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Abstract
Objective
Measures of spinal cord structure can be a useful phenotype to track disease severity and
development; this observational study measures the hereditability of cervical spinal cord
anatomy and its correlates in healthy human beings.

Methods
Twin data from the Human Connectome Project were analyzed with semiautomated spinal
cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE
model. Relationships between spinal cord metrics, general physical measures, regional brain
structural measures, and motor function were assessed.

Results
We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and
anterior-posterior width (APW) are highly heritable (85%–91%). All measures were highly
correlated with the brain volume, and CSA only was positively correlated with thalamic volumes
(p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was
correlated with the participant’s height (p = 0.00027). The subjects’ sex significantly influenced
these metrics. Analyses of a test-retest data set confirmed validity of the approach.

Conclusions
This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of
cervical spinal cord anatomy are robust and not easily influenced by nonpathological envi-
ronmental factors, providing a useful metric for monitoring normal development and pro-
gression of neurodegenerative disorders affecting the spinal cord, including—but not limited
to—spinal cord injury and MS.
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Automated and semiautomated approaches have been de-
veloped to study spinal cord structure, enabling rater-
independent segmentation and quantification of spinal cord
metrics. Using these methods, recent studies have reported
reductions in the spinal cord cross-sectional area (CSA), left-
right width (LRW), and anterior-posterior width (APW) in
MS,1,2 amyotrophic lateral sclerosis,3 and spinal cord injury
(SCI).4–8 After SCI, changes to the sensorimotor cortex have
also been reported,9,10 indicative of cortical reorganization
because of the lack of afferent input from the spinal cord. Of
interest, spinal cord atrophy correlates with physical function-
ing after SCI.7,8 This suggests that cord atrophy may be pro-
portional to somato-motor cortex atrophy. However, it is
unknown if such a relationship exists before injury, i.e., is the
spinal cord structure linked to the cortical sensorimotor rep-
resentation and with motor abilities in healthy subjects?

Human brain anatomy is heritable with a genetic contribution
between 66% and 97% for total brain volume, as estimated in
twin studies.11 There are no previous studies on heritability of
spinal cord structure. Determining factors that contribute to
variations in spinal cord structure in healthy individuals add to
our understanding of the CNS and, crucially, to markers of
neurodegenerative pathology.

We hypothesized that CSA, LRW, and APW of the spinal cord
is (1) reliably measured, (2) hereditary, and (3) is proportional
to the volume of the thalamus and cerebellum and the sensory
and motor cortex area, as well as to motor function.

Methods
Data included in the analyses
Data used in the current study were a subset of unprocessed
structural data from the Human Connectome Project (HCP)
including test-retest data (db.humanconnectome.org). We
investigated 332 participants. Sufficient brain coverage to
quantify CSA was obtained in 283 participants. These were 50
pairs of monozygotic (MZ) and 50 pairs of dizygotic (DZ)
twins, as well as 83 unrelated participants. MZ and DZ twin
pairs were selected to be matched for age (±5 years) and race.
Structural brain scans, behavioral data and information on the
participants’ whole brain volume (ventricles excluded), and
regional brain areas and volumes (obtained by the HCP
FreeSurfer parcellation12) were used in the subsequent anal-
yses. Brain regions included the bilateral precentral and
postcentral gyrus, and volumes of the cerebellar gray matter
and thalamus. Data for all variables of interest were available
for all participants.

In theHCPdata set, there is test-retest data from45 participants.
Of the 45 participants, 9 were excluded because spinal cord
segmentation did not work on either one or both of their scans,
primarily because of poor tissue contrast or incomplete coverage
of the cervical spine. Ultimately, 36 participants remained in the
test-retest analysis, where the first data set was also included in
themain heredity analysis. See Supplemental Data for test-retest
methodology and results, links.lww.com/NXG/A225.

