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A B S T R A C T   

The non-linear mixed convective heat and mass transfer features of a non-Newtonian Casson 
liquid flow over a stretching surface are investigated numerically. The stretching surface is 
embedded in a Darcian porous medium with heat generation/absorption impacts. The fluid flow 
is assumed to be driven by both buoyancy and Arrhenius kinetics. The governing equations are 
modelled with the help of Boussinesq and Rosseland approximations. The similarity solutions of 
the non-dimensional equations are obtained using two numerical approaches, namely fourth fifth 
Runge - Kutta Fehlberg method and the shooting approach. The velocity, temperature and con
centration profiles are discussed for important physical parameters through various graphical 
illustrations. The skin friction, the non-dimensional wall temperature, and the concentration 
expressions were derived and analysed. The results indicate that the increasing values of linear 
and nonlinear convection due to temperature, nonlinear convection due to concentration, and 
heat of reaction increase the dimensionless wall temperature. The dimensionless wall concen
tration rises with the increasing values of heat of reaction, linear and nonlinear convection due to 
temperature, and nonlinear convection due to concentration parameters.   

1. Introduction 

The fluid flow along with heat and mass transport in a porous medium has gained major attention of researchers in the previous few 
decennaries. The thermo-physical properties of the fluid and the features of the permeability of the porous medium possess a primary 
role in controlling the performance of heat and mass transfer in fluids. The number of research studies in this topic has increased 
because of its various engineering applications, such as geophysical, crystal growth in fluids, pollutant dispersion in aquifers, pe
troleum reservoirs, nuclear waste repositories, chemical catalytic reactors, ground hydrology, solidification of casting, thermal and 
insulating engineering, etc. To predict the fluid flow in a porous space, the law of Darcy has been widely used by researchers [1]. The 
law of Darcy is a proportional relationship between the viscosity of fluid, the immediate expulsion rate through porous space, and the 
pressure drop over a certain distance. It is valid only for laminar, viscous, and slow fluid flow where the inertial effects are neglected. 
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The advancement in porous medium studies has been summarised in the following books [2–6]. 
Non-Newtonian liquids are liquids that exhibit a nonlinear relationship among the shear rate and shear stress. The rheological 

behaviour of these liquids plays a dynamic role in many cosmetic, pharmaceutical, and chemical industries. It is very difficult to derive 
a single model to predict non-Newtonian liquids due to the nonlinear relationship between stress and strain movement. Several re
searchers have developed various mathematical models of non-Newtonian liquids, such as Walter-B [7,8], Maxwell [9], viscoelastic 
type [10], Casson [11], Brinkman type [12], Jeffrey [13], power law [14], second-grade [15] model, Bingham plastic [16], and 
Oldroyd-B [17]. Casson liquid is a subset of a non-Newtonian model that acts like an elastic solid. These liquids have infinite viscosity 
at zero shear rate as well as infinite shear rate at zero viscosity. Human blood, concentrated juices, honey, and lubricants are some of 
the Casson liquid examples [18]. The Casson property of the fluids is also important in industrial processes such as coating, 
manufacturing, metal spinning, biomimetics, etc. In addition to this, the theoretical investigations on mixed convection flow of 
non-Newtonian fluids over a stretching material problem might have enormous economic and energy saving implications for the 
industries that involve extrusion of molten polymers, hot rolling, food stuffs processing, paper production, and glass fibre production. 
The Newtonian/non-Newtonian fluid flow problems over a stretching surface in a porous medium have attracted many researchers in 
recent years [19–24]. 

Bhattacharyya [25] examined the two-dimensional stagnation point flow of Casson liquid towards a stretching surface with 
magnetic field effects and found that Casson fluid has a thicker velocity boundary layer than Newtonian fluid. Shehzad et al. [26] 
investigated the 3D (three-dimensional) flow of Casson liquid in a Darcian porous medium with a uniform heat source/sink and 
magnetic field effects. Their investigation showed that a greater Casson value increased the skin friction coefficient. Mabood et al. [27] 
inspected the Casson liquid flow under MHD effects in a Darcian porous medium, taking into account of melting heat transfer and 
radiation, and reported that the Casson parameter enhances the heat transfer rate. The impacts of cross diffusion and a heat source on 
the boundary layer flow of Casson liquid in the porous medium in the presence of non-linear thermal radiation were analysed by Patel 
[28]. The same author [29] studied the Casson liquid flow over an oscillating plate embedded in a porous space under the effects of 
heat generation, hall current, and radiation. The heat and mass transport characteristics of Casson liquid over a shrinking sheet in a 
porous medium in the presence of a heat source/sink were examined by Awais et al. [30]. Nandkeolyar and Chamkha [31] analysed the 
unsteady Casson liquid flow in three-dimensional stretching material in a porous medium with Hall and MHD effects. Eldabe et al. [32] 
discussed the impacts of the electromagnetic field on the heat and mass transfer of Casson liquid in a porous medium. 

