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Abstract

Advanced volumetric imaging methods and genetically encoded activity indicators have per-

mitted a comprehensive characterization of whole brain activity at single neuron resolution

in Caenorhabditis elegans. The constant motion and deformation of the nematode nervous

system, however, impose a great challenge for consistent identification of densely packed

neurons in a behaving animal. Here, we propose a cascade solution for long-term and rapid

recognition of head ganglion neurons in a freely moving C. elegans. First, potential neuronal

regions from a stack of fluorescence images are detected by a deep learning algorithm. Sec-

ond, 2-dimensional neuronal regions are fused into 3-dimensional neuron entities. Third, by

exploiting the neuronal density distribution surrounding a neuron and relative positional

information between neurons, a multi-class artificial neural network transforms engineered

neuronal feature vectors into digital neuronal identities. With a small number of training sam-

ples, our bottom-up approach is able to process each volume—1024 × 1024 × 18 in voxels

—in less than 1 second and achieves an accuracy of 91% in neuronal detection and above

80% in neuronal tracking over a long video recording. Our work represents a step towards

rapid and fully automated algorithms for decoding whole brain activity underlying naturalistic

behaviors.

Author summary

An important question in neuroscience is to understand the relationship between brain

dynamics and naturalistic behaviors when an animal is freely exploring its environment.

In the last decade, it has become possible to genetically engineer animals whose neurons

produce fluorescence reporters that change their brightness in response to brain activity.

In small animals such as the nematode C. elegans, we can now record the fluorescence

changes in and thereby infer neural activity from most neurons in the head of a worm,
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when the animal is freely moving. These neurons are densely packed in a small volume.

Since the brain and body are moving and its shape undergoes significant deformation, a

human expert, even after long hours of inspection, may still have difficulty to tell where

the neurons are and who they are.

We sought to develop an automatic method for rapidly detecting and tracking most of

these neurons in a moving animal. To do this, we asked a human expert to annotate all

head neurons—their locations and digital identities—across a small number of volumes.

Then, we trained a computer to learn the locations and digital identities of these neurons

across different imaging volumes. Our machine inference method is fast and accurate.

While it takes a human expert several hours to complete a sequence of volumes, a machine

can finish the task in a few minutes. We hope our method provides a better and more effi-

cient engine for extracting knowledge from whole brain imaging datasets and animal

behaviors.

This is a PLOS Computational Biology Methods paper.

Introduction

Characterizing whole-brain activity is crucial for opening the black box of a biological neural

network. Recent technological advances in genetically encoded calcium and voltage indicators,

volumetric imaging, and behavioral tracking make it possible to simultaneously record the

activity of a large fraction of neurons in an unrestrained animal [1–9], opening the door to an

exploration of brain dynamics and naturalistic behavior at multiple spatiotemporal scales.

Over time, constant deformation of a nematode brain, which causes large displacement and

distortion of neurons, has been a major hindrance to rapid and accurate characterization of

neural activity patterns. Furthermore, highly similar textures and shapes between neurons

within an animal, as well as highly variable distributions of neurons across animals, make

detection and identification of neurons an extraordinarily challenging problem.

Extracting whole-brain activity from an unrestrained C. elegans requires answering two

questions: where are the neurons and who are they? Conventional image processing methods

and deep-learning-based methods have been proposed to solve both problems [10–13]. To

answer the first question, traditional methods use explicit computational models to localize

neuronal regions, for example, by computing the 3D Hessian matrix in the pixel space [11]

and by implementing the watershed algorithm for regional segmentation [11, 13]. Deep-learn-

ing-based methods, such as 3D-UNet [13, 14], train feed-forward neural network models to

find candidate neuronal regions. With a sufficient number of human-annotated supervised

examples, a neural network can effectively and accurately perform the neuron detection task.

Sequence-dependent and sequence-independent methods have been proposed to address

the second question, namely to assign a digital identity to each neuron in every imaging vol-

ume. For example, the recently developed 3DeeCellTracker [13] is a sequence-dependent

method, by which a tracking or registration algorithm maps the correspondence between two

sets of neurons in adjacent volumes. 3DeeCellTracker would work well for semi-immobilized

animals, when cell displacements are relatively small and spatiotemporal continuity of imaging
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volumes approximately holds; but it is prone to error accumulation when cell displacements

are large, rapid and not easily predictable. By adapting the single-particle-tracking framework,

Lagache et al. [15] proposed a method called Elastic Motion Correction and Concatenation

(EMC2) to deal with the tracking gap: neurons may appear and disappear in consecutive time

frames depending on whether calcium florescent signals can be detected. EMC2 was success-

fully applied to extract neural activity in the highly deformable Hydra.

