.1631 > 1. Therefore, we obtain P8 
 P7.
However, it is obvious that P8 ≺ P7, because P7 = Pmax is
the largest IVPFN as mentioned before. In the following, we
use the proposed method in this section to reorder the two
IVPFNs. Similar to the steps in Example 4,

Step 1. Convert P7 and P8 into CNs of them by Eqs. 12–14
and get

μp7 = 1+ 0i + 0 j, μp8 = 0.8836+ 0.1164i + 0 j .

Step 2. According to Eq. (15), calculate the score value of
CNs, then get

SF (μp7) = 1, SF (μp8) = 0.7807.

Step 3. Compare the above score values and get

SF (μp8) < SF (μp7).

Therefore, we obtain the order P7 
 P8. It is clear that it
is a reasonable order more in line with reality.

In fact, let P = {Pi = 〈[ai , bi ], [ci , di ]〉 |0 ≤ ai ≤
bi ≤ 1, 0 ≤ ci ≤ di ≤ 1, b2i + d2

i ≤ 1, i ∈ {1, 2, · · · , n}}
be the set of all IVPFNs. Then P = {Pi ∈ P|ai =
ci , bi = di , i ∈ {1, 2, · · · , n}} is a special subset of P . If
Pi , Pj ∈ P(i �= j) satisfy a2

i + b2i = a2
j + b2j , by those pre-

vious methods [12,28,30], we get Pi ∼ Pj even if Pi �= Pj

for any i �= j . However, by the approach proposed in this
section, a reasonable order between them can be obtained as
shown in Example 4 above. In fact, the proposed approach
in this section is suitable for all IVPFNs ranking problems
in interval-valued Pythagorean fuzzy MCDM process. For
example, by Eq. (15), the score values of CNs μp1 and μp2
in Example 1 are SF (μp1) = −0.1247 and SF (μp2) =
−0.1712. Recall the score values of CNs obtained above in
Example 4−−5, we get SF (μp2) < SF (μp1) < SF (μp5) <

SF (μp6) < SF (μp3) < SF (μp4) < SF (μp8) < SF (μp7),
then we obtain the ranking order P2 ≺ P1 ≺ P5 ≺ P6 ≺
P3 ≺ P4 ≺ P8 ≺ P7. That is, this proposed ranking approach
is robust and it is more suitable for the ranking problem of
IVPFNs than those previous methods. At the same time, as
a ranking technique from a new perspective, the proposed
approach is simple, effective and easy to implement.

Interval-valued Pythagorean fuzzy multi-
criteria decisionmakingmethod

In this section, considering interactions among different
criteria, we introduce a fuzzyMCDMmethod under interval-

valued Pythagorean fuzzy environment by taking the advan-
tages of proposed ranking technique above and Choquet
integral.

Assume that, there are m alternatives, denoted by A =
{A1, A2, ..., Am}, and n criteria, indicated as C = {C1, C2,

· · · , Cn}. Let Pi j = 〈[ai j , bi j ], [ci j , di j ]
〉 ∈ P be the esti-

mation for alternative i on criteria j . Here [ai j , bi j ] shows
the degree of satisfaction, while [ci j , di j ] is the degree of dis-
satisfaction of alternative i with respect to criteria j , where
i = 1, 2, ..., m, j = 1, 2, ..., n. In the following, to find
the most desirable alternative in interval-valued Pythagorean
fuzzymulti-criteria decision process, the specific steps of the
proposed fuzzy MCDM method are given as follows:

Step 1. Construct and normalize the interval-valued
Pythagorean fuzzy decision matrix D(P̃i j )m×n :

D(P̃i j )m×n =

⎛

⎜⎜⎜
⎝

P̃11 P̃12 . . . P̃1n

P̃21 P̃22 . . . P̃2n
...

...
. . .

...

P̃m1 Pm2 . . . P̃mn

⎞

⎟⎟⎟
⎠

.

where

P̃i j =
{ 〈[ai j , bi j ], [ci j , di j ]

〉
, i f C j ∈ B,

〈[ci j , di j ], [ai j , bi j ]
〉
, i f C j ∈ T,

(16)

of which, B represents the benefit type criteria sub-
set, and T is the cost type criteria subset.

Step 2. Convert the above matrix into a CNs matrix:

U (μi j )m×n

=

⎛

⎜⎜⎜
⎝

μ11 μ12 . . . μ1n

μ21 μ22 . . . μ2n
.
.
.