MRI
The HCP data were acquired at Washington University in St.
Louis on a 3 Tesla Siemens Connectome Skyra scanner (Sie-
mens, Erlangen, Germany) using a 32-channel head coil.13 The
structural scan was a T1-weightedmagnetisation prepared rapid
gradient echo: repetition time: 2,400 ms, echo time: 2.14 ms,
inversion time: 1,000 ms, flip angle: 8°, and matrix size: 266 ×
320 × 320, 0.7 mm isotropic voxel size. The 224-mm coverage
along the Z direction (head to toe) allowed for evaluation of
cervical structures in most participants to spinal level C2 and in
some cases C3. To take advantage of the full field of view, raw
MRI data fromHCPwere obtained and subsequently corrected
gradient field nonlinearity. See supplemental data for details
(links.lww.com/NXG/A225), including an evaluation of the
effect of gradient field nonlinearity correction on data validity.

Spinal cord segmentation
Image processing of the spinal cord was carried out with the
Spinal Cord Toolbox.14 It used semiautomatic methods for
segmentation, labeling, and extraction of spinal cord metrics.
Because the HCP data are centered over the brain, manual
landmarks of the spinal cord were used to initiate the detection
of the cord for the subsequent automatic segmentation. The
output is a binary mask of the spinal cord in 3D space that was
inspected in each participant. The next step registered the data
to the MNI-Poly-AMU template, including probabilistic la-
beling of the spinal segments of each vertebrae. The template is
then warped back to native space of each participant. The fit of
the template and each spinal cord segment were manually
inspected in all participants. Finally, CSA, LRW, andAPWwere
extracted from each segment of the cord. Here, we examine the
C2 level of the spinal cord because the C2 level is at an ideal
location for segmentation and analysis; the surrounding CSF
creates optimal contrast for accurate segmentation of this area,
with less curvature than that of the more caudal spinal cord
levels.15 Moreover, studies on SCI and MS have reported the
C2 structure to be linked to clinical outcome scores.16–18 If the
border between 2 segments was not in accordance with land-
marks surrounding the spinal cord, the slices corresponding to
each level were manually selected and used in calculation of C2
CSA, LRW, and APW.

Glossary
ACE = additive plus common plus nonshared environment and error model;AE = additive plus nonshared environment and error
model;AIC = Akaike information criterion;APW = anterior-posterior width;BMI = bodymass index;CSA = cross-sectional area;
DZ = dizygotic; HCP = Human Connectome Project; LRW = left-right width; MZ = monozygotic; SCI = spinal cord injury.
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Behavioral measurements
All measurements pertaining to motor functioning were
obtained with the NIH Toolbox Motor Battery.19 We used
data from the 9-hole pegboard dexterity test, the grip
strength test, the 4-m walk gait speed test, and the 2-minute
walk endurance test. To estimate simple reaction time, we
used reaction times from the 0-back working memory task,
under the assumption that the 0-back control condition
would primarily reflect a direct perceptual response20 not
affected by working memory load.

Statistical analyses
Statistical analyses on the test–retest data and spine metrics
and behavioral measures were carried out in GraphPad Prism
version 7.0c for Mac (GraphPad Software, La Jolla, California,
graphpad.com). Linear regression analyses between cord an-
atomical metrics, physical, behavioral, and brain metrics were
carried out with the statistical package R in R Studio (RStu-
dio: Integrated Development for R. RStudio, Inc., Boston,
MA, rstudio.com/). Heritability analyses were conducted
using a classic twin model carried out with the “mets” package,
also implemented in R.

Relations to behavioral and brain measures
Simple regression models are not appropriate for twin data
because the assumption of independence between observations
is violated by the paired structure of data.21 To determine the
relationship between spinal cord metrics and behavior or brain
metrics, we used multiple regression models where the mean
value of twin pairs and the difference between twin pairs was
used as regressors (model 2 in reference 21). Data from non-
twins (n = 83) were also included in the models.

These analyses were used to investigate the relationship be-
tween CSA, LRW, and APW:

1. General physical measures: body height, body weight,
body mass index (BMI), and total brain volume. Each
model also controlled for the sex of the subjects. The
resulting 4 separate regression models were Bonferroni
corrected (4 variables, p < 0.0125 considered significant).