Sequence-independent methods allocate neuron identities by ignoring the temporal order of

imaging volumes. In an earlier work, Nguyen et al. [11] carefully built a 300-dimensional cluster

vector for each neuron in every volume by mapping its correspondence to a point set in each of

the 300 reference volumes, and then allocated digital identities all at once by a hierarchical clus-

tering algorithm. In a different approach, an algorithm aims to find optimal neuron assignment

by maximizing the intrinsic similarity between a point-set in a testing volume and that in a dif-

ferent imaging volume. The intrinsic similarity could be cast in a deep neural network model,

called fDNC [12]. In fDNC, large synthetic point clouds across spacetime, which mimic the

movements of C. elegans head neurons, were used to train a transformer neural network. Dur-

ing inference, the transformer rapidly encodes each neuron’s feature vector, computes pairwise

similarity with those in a reference volume, and allocates each neuron’s digital identity.

Cell matching can also be carried out between an imaging volume and a standard annotated

atlas (e.g., OpenWorm [16] or NeuroPAL [17]) with known cell-type identities (see Digital ID,

cell-type ID, and human annotation for a definition). Neurons or muscle cells in fixed and

straightened worms can be recognized and mapped to the atlas using registration methods

[18] and more recently, probabilistic models that take into account variability of cell positions

[19–21] and take advantage of color information [17] to improve the recognition accuracy [20,

21]. In this paper, we restrict ourselves to matching neuronal digital identities within an ani-

mal; matching cell-type identities across animals is beyond the scope of the present work.

With recent development in machine vision and deep learning, we are asking for fast, effi-

cient, and user-friendly algorithms that take, with minimum human supervision and correc-

tion, raw volumetric imaging data as inputs and extract neural activity traces from all recorded

neurons. Unlike in immobilized animals where cell positions are invariant and spatiotemporal

segmentation could be implemented at once [22–24], 3D neuron detection and segmentation

in freely behaving C. elegans is carried out in every imaging volume independently and has

become the speed bottleneck [11, 13]. For example, 3DeeCellTracker requires specialized pro-

cessing steps such as straightening a worm [11, 13] to facilitate neuron mapping and error cor-

rections. This procedure, together with 3D registration and segmentation, is the most time-

consuming step. To identify neurons across volumes, both fDNC and 3DeeCellTracker [12,

13] require enormous training samples (e.g., large computer-generated synthetic datasets). It

remains to be evaluated whether neural networks trained by data augmentation possess suffi-

cient generalization power when the algorithms are applied to datasets collected from a differ-

ent transgenic animal and by a different imaging system.

Here, we propose a streamlined approach, called CeNDeR (C. elegans Neuron Detection

and Recognition), to extract whole brain neural activity in a freely behaving C. elegans. As in

previous works [1, 2], we combine a spinning disk confocal microscope and a customized

tracking system to record neural activity in the head ganglion while the animal is moving. We

use nuclei-localized red fluorescent protein (mNeptune) as a reference channel to localize and

recognize neurons. The CeNDeR system processes an imaging volume in the following 4 steps.

1) An automatic pre-processing procedure segments the head region and builds a C. elegans
coordinate system. 2) A multi-field detection (MFD) neural network finds, with high confi-

dence, a set of neuronal regions in each frame. 3) By treating regional alignment across adja-

cent frames as a maximum bipartite matching problem, we use the Hungarian method to
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merge candidate regions into a neuron. 4) A multi-class recognition neural network assigns a

digital ID to every neuron in a random volume using two input feature vectors, designed to

extract neuronal density and relative positional information surrounding a neuron. When tak-

ing into account speed-accuracy trade-off, our approach complements recent methods such as

3DeeCellTracker and fDNC. With a small number (* 30) of human-annotated training exam-

ples, CeNDeR can process each volume in less than a second and achieve an accuracy of

88.25% when tracking head ganglion neurons within an animal.