.

.

.
. . .

.

.

.

μm1 μm2 . . . μmn

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

a11 + b11i + c11 j . . . a1n + b1ni + c1n j
a21 + b21i + c21 j . . . a2n + b2ni + c2n j

.

.

.
. . .

.

.

.

am1 + bm1i + cm1 j . . . amn + bmni + cmn j

⎞

⎟⎟⎟
⎠

,

where μi j = ai j + bi j i + ci j j is the CN of
P̃i j . In addition, ai j , bi j , ci j are calculated by Eqs.
(12–14) in Definition 12, respectively, for i =
1, 2, · · · , m, j = 1, 2, · · · , n.

Step 3. Calculate the value of score function SF (μi j ) of μi j

(i = 1, 2, · · · , m; j = 1, 2, · · · , n) using Eq. (15)
to obtain the score function matrix as follows:
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SF (μi j )m×n

=

⎛

⎜⎜⎜
⎝

SF (μ11) SF (μ12) . . . SF (μ1n)

SF (μ21) SF (μ22) . . . SF (μ2n)
...

...
. . .

...

SF (μm1) SF (μm2) . . . SF (μmn)

⎞

⎟⎟⎟
⎠

.

Step 4. Aggregate the above score values on each criterion
to each alternative by Choquet integral. The specific
implementation process is as follows:

1) Calculate the λ-fuzzy measure of each criterion set.
In general, to obtain the λ-fuzzy measure of each
criterion set, we should first get the weight, or the
importance, of each criterion [43]. At present, there
are three typical methods to determine the weight
of criteria, i.e., the subjective method, the objective
method and hybrid method [47]. No matter which
method is used, the weight is obtained by a numer-
ical value from 0 to 1 [46]. In this paper,we denote
the weight of criteria j by gλ(C j ), j = 1, · · · , n.
According to the Eq. (9), we get

λ + 1 =
n∏

i=1

[1 + λgλ(C j )]. (17)

Then we can obtain the parameter λ by resolving
Eq. (17) if we have get all gλ(C j )( j = 1, · · · , n)

in some way. Based on the parameter λ, the fuzzy
measure of each criteria set can be derived by Eq.
(7).

2) Calculate the Choquet integral of the score values
of CNs for each alternative. According to the above
fuzzy measures, we can aggregate the score values
of CNs for each alternative with respect to each cri-
terion as follows:

Cgλ(SF )i =
n∑

j=1

(gλ(A( j)) − gλ(A( j+1)))

·SF (μi( j)) (18)

for any i ∈ {1, 2, · · · , m}. Here the subscript
((1), (2), · · · , (n)) is a permutation on X such that
SF (μi(1)) ≤ SF (μi(2)) ≤ · · · ≤ SF (μi(n)) and
A(1) = {C(1), C(2), · · · , C(n)}, A(2) = {C(2), C(3)

· · · , C(n)}, · · · , A(n) = {C(n)}, A(n+1) = ∅.
Step 5. According to the aggregated values above, obtain a

reasonable ranking order of all alternatives to find
the most desirable one.

The complete flow chart of the proposed method is given
in Fig. 1.

Fig. 1 Flow chart of the proposed method

Discussion and comparative study

To illustrate the convenience and feasibility of our proposed
approach, an example about the online learning satisfaction
survey is given at first. Then the relevant discussion and com-
parative analysis between the proposed approach and other
existing approaches [12,15,28,30,43,49] are provided to val-
idate the performance of the proposed approach in the paper.

Illustrative example

During the COVID-19 pandemic, a large number of Chinese
universities implement large-scale online learning, which is
a new model that can break the constraints of time and space
for students. In the post-epidemic era, how to improve the
effect of online learning model has become a very important
topic. The online learning satisfaction survey is an impor-
tant way that can help educators understand the real needs
of students. The data in this section come from an online
learning satisfaction survey conducted during the COVID-
19 pandemic on a questionnaire survey platform [48]. By
survey, it is found that the involved students can be divided
into four categories according to the nature of their schools:
research-oriented university (A1), application-oriented uni-
versity (A2), higher vocational college (A3), and other types
(A4). In this paper, we study the ranking order of online learn-
ing satisfaction for the four types of schools based on SPA
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andChoquet integral.We select four criteria for research, that
is, the service of learning resource (C1), the communication
between teachers and students (C2), the design of the course
(C3) and the communication between students (C4). By anal-
ysis, it is found that the four criteria are not independent(or
say there are interactions among them). For example, the
more extensive the service of learning resource, and themore
interesting the teacher’s design of course, the more active
the communication between teachers and students, and vice
versa. In addition, the communication between teachers and
students can also improve the communication between stu-
dents, and vice versa. Therefore, the decision-making steps
are described as below:

(Step 1:) Through analysis, it is found that all four criteria are
benefit-type. Each type of school Ai (i = 1, 2, 3, 4)
is given four evaluation values by their students
which represent the degree of satisfaction on each
criterion C j ( j = 1, 2, 3, 4). The values are pro-
vided in the form of IVPFNs. Thus, the normalized
Pythagorean fuzzy decision matrix D(P̃i j )4×4 can
be obtained by Eq. (16):

D(P̃i j )4×4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1 C2

〈[0.5103, 0.7001], [0.3565, 0.4103]〉 〈[0.4054, 0.6043], [0.5002, 0.6154]〉
〈[0.6220, 0.8020], [0.2310, 0.4112]〉 〈[0.6146, 0.8000], [0.2020, 0.3011]〉
〈[0.8130, 0.9200], [0.1012, 0.2426]〉 〈[0.5098, 0.7046], [0.3134, 0.5356]〉
〈[0.4033, 0.6013], [0.3433, 0.5214]〉 〈[0.5022, 0.6780], [0.4033, 0.6062]〉

C3 C4

〈[0.6033, 0.7523], [0.3109, 0.4323]〉 〈[0.7521, 0.9121], [0.2102, 0.3501]〉
〈[0.7327, 0.8567], [0.3006, 0.3500]〉 〈[0.7435, 0.8500], [0.3342, 0.5520]〉
〈[0.7452, 0.9304], [0.2091, 0.3012]〉 〈[0.5090, 0.6000], [0.4042, 0.8321]〉
〈[0.5021, 0.7563], [0.2500, 0.4432]〉 〈[0.6431, 0.8074], [0.2405, 0.4064]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where the interval [0.5103, 0.7001] means the cer-
tain degree that alternative A1(research-oriented
universities) satisfies C1 (the service of learning
resource), and [0.3565, 0.4103] is the uncertain
degree that the alternative A1 dissatisfies C1. The
other values in D(P̃i j )4×4 have similar meanings.

(Step 2:) Convert the above matrix into the CNs matrix
U (μi j )4×4 by Eqs. (12–14), that is

U (μi j )4×4

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1 C2

0.4620 + 0.3575i + 0.1805 j 0.3220 + 0.2994i + 0.3786 j
0.6125 + 0.2529i + 0.1347 j 0.6152 + 0.3048i + 0.0800 j
0.8336 + 0.1271i + 0.0393 j 0.4614 + 0.3007i + 0.2380 j
0.3321 + 0.4207i + 0.2471 j 0.4259 + 0.2546i + 0.3194 j

C3 C4

0.5543 + 0.2758i + 0.1699 j 0.7797 + 0.1255i + 0.0948 j
0.7170 + 0.1629i + 0.1201 j 0.6901 + 0.0788i + 0.2311 j
0.7960 + 0.1280i + 0.0760 j 0.3522 + 0.1335i + 0.5143 j
0.5112 + 0.3266i + 0.1622 j 0.6279 + 0.2385i + 0.1336 j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(Step 3:) Convert the above matrix into the score function
matrix SF (μi j )4×4 by Eq. (15):

SF (μi j )4×4

=

⎛

⎜⎜⎜⎜
⎝

C1 C2 C3 C4

0.1809 −0.0396 0.2784 0.5989
0.3570 0.3724 0.4997 0.4228
0.6934 0.1563 0.6278 −0.1405
0.04924 0.0794 0.2350 0.3765

⎞

⎟⎟⎟⎟
⎠

(Step 4:) The fuzzy measures of all the four criteria can
be calculated by the method in [47]. This is an
objective method by training a lot of data from
the questionnaire survey platform [48]. The fuzzy
measure of each criterion is obtained as follows
[47]:

gλ(·) = {gλ(C1), gλ(C2), gλ(C3), gλ(C4)}
= {0.35, 0.25, 0.2, 0.18} (19)

Then, by Eq. (17), we get the parameter λ =
−0.64. And by Eq. (7), the fuzzy measure of each
criteria subset can be obtained in Table 1.