2. Motor function: grip strength (age adjusted), dexterity
(age adjusted), endurance (age adjusted) and gait speed,
and reaction time from the 0-back working memory task
(5 variables, p < 0.01 considered significant).

3. Brain metrics: area of the bilateral precentral and
postcentral gyrus, the volume of the cerebellar gray
matter, and the volume of the thalamus. As a “control”
region, we also calculated the relationship to the occipital
area. Each model also controlled for sex and total brain
volume (5 variables, p < 0.01 considered significant).

Sex as a biological variable
To evaluate if sex influenced CSA, LRW, and APW while
controlling for weight and body length, 3 multiple regression
models were calculated and adjusted for twin-samples as
mentioned above.

Heritability analysis
To inspect data, correlations in intratwin pairs were first carried
out with a Spearman rank-order correlation. A higher correlation
in theMZ twins compared with the DZ twins indicates a genetic
influence on the tested traits: CSA, LRW, and APW (figure 1).

Two models were initially run, an additive plus common plus
nonshared environment and error model (ACE) and an ad-
ditive plus nonshared environment and error model (AE)
model which models the variance in 3 components: additive
genetic effect (A), shared environmental effects (C), and
unique environmental effects plus error (E). The model fit
was estimated with Akaike information criterion (AIC),
where the lowest AIC value indicates the best fitting model.

The polygenic model was carried out on CSA, LRW, and APW.
Age and sex were therefore included as covariates in the analyses.

Standard protocol approvals, registrations,
and patient consents
Because this study was conducted with publicly available data
from the HCP (as well as HCP Restricted Access Data), consent
was obtained by theHCP. Details regarding data access are found
in their previously published studies (for example [reference 5]).

Data availability
The imaging data, behavioral test scores, and demographics
used for this project are readily available from the HCP (db.
humanconnectome.org). In accordance with the HCP Re-
stricted Access Data Use Terms,22 study-specific participant
IDs to each individual, as well as the resulting spinal cord
segmentation data, will be made available on publication
through the HCP Database (db.humanconnectome.org).

Results
Demographics
We analyzed C2 CSA, LRW, and APW in 332 participants,
whereof 52 participants were excluded from the analyses be-
cause of unreliable or incomplete coverage of the C2 vertebrae.
The final sample (n = 283) consisted of 190 women and 93
men, with an average age of 29.5 years (range 22–36 years).
There were significantly more women than men in the sample,
and women were approximately 2 years younger (women =
27.9 years vs men = 30.1 years, p < 0.0001). Participants in the
analyzed sample, consisting mostly of twins and with a higher
proportion of females, were on average significantly shorter
(168.5 cm vs 171.4 cm, p < 10−4) and lighter (75.4 kg vs 79.9
kg, p < 10−4) than the full HCP sample.

Cord metrics
The mean C2 CSA was 71.77 (±5.65) mm2, the mean LRWwas
11.52 (±0.61) mm, and the mean APW was 8.0 (±0.49) mm.
LRW and APW were highly correlated with CSA values (see
figure e-1, links.lww.com/NXG/A225); however, LRW and
APW were not significantly correlated with each other (table e-1
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and figure e-2, links.lww.com/NXG/A225). A robust regression
and outlier removal test was carried out to examine the data for
outliers.23With the default coefficient criterion ofQ= 1%, the test
identified 3 outliers in the CSAmeasures and one outlier in APW

(of which one was also an outlier in the CSA data). We chose not
to exclude any of these data because a visual inspection verified
that thesewere not products ofmethodological errors, rather they
represent large values from the natural variability in the data.

Figure 1 Distribution of cervical spinal cord anatomical measures in the sample

(A) CSA = cross-sectional area; (B) A-P = anterior–posterior width; (C) R-L = right–left width.
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Figure 1 illustrates C2 anatomical results across the range of
normal variation in the sample, and figure 2 demonstrates the
extreme values regarding CSA and ratios between LRW
and APW.