The present study mainly focused on the mixed convection flow of Casson liquid, which is purely driven by the heat provided to the 
fluid due to exothermic surface reactions and non-uniform internal heat generation/absorption over a stretching surface in a Darcian 
porous medium. The exothermic reactions were derived and utilised by the following researchers [33–38]. The derived model was 
dependent on the Arrhenius temperature and a first order kinetics. The forth mentioned model was successfully applied to the 
boundary layer flow problems over a stretching sheet [39–45]. Very recently, the second grade nanofluid boundary layer flow was 

Fig. 1. Physical configuration of the present problem.  
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investigated over a stretching surface that was driven by Arrhenius kinetics [46]. 
To the best of the author’s knowledge, the problem of nonlinear mixed convection flow of Casson liquid over a stretching surface in 

a porous medium driven by Arrhenius kinetics, which has applications in many engineering processes as mentioned earlier, has not 
been considered yet. Hence in the present work, Arrhenius kinetically driven boundary layer flow of non-Newtonian Casson liquid over 
a stretching surface in a Darcian porous medium with the impacts of thermal radiation, non-uniform heat generation, and heat ab
sorption. The numerical results are obtained for the governing equations through the fourth fifth Runge-Kutta Fehlberg method along 
with shooting technique. The results are discussed through graphical illustrations. 

2. Problem formulation 

We consider the steady, incompressible, two-dimensional, nonlinear mixed convection flow of a non-Newtonian Casson liquid over 
a stretching surface that is embedded in a porous medium. The porous medium is considered as a Darcian porous medium. The impacts 
of space and temperature dependent heat generation/absorption, and Rosseland thermal radiation impacts are taken into account with 
negligible viscous dissipation impacts. Flow is assumed to be happening in a cartesian framework in which the x axis is taken along the 
surface and the y axis vertical to it (Fig. 1). The stretching surface is assumed to be at temperature Tw (ambient temperature T∞) and 
concentration Cw (ambient concentration C∞) with stretching velocity uw = a/x− 1. The exothermic reaction is presumed to take place 
at the surface. 

The governing equations can be written under the above and Boussinesq assumptions as [27–30]. 
(

∂u
∂x

)

+
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∂y2 k+QST −

∂qr

∂y
, (3)  
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u+ v
∂C
∂y

=
∂2C
∂y2 D. (4)  

Where u and v are the velocity components along x and y axes respectively, β1 is the Casson parameter, ϑ is the kinematic viscosity, g1 is 
acceleration due to gravity, βt1 is first order thermal expansion coefficient, βt2 is second order thermal expansion coefficient, βc1 is the 
first order solutal coefficient, βc2 is the second order solutal coefficient, T is the temperature of the fluid, kp is the permeability of the 
porous medium, ρ is the density of the Casson liquid, k is the thermal conductivity, Cp is the specific heat capacitance, C is the con
centration of fluid, and D is the molecular diffusion coefficient. 

The non-uniform heat generation/absorption can be chosen as [47]. 

QST = uw[(Tw − T∞)Q 1 +Q 2(T − T∞)]
(ϑx

k

)− 1
, (5)  

where Q1 is the parameter for space dependent heat generation/absorption and Q2 is the parameter for temperature dependent heat 
generation/absorption. It should be mentioned here that Q1 < 0 and Q2 < 0 represent the heat absorption case, while Q1 > 0 and Q2 >

0 represent the heat generation case. 
Utilising the linear Rosseland formulation for radiative heat flux qr, which can be defined as [27]. 

qr = −
4
3

(
∂T4

∂y

)(
kab

σsb

)− 1

, (6)  

where σsb is the constant of Stefan-Boltzmann and kab is the coefficient of mean absorption. The 4th power of temperature can be 
expressed as a linear function of temperature as follows: 

T4 = − 3T4
∞ + 4T3

∞T. (7) 

Invoking eqs (5)–(7) in (3), we get 

ρcp
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The boundary conditions for the catalytic surface are [40–46]. 
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u − uw = 0, v − vw = 0, k
∂T
∂y

= − Qr e− E
RT (k0 C) and

∂C
∂y

= k0 e− E
RT

(
C
D

)

, at y= 0,

u → 0, T → T∞,C → C∞, as y→∞. (9)  

Where E is the activation energy Qr is the exothermicity of reaction and R is gas constant.  