(Step 5:) Calculate the overall satisfaction degree of all types
schools based on Choquet integral by Eq. (18) as
follows:

Cgλ(SF (A1)) = 0.236854905172487,

Cgλ(SF (A2)) = 0.407867581010157,

Cgλ(SF (A3)) = 0.369070525859337,

Cgλ(SF (A4)) = 0.171711061553457.

Since Cgλ(SF (A4)) ≤ Cgλ(SF (A1)) ≤ Cgλ(SF (A3)) ≤
Cgλ(SF (A2)), the ranking order of alternatives is A4 ≺ A1 ≺
A3 ≺ A2. That is, the students from A2 (application-oriented
university) have the highest degree of satisfaction towards
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Table 1 The fuzzy measures of criteria

C gλ(C) C gλ(C)

{C1} 0.35 {C2} 0.25

{C3} 0.20 {C4} 0.18

{C1, C2} 0.63 {C1, C3} 0.56

{C1, C4} 0.50 {C2, C3} 0.58

{C2, C4} 0.43 {C3, C4} 0.48

{C1, C2, C3} 0.75 {C1, C2, C4} 0.70

{C1, C3, C4} 0.78 {C2, C3, C4} 0.74

{C1, C2, C3, C4} 1.00 ∅ 0

online learning. This result is consistent with the result of
questionnaire survey.

Discussion and comparison analysis

To illustrate the advantages of proposed approach in this
paper,we conduct a brief discussion and a comparative analy-
sis with some of the existing approaches [12,15,28,30,43,49]
under interval-valuedPythagorean fuzzy environment. These
approaches corresponding to them are performed on the
considered data and the rankings of alternatives which are
summarized in Table 2. As shown in Table 2, it is easily
observed that:

(i) The approach proposed in this paper, from a new per-
spective, that is, SPA, deals with fuzzy information
in the interval-valued Pythagorean fuzzy multi-criteria
decision-making problems. To our knowledge, Zhang
[15] proposed a closeness index for IVPFNs and
presented the closeness index-based ranking method
(QUALIFLEXMCDM approach) for ranking IVPFNs.
In addition, Garg [12,28,30] proposed a novel accuracy
function or an improved score function for IVPFNs
for solving MCDM problems under interval-valued
Pythagorean fuzzy environment. Khan et al. [43,49]
introduced an extension of TOPSIS method and a
fuzzy GRA method under interval-valued Pythagorean

fuzzy environment. Essentially, they are still ranking
IVPFNs based on score function and accuracy func-
tion of IVPFNs [15] before integration process by
the Choquet integral. However, the main idea of the
approach proposed in this paper is to convert IVPFNs
into CNs using SPA theory before integrating the values
of alternatives by Choquet integral. Comparingwith the
existing approaches, this idea of transformation is first
given under the general interval-valued Pythagorean
fuzzy environment in the literature. According to the
decision-making processes and results in Table 2, the
proposed approach in this paper not only can effec-
tively solve theMCDMproblems under interval-valued
Pythagorean fuzzy environment, but also it is sim-
ple, convenient and easy to implement. Meanwhile, the
result of our proposed approach is consistent with most
existing approaches.

(ii) The approach proposed in this paper can deal with
the interval-valued Pythagorean fuzzy multi-criteria
decision-making problems not only under the general
interval-valued Pythagorean fuzzy environment, but
also in some special cases which cannot be solved by
existing methods [15,28,43,49]. For example, suppose
it is still the online learning satisfaction survey ques-
tion in the above section and the fuzzy measure of all
four criteria is also given by Eq. 19. Suppose that the
evaluation values of an alternative A0 on four crite-
ria are P3, P4, P5, P6 in Example 4, respectively. Since
the values of score function for the four IVPFNs are
T (P3) = T (P4) = T (P5) = T (P6) = 0 and the accu-
racy functions of them are V (P3) = V (P4) = V (P5) =
V (P6) = 0.58, and the closeness index P(P3) =
P(P4) = P(P5) = P(P6) = 0.5 (for details,see
[15]), we can get P3 ∼ P4 ∼ P5 ∼ P6. In this case, the
Choquet integral cannot be performed, because IVPFNs
cannot be ranked reasonably. Therefore, the approaches
[15,28,43,49] are invalid. However, according to the
proposed approach in this paper, we get SF (μp3) =
0.0882, SF (μp4) = 0.0892, SF (μp5) = 0.0782,
SF (μp6) = 0.0824, then P5 ≺ P6 ≺ P3 ≺ P4 as men-

