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Establishing the data infrastructure necessary to enable health
research is essential for improving healthcare equity, global health,
and economic prosperity. Research has played a pivotal role in the
improvement of human health, but the gains are more pronounced
in countries where most of the research takes place. Despite a higher
burden of disease, only 2% of scientific publications in indexed jour-
nals come from low-income and middle-income countries (LMICs).1

Evidence-based guidelines derived from studies performed in
high-income countries (HICs) are implemented in LMICs that have
different patient populations, disease prevalence, resources, and
needs. For instance, despite a higher burden of sepsis in LMICs, with
90% of 48¢9 million cases and 11 million deaths in 2017 occurring in
LMICs, guidelines provided by The Surviving Sepsis Campaign for
management of septic shock and sepsis-associated organ dysfunction
in children were formulated by forty-nine collaborators, only three of
whom were from LMICs.2 The potential to digitise medical data
across the world could help LMICs build their own clinical practice
guidelines and redraw the unequal map of medical knowledge gener-
ation and validation.3

Over the past decade, there has been a global movement towards
digitisation of healthcare data leading to modernisation of healthcare
data standards that integrate existing and emerging systems through
programming interfaces to ensure safe and timely flow of data.4,5 The
Asia eHealth Information Network, for example, brings together
national officers responsible for digital health and non-government
stakeholders to build an approach towards data governance, program
management and standards across Asia.6 At the same time, decreased
cost of computational capacity, the proliferation of smartphones and
tablets, and migration of infrastructure to the cloud has shifted the
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barrier for building and deploying scalable healthcare data systems
from one of hardware and software to one of people and culture.

As data standards such as Fast Healthcare Interoperability Resour-
ces and Logical Observation Identifiers Names and Codes gain trac-
tion across the world, LMICs will have the potential to collect, store,
and exchange their healthcare data during patient encounters using
universal data standards. When technological innovation no longer
serves as the principal barrier, each country could build its own med-
ical knowledge system specifically based on its patient population,
and thus leverage and learn from what is otherwise the “digital
exhaust” of care. In this regard, there has been limited success in the
creation of knowledge systems in both HICs and LMICs to date. The
arduous task of data curation, a requisite step before any analysis can
be performed, does not scale in the absence of a collaborative
research ecosystem. Such an ecosystem remains elusive across the
globe even in countries with significant investments in digital health
and artificial intelligence.

Investing in people and culture will enable health organisations to
build the kinds of scalable data systems that will fuel quality
improvement and continuous learning based on data from their own
populations. International collaborations are important to enable and
expedite knowledge discovery from local healthcare data systems
with less resources while also facilitating their representation in
research studies. With this vision in mind, MIT Critical Data works to
break down silos across disciplines, institutions, regions, and stake-
holders to advance health data science.7 The consortium consists of
healthcare practitioners, computer scientists, engineers, public health
providers, and social scientists who believe that data and learning are
the best medicine for population health. We build communities of
practice with worldwide representation to derive knowledge from
data routinely collected in the process of care to better understand
health and disease, particularly in the local context.

The MIT Laboratory for Computational Physiology (LCP), which
leads MIT Critical Data, developed and maintains the publicly
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available Medical Information Mart for Intensive Care (MIMIC).
MIMIC II, III, and IV are the most widely-used electronic health record
(EHR) databases with open-source code repositories (MIMIC Code
Repository, http://github.com/LCP/mimic-code).8 These resources
comprise a large set of open-access educational materials that have
been developed by the LCP and are freely shared with the global
research community. Over 25,000 credentialed users in academia
and industry from over 110 countries utilise the resource for clinical
research studies, exploratory analyses, and the development of clini-
cal algorithms and decision support tools.

Over the past 5 years, the LCP has organised 38 international
events in 16 countries including Thailand, Brazil, Colombia, Uganda,
Ghana, and Kenya. These include data hackathons, or datathons, and
machine learning workshops.9 Our ecosystem incorporates cross-dis-
ciplinary expertise representing intersections between data science,
healthcare, and the communities they serve. Their input is comple-
mented by pedagogical insights from teachers and education experts;
the result is everyone learning with and from each other to produce
insights that could not have been achieved by any one of these spe-
cialty areas working in isolation. These initiatives take time and have
yet to produce concrete examples of success stories in LMICs.

Big data is proliferating in diverse forms within the healthcare
field, not only because of the adoption of EHRs, but also because of
the growing use of wireless technologies for ambulatory monitor-
ing.10 The availability of bigger and better data to build digital health
tools including algorithms requires a new breed of healthcare pro-
viders as well as additional non-clinical members of the team. Invest-
ments in transforming the culture towards a shared objective of team
learning will ultimately translate into data systems that scale.
Advanced hardware and software technologies will not generate div-
idends for population health unless the organisational culture fosters
these kinds of teams which can collaborate and innovate to leverage
these technologies.
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