By introducing the following dimensionless transformations [46]                                                                                                             

u = g ′

(ζ)ax, v = − g(ζ)(aϑ)1/2
, ζ = y

(ϑ
a

)− 1/2
,
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(

E
R

)(
1

T2
∞

)

(T − T∞) and φ(ζ) =
(

1
C∞

)

(C − C∞),

(10) 

the governing equations in (2)-(4) and (8) are transformed into the following dimensionless form and also the transformations in 
(10) satisfies the continuity eq. (1), 

(
β1

− 1 + 1
)
g′′′

+ g g′′ + (1+ λt2 θ)θλt1 + λc1 φ(1+ λc2 φ)= g′2 + g′k1
(
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(
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)
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Consequently, the corresponding boundary conditions in (9) become 
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√

is the reaction rate and ε =
( R

E
)
T∞ is the activation energy parameter. 

3. Physical quantities of attention 

The physical quantities on which present research focuses are the skin friction coefficient, non-dimensional wall temperature and 
non-dimensional wall concentration. 

The shear stress at the surface of the wall is given by 

τw = μ
(
β1

− 1 + 1
)
(

∂u
∂y

)

y=0 

The skin friction coefficient Cf can be defined as 

Cf =
τw

ρu2
w
=

μ
(
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)
(

∂u
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)

y=0

ρu2
w

.

Re1/2
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(
β− 1

1 + 1
)
.

The non-dimensional wall temperature and wall concentration can be obtained from the following equations. 

Tw =T∞ +

(
R
E

)

T2
∞θ(0) and Cw =C∞ + C∞φ(0).
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4. Method of solution 

The governing eqs (11)–(13) along with the boundary conditions in (14) are numerically solved using fourth fifth Runge-Kutta 
Fehlberg integration scheme along with the shooting iteration approach. Runge-Kutta Fehlberg method is a numerical scheme of 
order two with an error estimator of order 5 that is used to solve ordinary differential equations. The steps involved in the numerical 
procedure are as follows: 

First the boundary value problem is transformed into the following first order initial value problem: 

y′

1 = y2, y′

2 = y3, y′

3 =

[
y2

2 − y1 y3 − λt1 y4 (1 + λt2 y4) − λc1 y6 (1 + λc2 y6) + k1
(
β1

− 1 + 1
)
y2
]

(
β1

− 1 + 1
)

y′

4 = y5, y′

5 =
[ − Pr y1y5 − Q1y2 − Q2 y4](

1 + 4
3N − 1

) , y′

6 = y7, y′

7 = − Sc y1y7. (18)  

with the boundary conditions 

y1(0)= s, y2(0)= 1, y3(0)= guess1, y4(0)= guess2, y5(0)= − α(1+ y6(0)) e

(

y4(0)/1+ε y4(0)

)

.

y6(0)= guess3, y7(0)= β(1+ y6(0)) e

(

y4(0)/1+ε y4(0)

)

. (19) 

The initial guesses (guess1, guess2 and guess3) are chosen, and the Runge Kutta Fehlberg method is used to integrate the first order 
systems. Then the computed values are compared with the boundary conditions. The shooting method is used to update the initial 
guesses to satisfy the boundary conditions, and the process is repeated until the results reach the preferred accuracy of 10− 6. 

5. Results and discussion 

The set of first order ordinary differential eq. (18) and the corresponding initial conditions (19) with guess values are numerically 
solved using the Runge - Kutta Fehlberg method along with the shooting approach. The present numerical code is validated with those 

Table 1 
Comparison of − θ ′ (0) in the absence of β1 and α=0, β=0, N=0, k1=0, Q1=0, Q2=0, Ɛ=0, λt1=0, λt2=0, λc1=0, λc2=0 and Sc = 0 with 
boundary condition θ (0) = 1 and θ (∞) = 0.  