Heritability analysis
The AIC of the ACE and AE models for both the CSA APW
measurements did not differ from each other, suggesting
either model describes the data equally well. Comparing the
AIC for the LRW measurement resulted in a lower log-
likelihood ratio for the AE model, indicating that the AE
model was a better fit for the data, where shared environ-
ment (C) had little influence. This is consistent with pre-
vious studies on brain structure.24

The AE model on CSA, LRW, and APW reported a broad-
sense heritability of 0.912, 0.852, and 0.868, respectively; see
also figure 3 for an illustration. See table 1 for model fitting
parameter estimates and table 2 for heritability estimates.

Heritability of brain volume (no ventricles) was also carried
out. The AIC suggested that the AE model was a better fit for
the data. The AE model reported the broad-sense heritability
of brain volume to be 0.955.

Correlations with physical, behavioral and
brain measures
We investigated the relationship between CSA, LRW, and
APW and (1) general physical measures, (2) motor behavior

Figure 2 C2 cross-sectional T1w image

The segmented cord is marked in blue: (A) largest CSA in sample, 94.2 mm2, (B) smallest CSA in sample, 60.2 mm2, (C) largest ratio between LRW and APW
(13.7 mm × 6.6 mm), and (D) smallest ratio between LRW and APW (10.4 mm × 9.1 mm). APW = anterior-posterior width; CSA = cross-sectional area; DZ =
dizygotic; LRW = left-right width; MZ = monozygotic.

Figure 3 Twin pair relationships of spinal cord CSA

Correlations of CSA measures between each (A) MZ and (B) DZ twinset included in the analysis are illustrated, in addition to density plots showing the
distribution of the data. CSA = cross-sectional area; DZ = dizygotic; MZ = monozygotic.
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measures, and (3) regional brain measures (see supplementary
table e-2, links.lww.com/NXG/A225). Aside from sex, which
had a significant influence on several of the models, the only
significant coefficients in the general physical models were
CSA, LRW, and APW in relation to total brain volume (p = 1.7
× 10−12, 4.2 × 10−5, and 3.4 × 10−7, respectively) and a signifi-
cance between height and LRW (p = 0.00027), where LRW
increased proportionally with height of the participant.

In the behavioral models, there were no significant rela-
tionships. In the regional brain metrics models, whole brain
volume was a significant covariate. Significant relationships
were observed between CSA and thalamus volume
(p = 0.005) and CSA and the occipital area; the CSA in-
creased with the volume of the thalamus, whereas on the

other hand, CSA was decreased proportional to the area of
the occipital cortex (p = 0.001).

Sex as a biological variable
There was a significant difference in the CSA between men
and women (73.57 vs 70.88 mm2; t = 3.86; p < 10−4) and in
APW (8.18 vs 7.92 mm; t = 4.43; p < 10−4), but not in the
LRW (11.55 vs 11.50 mm; t = 0.62; p = 0.5347).

A multiple linear regression was calculated to predict CSA
based on sex, body length, and weight, controlling for twin
status A significant regression equation was found (F
(5,277) = 4.23, p < 0.001), with an R2 of 0.07. Predicted CSA
is equal to 51.08 mm2 − 1.3 (SEX) + 0.3 (HEIGHT) − 0.007
(WEIGHT), where sex is coded as 0 = Male, 1 = Female,

Table 1 Model fitting parameter estimates for analysis of heritability of spinal cord metrics and brain volume