Methods

The CeNDeR pipeline (Fig 1) takes a volume of size W ×H × Z as an input (Fig 1A), and out-

puts neuron objects including each neuron’s digital identity, location, and shape. Our

approach comprises the following four steps. First, we use a combination of image processing

algorithms to extract head and body regions and build the C. elegans coordinate system for

every volume (Fig 1B). Second, we identify local pixel intensity maxima in a frame, which will

be used as anchor points to build multi-field inputs. A trained neural network takes the inputs

and predicts the score of each region as well as its position and shape. By removing overlaps

between regions, the algorithm then finds a list of neuronal regions in every frame {R1, R2, R3,

. . .} (Fig 1C). Third, {Rk} are appropriately merged into a set of neuron objects fN i j i 2
f1; 2; 3; . . .gg by the XNeuroAlignment algorithm (Fig 1D). Finally, we engineer two feature

vectors to characterize each neuron’s relationship with its surroundings. The concatenated

Fig 1. The CeNDeR pipeline. (A) A red channel (RFP) imaging volume consists of a stack of fluorescence images (1024 × 1024 × 18, see Section Imaging

setup for further details). (B) An Automatic Pre-Processing (APP) algorithm crops the head region (blue rectangle) and defines the C. elegans coordinate

system. (C) A Multi-Field Detection (MFD) algorithm generates anchor boxes of different sizes centered at local maxima of pixel intensities. An ANN

refines the shapes and locations of anchor boxes and proposes neuronal regions R (red rectangle) in every frame, each of which is represented by a

quintuple (x, y, w, h, z). (D) A 3D merging procedure views regional alignment across adjacent frames as a maximum bipartite matching problem, solved

by the Hungarian method. N k, N kþ1 and N kþ2 illustrate how the procedure merges neuronal regions into three neuron objects. (E) A multi-class

recognition neural network takes designed feature vectors and assigns an digital identity to every neuron in a volume. Neurons sharing the same identity

are represented by the same color. N is the number of neurons to be recognized.

https://doi.org/10.1371/journal.pcbi.1010594.g001
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features are transformed by a multi-class feed-forward recognition network, trained by a spe-

cific loss function, into a set of digital identities i, i 2 {1, . . ., N}, where N is the total number of

neuron IDs to be recognized and unified across imaging volumes (Fig 1E).

Stage 1: Pre-processing

We designed an Automatic Pre-Processing (APP) algorithm to extract a head region and use it

to build a C. elegans coordinate system (Fig 2). We take the maximum intensity projection

image IMIP of each volume (Fig 2B), denoise the image with median blur (Fig 2C), and perform

the morphological closing operation—dilation followed by erosion—to find connected regions.

To better construct a fully connected head region, we let the size of the dilation filter be slightly

bigger than the erosion filter. IMIP is converted into a binary image using the dynamic threshold

algorithm (Fig 2D), and the contour tracing algorithm [25] is conducted to find contour points

{Chead} of the head, namely the region with the maximal area (Fig 2E). To build the C. elegans
coordinate system, we calculate the anterior–posterior axis and ventral–dorsal axis intrinsic to a

worm (see Algorithm 1). Later, all neuronal positions will be transformed into their intrinsic

coordinates (see Section Stage 4: Neuron recognition). Note that Algorithm 1 relies on the

observation that C. elegans crawls on its side, and it would fail to build an accurate coordinate

system in extreme scenarios: (1) the head is twisting itself; (2) the head and body are touching

Fig 2. Automatic Pre-Processing (APP). (A) A RFP imaging volume. (B) Maximum Intensity Projection (MIP) of the imaging volume. Brighter pixels

represent fluorescence signals. (C) Noises are reduced by median blur filters; a closing operation connects neighboring pixels, from which the worm head

region will be extracted. (D) A dynamic threshold algorithm converts (C) into a binary image. (E) A contour finding algorithm identifies a series of separate

regions. The largest area (yellow contour with a purple mask) is the head region; the rest are body regions (pink contour). (F) A C. elegans coordinate

system is built for the head region. The yellow point represents the center of mass. A: anterior, P: posterior, V: ventral and D: dorsal.

https://doi.org/10.1371/journal.pcbi.1010594.g002
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each other during anO turn. These hard examples require more sophisticated algorithms and

human corrections, and are beyond the scope of the current paper.