Pr Khan and Pop [48] Ullah et al. [49] Present results 

0.7 0.4539 0.4544 0.45391620 
2.0 0.91130 0.9113 0.91135764 
7.0 1.8954 1.8953 1.89540326 
20.0 3.3539 3.3538 3.35390651  

Fig. 2. Effects of N and k1 on velocity profile.  
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of Khan and Pop [48] and Ullah et al. [49]. The comparison results are tabulated in Table .1. An excellent agreement is observed in the 
− θ ′ (0) values for various Prandtl numbers in the absence of β1 and α = 0, β = 0, N = 0, k1 = 0, Q1 = 0, Q2 = 0, Ɛ = 0, λt1 = 0, λt2 = 0, λc1 
= 0, λc2 = 0 and Sc = 0. The impacts of the radiation parameter (N), porous medium parameter (k1), space dependent heat gen
eration/absorption parameter (Q1), temperature dependent heat generation/absorption parameter (Q2), heat of reaction parameter 
(α), reaction rate parameter (β), Casson parameter (β1) and activation energy parameter (Ɛ) on Casson liquid velocity, temperature, 
and concentration profiles are plotted in Fig. 2- 13. The variation of skin friction, non-dimensional wall temperature, and concen
tration are illustrated in Figs. 14–16. We fixed Pr = 3, β1 = 1, α = 0.5, β = 0.5, N = 1, k1 = 1, Q1 = 0.5, Q2 = 0.5, Ɛ = 0.5, λt1 = 0.5, λt2 =

0.3, λc1 = 0.4, λc2 = 0.5 and Sc = 1 throughout the investigation when studying a particular parameter. It is worth mentioning that 
when β1 →∞, the present Casson liquid model is reduced to a Newtonian liquid case, the present problem is also be reduced to a 
problem of Casson liquid flow over a flat catalytic surface when λt1 = 0 and λc1 = 0. 

Due to the presence of concentration and thermal buoyancies in the momentum Eq. (11), the parameters N, Q1, Q2, α, β, and Ɛ have 
influence on the velocity profile of the Casson liquid. The combined impacts of N and k1 on the Casson liquid velocity profile are 
represented in Fig. 2. Both N and k1 show significant impacts on velocity profile (g ’(ζ)). It is observed that the increase in N accelerates 
the velocity profile while the enhancement in k1 decelerates the velocity profile of the Casson liquid. This is because the increase in N 
enhances the velocity boundary layer thickness. The parameter k1 is related to the sizes of pores. From the definition of parameter k1, 
one may see that the increase of k1 leads to a decrease in the size of pores, which causes higher resistance to the Casson liquid flow 
inside the porous medium. Consequently, the velocity profile decreases with k1. Fig. 3 reveals the impacts α and Q1 on g ՛ (ζ). The 
positive value of Q1 denotes the presence of space dependent heat generation while the negative value denotes space dependent heat 
absorption. Both Q1 and α do not show a significant impact on g ՛ (ζ). A slight growth in the g ՛ (ζ) is traced when Q1 > 0, and a reverse 
trend is observed and felt when Q1 < 0. The reason for this is that the velocity boundary layer thickness reduces in the heat absorption 

Fig. 3. Effects of Q1 and α on velocity profile.  

Fig. 4. Effects of Q2 and β on velocity profile.  
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Fig. 5. Effects of Ɛ and β1 on velocity profile.  

Fig. 6. Effects of N and k1 on temperature profile.  

Fig. 7. Effects of Q1 and α on temperature profile.  
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case and enhances in the heat generation case. A slight enhancement is observed with the increase of the heat of reaction parameter α. 
The impacts of Q2 and β on g ՛ (ζ) are demonstrated in Fig. 4. It is observed that the impacts of Q2 are similar to those of Q1 on the g ՛ (ζ) 
as explained in the earlier figure. The increase in the reaction rate β gives a diminution in g ՛ (ζ), consequently shrinking the momentum 
boundary layer of the Casson liquid. 

Fig. 5 shows the impacts of β1 and Ɛ on g ՛ (ζ). The results shown in this figure came in response to a suppression in fluid velocity due 
to increase in β1. An enhancement in β1 increases the viscosity of fluid, consequently momentum boundary layer thickness and velocity 
decreases. An insignificant enhancement is observed in the momentum boundary layer with the activation energy parameter (Ɛ). 