Table 2 Comparative analysis
for examples in “Illustrative
example”

Methodology Core idea of method Ordering

Garg [12] Improved accuracy function A2 
 A3 
 A1 
 A4

Zhang [15] Closeness index A2 
 A3 
 A1 
 A4

Garg [28] Improved score function A2 
 A3 
 A1 
 A4

Garg [30] Novel accuracy function A2 
 A3 
 A1 
 A4

Khan [43] TOPSIS A2 
 A3 
 A1 
 A4

Khan [49] IVPFCIA A3 
 A2 
 A1 
 A4

Proposed SPA A2 
 A3 
 A1 
 A4
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tioned in Example 4. By simple calculation, we get the
Choquet integral of the alternative A0 is Cgλ(A0) =
0.0782 ∗ (gλ(C1, C2, C3, C4) − gλ(C1, C2, C4)) +
0.0824 ∗ (gλ(C1, C2, C4) − gλ(C1, C2)) + 0.0882 ∗
(gλ(C1, C2) − gλ(C2)) + 0.0892 ∗ gλ(C2) = 0.0782 ∗
(1 − 0.7) + 0.0824 ∗ (0.7 − 0.63) + 0.0882 ∗ (0.63 −
0.25) + 0.0892 ∗ 0.25 = 0.0850. Therefore, the pro-
posed approach in this paper is robust and can obtain the
overall satisfaction evaluation from a new perspective.

(iii) The approach proposed in this paper takes the interac-
tions among criteria into account usingChoquet integral
in MCDM under interval-valued Pythagorean fuzzy
environment. While the existing approaches [12,28,30]
can only deal with the MCDM problem in which the
relationships among criteria are assumed to be inde-
pendent in advance. At the same time, from the result
of comparison which is shown in Table 2, we find that
the result of our proposed approach is consistent with
the method made by Zhang [15] and Khan [43] which
takes into account the interaction between the criteria in
MCDM under interval-valued Pythagorean fuzzy envi-
ronment.

Conclusions

IVPFS is a useful tool for dealing with uncertain information
in MCDM process, while the SPA theory has the advantage
of combining the certainty and uncertainty into a unifiedway.
In view of these advantages, we propose a method to convert
IVPFNs into CNs and introduce an improved score function
of CNs for the first time. Furthermore, taking into account
the uncertainty in decision-making and interactions between
criteria simultaneously,wepropose a fuzzyMCDMapproach
based on SPA and Choquet integral to get the overall degree
of satisfaction for each alternative. The key contribution of
this study is

(1) a novel technique of converting IVPFNs into CNs is
proposed considering the uncertainty and Pythagorean
property of IVPFNs;

(2) an improved score function of CNs is developed to over-
come the shortcomings of previous formulas;

(3) an effective ranking method for IVPFNs is introduced
from a new perspective for the first time;

(4) an interval-valued pythagorean fuzzy multi-critria
decision-making method based on SPA and Choquet
intergral is proposed by considering the interactions
among criteria.

From examples shown above, we can see that the proposed
approach successfully overcomes the drawbacks presented
in [12,15,28,30,42,43,49]. The proposed approach provides

us with a very useful way to deal with MCDM problems in
the IVPFSs context. At the same time, examples show that
the proposed approach is simple and easy to implement in
interval-valued Pythagorean fuzzy MCDM process.

However, the tendency of decision-makers towards fuzzy
indexes (the membership, non-membership or hesitation)
of IVPFSs has a significant impact on the outcome of the
decision-making in many fields. Here the tendency refers to
the decision-makers’ attitudes, habits, knowledge or expe-
rience, etc. In this paper, we failed to take into account the
tendency of decision makers towards different fuzzy indexes
of IVPFSs in the process of converting IVPFNs into CNs.In
the future, on one hand, we will consider the tendency of
decision makers in the process of converting IVPFNs into
CNs, and on the other hand, we will also apply the proposed
approach tomore fields, such as pattern recognition, the secu-
rity of industrial control, the big data of education, etc.
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