Algorithm 1 An algorithm to build the C. elegans coordinate system
Require: the head region Ihead in the maximum intensity projection
image IMIP. Contour of the head {Chead}, the largest connected component
in a binary image.
Ensure: center of mass O, anterior endpoint Pa, posterior endpoint Pp,
ventral endpoint Pv and dorsal endpoint Pd.
1: We define a point of interest whose pixel value � �Ihead þ sðIheadÞ, namely
the sum of standard deviation and mean of Ihead. These selected points
are used to compute moments and O.
2: M00 = ∑x,y Ihead(x, y)
3: M10 = ∑x,y x � Ihead(x, y), M01 = ∑x,y y � Ihead(x, y)

4: O M10

M00
;
M01

M00

� �

5: O is the origin. The longest line segment passing O and intersect-
ing {Chead} at (Pa, Pp) defines the anterior–posterior axis.
6: The line segment perpendicular to the anterior–posterior axis
defines the ventral–dorsal axis. It passes O and intersects {Chead} at
(Pv, Pd).
7: The ventral–dorsal axis divides the head into two regions; the
region containing a greater number of points of interest defines the
anterior direction.
8: The anterior–posterior axis divides the head into two regions; the
region containing a greater number of points of interest defines the
ventral direction.

Stage 2: Neuronal region detection

In the second stage, we apply a deep learning algorithm to detect, frame by frame, all regions

{Rk} that belong to neurons. Each neuronal region is a rectangular bounding box, represented

by a quintuple: Rk = (x, y, w, h, z), where x and y are upper left coordinates of the rectangle; z is

the frame index of a single volume; w and h are width and height of the rectangle respectively.

Instead of examining each pixel in a frame, the APP algorithm from stage 1 has reduced the

searching area to the head region (Fig 3A), much smaller than the size of an entire image. To

accelerate neuronal detection, we first identify local pixel intensity maxima in the head region

(Fig 3B). These local peaks {Pk} likely belong to potential neuronal regions. The center and the

size of a candidate region, however, remain unknown. Next, a trained Artificial Neural Net-

work (ANN) is used to obtain these information. Details of the training, validation and test set

are provided in the ANN training section. Inputs to the ANN include multiple rectangles cen-

tered at {Pk}, called anchor boxes (Fig 3C) and represented by A = (xA, yA, wA, hA, zA), where

xA and yA are upper left coordinates of an box; wA and hA are width and height respectively; zA
is the frame index. Multiple boxes of different sizes are used to cover neurons of various

shapes. Multi-field images (Fig 3D Up), which are concentric with the anchor box, provide

additional local and context information to the neural network. The ANN predicts a score S
for each region, as well as the regional position and size, formulated as corrections,

ðDx̂;Dŷ; ô; ẐÞ, to the anchor box parameters, see Eq (13). Finally, a non-maximum suppres-

sion algorithm ranks the score S of each potential region, removes regional overlaps (Fig 3D

Bottom), and generates a set of neuronal regions {Rk} (Fig 3E).

Stage 3: 3D merging

In the third stage, we introduce XNeuroAlignment (Fig 4) to merge fRz
kg that belong to the

same neuron. We introduce superscript z 2 {1. . .Z} to denote the frame index of a neuronal
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region. The continuous and sometimes irregular movements of a worm could lead to consid-

erable shifts of fRz
kg � N i (Fig 4A), a major challenge for achieving accurate alignment. In

general, stage 3 could be viewed as a maximum weight matching problem in a graph: each

fRz
kg is represented by a vertex; vertices belonging to the same neuron are connected by an

edge whose weight is determined by the overlap between the two neuronal regions, see Eq (2).

This computationally intensive problem is significantly simplified by the following two

observations.

• Exclusion Principle: each neuron appears at most once in a frame. All vertices representing

fRz
kg with identical z are disconnected.

• Continuum Principle: each neuron appears in only one frame or in consecutive frames.

Other scenarios are forbidden. When a neuron appears in adjacent frames, an edge E is

defined to connect two neuronal regions:

Fig 3. Multi-Field Detection (MFD). (A) A cropped head region. Every frame in a volume is cropped in the same

way. (B) Find local pixel intensity maxima (blue points) in A. (C) An enlarged view of the rectangular region in B.