Measure Model 22LL df AIC χ2 p Value

Variance estimates

a 95% CI c 95% CI e 95% CI

CSA ACE −691.064 5 1,392.13 0.912 0.873–0.951 0.0 0.0 to 0.0 0.088 0.049–0.127

AE −691.064 4 1,390.13 <0.0001 1 0.912 0.873–0.951 0.088 0.049–0.127

APW ACE −124.405 5 258.81 0.868 0.810–0.926 0.0 0.0 to 0.0 0.132 0.074–0.190

AE −124.405 4 256.81 1 0.868 0.810–0.926 0.132 0.074–0.190

LRW ACE −181.56 5 373.112 0.822 0.398–1.246 0.3 −0.389 to
0.448

0.149 0.086–0.211

AE −181.569 4 371.139 0.019 0.8913 0.852 0.789–0.914 0.148 0.086–0.211

Brain
volume

ACE −2,993.46 4 5,994.926 0.597 0.369–0.825 0.359 0.128–0.590 0.044 0.025–0.063

AE −2,995.63 3 5,997.255 4.3294 0.0375 0.955 0.936–0.974 0.045 0.026–0.065

Abbreviations: −2LL = −2 log-likelihood; a = additive genetics; ACE = additive plus common plus nonshared environment and error model; AE = additive plus
nonshared environment and error model; AIC = Akaike information criterion; APW = anterior-posterior width; c = shared environment; CI = confidence
interval; CSA = cross-sectional area; df, degrees of freedom; e = unique environment; LRW = left-right width.

Table 2 Broad-sense heritability andwithin-twin correlations for eachmodel of spinal cord and brain volume heritability
analyses

Measure Model
Correlation
within MZ 95% CI

Correlation
within DZ 95% CI h2

CSA ACE 0.912 0.864–0.944 0.456 0.436–0.475 0.912

AE 0.912 0.864–0.944 0.456 0.436–0.475 0.912

APW ACE 0.868 0.797–0.915 0.434 0.405–0.462 0.868

AE 0.868 0.797–0.915 0.434 0.405–0.462 0.868

LRW ACE 0.852 0.775–0.903 0.441 0.208–0.626 0.822

AE 0.852 0.776–0.903 0.426 0.394–0.457 0.852

Brain volume ACE 0.956 0.933–0.972 0.658 0.523–0.760 0.597

AE 0.955 0.931–0.970 0.477 0.468–0.487 0.955

Abbreviations: a = additive genetics; ACE = additive plus common plus nonshared environment and error model; AE = additive plus nonshared environment
and error model; APW = anterior-posterior width; c = shared environment; CI = confidence interval; CSA = cross-sectional area; DZ = dizygotic; e = unique
environment; h2 = heritability; LRW = left-right width; MZ = monozygotic.

6 Neurology: Genetics | Volume 6, Number 2 | April 2020 Neurology.org/NG

http://links.lww.com/NXG/A225
http://neurology.org/ng


height is measured in inches, and weight is measured in
pounds. Only body length was a predictor of CSA (p = 0.02,
see table e-1, links.lww.com/NXG/A225).

A multiple linear regression was calculated to predict LRW
based on sex, body length, and weight, controlling for twin
status A significant regression equation was found (F (5,277) =
2.92, p = 0.013), with an R2 of 0.05. Predicted LRW diameter is
equal to 7.81 mm + 0.2 (SEX) + 0.05 (HEIGHT) − 0.0001
(WEIGHT), where sex is coded as 0 =Male, 1 = Female, height
is measured in inches, and weight is measured in pounds. Only
body length was a significant predictor of LRW diameter.

A multiple linear regression was calculated to predict APW
based on sex, body length, and weight, controlling for twin
status A significant regression equation was found (F (5,277) =
4.04, p = 0.001), with an R2 of 0.07. Predicted APW diameter is
equal to 8.13 mm − 0.27 (SEX) + 0.002 (HEIGHT) − 0.0007
(WEIGHT), where sex is coded as 0 =Male, 1 = Female, height
is measured in inches, and weight is measured in pounds. Sex
was the only significant predictor of APW diameter.

Discussion
In a young and healthy cohort, cervical spinal cord structure is
quantifiable using semiautomated and unbiased methods from
brain imaging data. Cervical spinal cord structure is highly
heritable, with genetic influences ranging from 85% to 91%. C2
cervical CSA is linearly proportional to total brain volume and
thalamus volume but is not related to height, weight, BMI, or
measures of motor behavior in this sample.