Fig. 6 indicates the impacts of N and k1 on the temperature profile Ɵ(ζ). The increase in N enhances Ɵ(ζ). The heat transfer rate 
reduces with higher k1. Hence, to enhance cooling from the stretching surface, the radiation parameter must be fixed low. A slight 
decrement in Ɵ(ζ) is observed with higher porous medium parameter in the catalytic surface. The impacts of α and Q1 on Ɵ(ζ) are 
shown in Fig. 7. The temperature profile enhances when Q1 > 0 and reduces when Q1 < 0. The heat generation parameter increases the 
temperature of the fluid molecules; consequently, the thermal boundary layer thickness enhances and the heat absorption parameter 
observes the temperature from the liquid molecules and reduces the thermal boundary layer thickness. The parameter α shows a 
considerable impact on Ɵ(ζ). The behavior of Ɵ(ζ) is directly proportional to the heat of reaction parameter. The rising value of α 
increases the thermal boundary thickness. Fig. 8 displays the impacts of Q2 and β on Ɵ(ζ). The impact of Q2 on the temperature profile 
is similar to Q1, but it is interesting to note that a good variation in thermal boundary layer is observed with Q1. The variation of Q2 does 
not show significant variation on the thermal boundary layer. The thermal boundary decreased with the increase of β. The impacts of 
β1 and Ɛ on Ɵ(ζ) are exhibited in Fig. 9. It can be seen that an increase in β1 implicating the higher viscosity of fluid, causes an increase 
in Ɵ(ζ) as a result of developing an ascending thermal boundary layer. With a larger value of the activation energy parameter (Ɛ), the 
thickness of the thermal boundary layer decreased slightly. 

Fig. 8. Effects of Q2 and β on temperature profile.  

Fig. 9. Effects of Ɛ and β1 on temperature profile.  
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Fig. 10. Effects of N and k1 on concentration profile.  

Fig. 11. Effects of Q1 and α on concentration profile.  

Fig. 12. Effects of Q2 and β on concentration profile.  
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Fig. 13. Effects of Ɛ and β1 on concentration profile.  

Fig. 14. Variations of skin friction coefficient (a) Effects of λt1, λt2 and β (b) Effects of λc1, λc2 and N (c) Effects of α, β and Ɛ.  
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The impacts of N and k1 on concentration profile φ (ζ) are demonstrated in Fig. 10. It is noted that both N and k1 raise the con
centration profile and reduce the thickness of the concentration boundary layer. Fig. 11 portrays the impacts of Q1 and α on the 
concentration profile. The concentration profile increases with α. It is also noted that the concentration profile is higher in the presence 
of heat generation and lower in the presence of heat absorption. The combined impact of α with heat generation decreases the 
thickness of the concentration boundary layer. The impacts of β and Q2 on the concentration profile is examined in Fig. 12. One may 
note that the temperature dependent heat generation/absorption parameter does not have significant impacts on the concentration 
profile. The concentration boundary layer increases with the increase of β. Fig. 13 is plotted to show the impacts of β1 and Ɛ on the 
concentration profile. It is observed that the increase in β1 reduces the concentration profile, while Ɛ enhances the concentration 
profile. 

The variations of skin friction coefficient, non-dimensional wall temperature, and non-dimensional wall concentration are depicted 
in Figs. 14–16 respectively. The skin friction coefficient enhances with the increase of k1,β1, λc1, β and Ɛ; reduces with λt1, λt2, λc2, N and 
α (Fig. 14). The increasing values of λt1, λt2, λc2, α increase the non-dimensional wall temperature. The non-dimensional wall tem
perature decreases with β1, N, λc1, β, k1 and Ɛ (Fig. 15). The non-dimensional wall concentration rises with the rising values of α, λt1, λt2, 
and λc2 while it decreases with β, Ɛ, β1, N,k1 and λc1 (Fig. 16). 