Our estimates indicate a genetic component accounting for
91% of the variation in spinal cord CSA, 85% for LRW, and
87% for APW. This suggests that the level of genetic influence
on spinal cord structure is comparable with what has been
reported on brain volume (see reference 11 for a review). This
suggests that genes play a bigger role in spinal cord structure
compared with the nonpathological environment. We also did
not observe any relationships to motor behavior in young
healthy controls. As such, the large reductions in CSA con-
sistently observed after SCI and in neurodegenerative states
are not likely to be confounded by environmental factors
before the onset of the disease. This makes them useful in
tracking disease severity and progression.

The heritability analyses showed that shared environmental
influence (the C component in the ACE model) had close to
no influence in the 3 different measurements. The lack of
influence by a shared environment could be because of the
assumption that both DZ and MZ twins share a more similar
environment, both in utero and in childhood, compared with
nontwin family members.

The HCP sample showed an average C2 CSA of 71.77 mm2

(n = 283), LRW of 11.52 mm, and an APW of 8.0 mm.

Previous studies have shown large variations in the cervical
CSA of healthy populations, ranging from 70.225 and 79.926 to
84.7 mm2.15 Our results are comparable with previous studies
using the same segmentation method.27 Postmortem studies
have found C2 CSA to be between 56 ± 3.4 mm2,28 70 ±
20 mm2,29 and 83 mm2.30 Data acquisition methods, such
using T1- or T2-weighted images31 and data analytical
methods25 influence the measures of cord anatomy.

The methods implemented in the Spinal Cord Toolbox have
been validated elsewhere,31 but here, we had the opportunity
to test the reproducibility with a test-retest data set of 36
participants. Our analyses resulted in an intraclass correlation
coefficient measure that is considered good to excellent for
CSA and excellent for LRW and APW. Thus, the Spinal Cord
Toolbox proves to be a reliable tool for estimating C2 CSA,
LRW, and APW from T1-weighted magnetisation prepared
rapid gradient echo data, even when C2 is close to the edge of
the field of view, if gradient nonlinearity is accounted for.
Because our measures displayed high test-retest reliability, the
numerical differences in the literature may be due to the dif-
ferences in MRI contrast between CSF and white matter
dependent on imaging sequences, voxel size, scanner gra-
dients, and differences in segmentation protocols. We rec-
ommend caution when pooling data from multiple sites or
multiple imaging sequences. Correction for gradient non-
linearity is crucial (see appendix e-1, links.lww.com/NXG/
A225). Dedicated spinal cord sequences isocentered over the
spine and not the brain, and usage of both T1- and T2-
weighted images improve generalizability.

Our analyses showed that CSA, LRW, and APW all signifi-
cantly correlated with brain volume. Previous studies have
also reported a relationship between cervical CSA and brain
volume26,32 or, in postmortem studies, between CSA and
brain weight.28 We also observed a relationship between LRW
and body height, where LRW increased with height. This is in
line with a previous study reporting a positive relationship
between C7 CSA and body height in specimens from 152
cadavers.28 However, no such relationship was observed in
a study encompassing CT scans of 36 participants.33

We did not observe any further correlations between cord
metrics and other physical features or motor behavior. The
only regional brain metric that was correlated with CSA was
thalamus volume and, surprisingly, an inverse relationship
between CSA and occipital area. Given the number of as-
cending spinal cord tracts projecting to the thalamus, this
relationship is plausible. The negative relationship between
cord CSA and occipital area is more surprising and may be
because of multicollinearity between occipital area and total
brain volume.

As in previous studies,26,34 men had significantly higher CSA
than women and also higher LRW and APW. Notably, in
multiple regression models, body length was the only pre-
dictor of CSA and LRW, whereas sex was the only predictor
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of APW. It has been suggested that LRW is reflective of
motor tracts mainly located in the lateral funiculi, whereas
APW is reflective of the sensory tracts found in the dorsal
funiculus.35 Indeed, we found that LRW and APW were not
proportional and thus largely independent metrics of cord
anatomy. Previous studies indicate that tactile spatial acuity
improves with decreasing finger size independent of sex36

and that fingertips have a similar number of Meissner cor-
puscles, regardless of size.37 As such, the number of fingertip
sensory axons at C2 would be similar for a small and a large
hand (or, in effect, for a short and a tall person). If this
extrapolation holds for the whole body, it would suggest that
the total number of sensory receptors and associated spinal
axons are roughly equivalent across men and women and
across body size but with higher density in smaller bodies.
The observed relation between body length and cord di-
ameter would then be reflective of the average axonal di-
ameter, rather than the number of axons. Because axonal
conduction velocity in myelinated axons is approximately
linearly proportional to axon diameter,38 we speculate that
the observed cord-thickness body-length relationship is re-
flective of increased axonal diameter to achieve similar
transmission times in short and tall bodies.

Owing to the narrow age range in the HCP young adult
sample, we did not evaluate age effects. Previous studies are
mixed, with reports of no correlation with age, height, and
weight,33 as well as reports of a relationship between spinal
cord CSA and age and height.39

Previous studies in the spinal cord injured population have
demonstrated parallel changes in both cord CSA and so-
matosensory regions7,40,41 between CSA and hand grip
strengths,18 and between LRW and motor score,35 whereas
APW correlated with sensory scores.35 In patients with MS,
atrophy of the upper cervical cord is evident in APW but not
LRW,42 whereas studies on ALS have only reported on CSA.3

We did not observe any relationships between motor function
and cord metrics in the present large, young, and healthy
cohort. This suggests that it might only be in pathologic states
with anterograde and retrograde degeneration of white mat-
ter, reducing cord area by 5–22 mm2, that such relationships
are unmasked.

Several large imaging studies in MS have demonstrated ex-
tensive cord atrophy.42–44 We also know from longitudinal
neuroimaging studies that brain volume decreases with aging
and in neurodegenerative disorders such as Alzheimer and
Parkinson disease. Whether the CSA of the spinal cord changes
over time in healthy individuals is inconclusive.45 Some studies
have found small reductions in the spinal cord CSA in elderly
individuals.46–48 Future studies should aim to elucidate the
changes in spinal cord structure in healthy and pathologic aging
and if it correlates with changes in motor and sensory func-
tioning. Several ongoing brain neuroimaging efforts have an
adequate field of view to evaluate developmental and neuro-
degenerative effects on the upper cervical cord. This will

provide additional meaningful metrics both for clinical and
scientific examination.

Some caution should be exercised when interpreting the
spinal cord imaging studies because the spinal cord is a rela-
tively small area and is susceptible to partial volume effects.
HCP data were collected using 0.7 × 0.7 × 0.7 mm resolution,
a substantial improvement over typical 1-mm isotropic data
but much higher resolution methods are being developed.49

Moreover, signal-to-noise ratio at the outer edges of the field
of view (i.e., in the spine area of a brain scan) can be low,
making a segmentation based on intensities more challenging.
However, the C2 spinal cord level is an optimal region to
study because there is very little curvature, making a distinc-
tion between the spinal cord and surrounding CSF easier.15

Another limitation on the analytic level is the use of the AE
model. The AEmodel gives estimation pertaining to 2 factors:
additive genetic effect (A) and unique environmental effect
(E). It is noted that the E term also absorbs variation that
arises from measurement error and individual day-to-day
fluctuations. Linear mixed effects models that explicitly ac-
count measurement errors by using repeated measures have
been developed50 but were not used here because our test-
retest sample was deemed too small.

Similar to the brain, cervical spinal cord anatomy is highly
heritable. Provided that the field of view is sufficient to cover
the first 2–3 vertebrae, C2 CSA, LRW, and APW can reliably
be measured in brain dedicated neuroimaging protocols. With
large data sharing initiatives, this opens the possibility to ex-
amine these relatively unexplored metrics that harbor im-
portant markers of development and pathology.
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