6. Conclusion 

The nonlinear mixed convection flow of Casson liquid over a stretching surface is investigated numerically in a porous medium. The 
Arrhenius kinetics impact is considered at the boundary. The heat and mass transfer are analysed in the presence of space and tem
perature dependent heat generation/absorption and thermal radiation. The similarity solutions are obtained through the Runge-Kutta 

Fig. 15. Variations of non-dimensional wall temperature (a) Effects of λt1, λt2 and β (b) Effects of λc1, λc2 and N (c) Effects of α, β and Ɛ.  
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Fhelberg method along with the shooting technique. The key findings of the present study are:  

• Enhancing the radiation parameter, space and temperature dependent heat generation, heat of reaction, and activation energy 
accelerate the velocity profile, while the velocity profile decelerates with the increase of the porous medium parameter, space and 
temperature dependent heat absorption, reaction rate constant, and Casson parameters in the presence of nonlinear heat and mass 
transfer and Arrhenius kinetics. 

• The temperature profile increases with the increase of radiation, space and temperature dependent heat generation, heat of re
action, and Casson parameters and reduces with the porous medium parameter, space and temperature dependent heat absorption 
parameter, reaction rate, and activation energy parameters.  

• The concentration profile intensifies with the increase of the porous medium parameter, the radiation parameter, space dependent 
heat generation, heat of reaction, and activation energy, while it reduces with the reaction rate constant, and the Casson parameter.  

• The skin friction coefficient enhances with the porous medium parameter, Casson parameter, first order concentration buoyancy, 
reaction rate, and activation energy parameter and reduces with linear and nonlinear mixed convection due to temperature, and 
nonlinear convection due to concentration, radiation, and heat of reaction parameters.  

• The increasing values of linear and nonlinear mixed convection due to temperature and nonlinear convection due to concentration 
and heat of reaction increases the non-dimensional wall temperature.  

• The non-dimensional wall concentration rises with the rising values of heat of reaction, linear convection and nonlinear mixed 
convection due to temperature, and nonlinear convection due to concentration parameters. 

The current study focused on the heat transmission from an exothermic process to the fluid surrounding it, which drives the 

Fig. 16. Variations of non-dimensional wall concentration (a) Effects of λt1, λt2 and β (b) Effects of λc1, λc2 and N (c) Effects of α, β and Ɛ.  
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convection flow of Casson fluid in a porous Darcian medium. The future directions of the present study are: the researchers may 
consider the flow of various non-Newtonian fluids, which is purely driven by the heat supplied to the fluid by an exothermic reaction. 
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Nomenclature 

C: concentration (kg/m3) 
Cw: concentration of the sheet (kg/m3) 
C∞: concentration far away from the sheet (kg/m3) 
Cf: local skin friction coefficient 
cp: Specific heat capacity (J/kg K) 
D: molecular diffusivity (m2/s) 
E: the activation energy (kcal/mol) 
g1: acceleration due to gravity (m/s2) 
k: thermal conductivity (W/m K) 
kab: coefficient of mean absorption 
kp: permeability of the porous medium 
k1: porous medium parameter 
N: radiation parameter 
p: pressure (kg m− 1s− 2) 
Pr: Prandtl number 
Qr: exothermicity of a reaction 
Q1: space dependent heat generation/absorption parameter 
Q2: temperature dependent heat generation/absorption parameter 
qr: radiative heat flux 
R: gas constant 
Rex

1/2: Reynolds number 
Sc: Schmidt number 
T: local temperature of the fluid (K) 
Tw: temperature of the sheet (K) 
T∞: temperature of the fluid far away from the sheet (K) 
u and v: velocity component in x and y direction (m/s) 
uw: velocity of stretching sheet (m/s) 
x,y: coordinates along and perpendicular to the sheet (m) 
X: reactant 
Y: produce species 

Greeksymbols 
α: heat of reaction 
β: reaction rate 
β1: Casson parameter 
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βt1: first order thermal expansion coefficient 
βt2: second order thermal expansion coefficient 
βc1: first order solutal coefficient 
βc2: second order solutal coefficient 
σsb: constant of Stefan-Boltzmann 
ε: activation energy 
ρ: density (kg/m3) 
g: dimensionless velocity 
θ: dimensionless temperature 
φ: dimensionless concentration 
ζ: dimensionless space variable 
ϑ: the kinematic viscosity (m2 /sec)
τw: wall shearing stress (N/m2) 
λt1 : mixed convection parameter due to temperature 
λt2 : nonlinear convection parameter due to temperature 
λc1: mixed convection parameter due to concentration 
λc2: nonlinear convection parameter due to concentration 
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