Anchor boxes of different sizes are centered at 3 local maxima. The green, brown or yellow rectangle represents a 7 × 7,

9 × 9 or 11 × 11 anchor box, respectively. (D) Up: an artificial neural network (ANN) including residual blocks

receives multi-field inputs once at a time and outputs a score S and corrections ðDx̂;Dŷ; ô; ẐÞ to the position and

shape of an input anchor box. Bottom: ANN outputs several candidate bounding boxes surrounding an input local

maxima, from which the optimal one is chosen by the non-maximum suppression algorithm. (E) A detection result

(also see S3 Fig). Refined anchor boxes centered at local pixel intensity maxima are filtered by a non-maximum

suppression algorithm. Blue rectangles are detected neuronal regions.

https://doi.org/10.1371/journal.pcbi.1010594.g003
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Fig 4. 3D merging. (A) An illustration of irregular cell movements across frames. The problem of regional alignment arises when the movements of neurons

are significant during a single Z-scan of the imaging volume. Regions belonging to the same neuron, which are represented by ellipses with an identical color,

could display considerable displacements between frames. The XNeuroAlignment algorithm for 3D merging: (B) The algorithm views neuronal regions in a

volume as vertices in a linked list of bipartite graphs, where the IoU score between neuronal regions is the weight of an edge. (C) Every possible alignment

between adjacent frames can be represented by a weight matrix, and the Hungarian algorithm is used to find an optimal row and column permutation that

maximizes the trace (yellow color) of the matrix. (D) A 3D regional split algorithm calculates the mean pixel intensity I of a neuronal region across all the

frames in a neuron. If the intensity profile I(z) has a local minimum at z0, the algorithm will split the neuron object at z0 (red vertical line).

https://doi.org/10.1371/journal.pcbi.1010594.g004
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E 2 fðRz
m;R

zþ1
n Þ j z 2 f1 . . .Z � 1g;m 2 f1 . . .Mzg; n 2 f1 . . .Mzþ1gg, where Mz is the

number of neuronal regions in the zth frame.

Therefore, the combinatorial optimization problem is reduced to finding a set of edges {E}

that maximize the total weights W in a chain of bipartite graphs:

argmax
fEg

W ¼
XZ� 1

z¼1

argmax
fEz;zþ1g

Wz;zþ1
; ð1Þ

where Wz;zþ1; fEz;zþ1g are total weights and edges in a bipartite graph connecting vertices from

adjacent frames. Because each neuronal region belongs to only one neuron, Eq (1) is subject to

the constraint that {Ez,z+1} should not share a common vertex. In other words, the entire graph

is a linked list (Fig 4B), not a tree.

We now define the weight of an edge ðRz
m;R

zþ1
n Þ using the Intersection over Union (abbr.

IoU),

wðRz
m;R

zþ1
n Þ ¼

Rz
m \ Rzþ1

n

Rz
m [ Rzþ1

n

; ð2Þ

which quantifies the regional overlap. Eqs (1) and (2) can be solved by the Hungarian algo-

rithm (Fig 4C). Note that all wðRz
m;R

zþ1
n Þ < t are set to 0, where τ = 0.05 is a predefined IoU

threshold.

The Hungarian algorithm will accidentally merge two neighboring neurons along the Z
axis. We design a partition method to resolve this problem. First, we compute the mean pixel

intensity I of every neuronal region Rz
k in a neuron N i. Second, if the intensity profile I(z) has

a local minimum at z0, we will split N i at z0th frame (Fig 4D).

Our partition algorithm relies on the observation that the displacement of the neuronal

region Rk is dominated by worm motion in the X-Y plane. In our experiments, C. elegans was

sandwiched between a flat agar pad and a coverslip, thereby restraining head movements in

the Z direction. Nevertheless, large up and down movements could lead to incorrect partition

of a single neuron and unification of multiple neurons. One way to amend this problem is to

impose an upper and lower bound on the longitudinal neuronal size. We notice that there is a

strong correlation between the cell nucleus size in the X-Y direction and in the Z direction,

suggesting that size information can be directly learned from data.

Stage 4: Neuron recognition

In the final stage, we propose a few-shot learning method to recognize the digital identity of

each neuron. First of all, we will discuss how to extract meaningful features that can help dis-

tinguish neurons. Second, we will introduce a deep recognition neural network for rapid infer-

ence of digital ID across imaging volumes of a single animal.

In the spirit of few-shot learning, we aim to carefully design neuronal features to facilitate

machine learning when only a small number of human-annotated training examples is pres-

ent. Here, we face two major challenges. First, a typical neuron in our imaging volume does

not possess a distinct texture or shape, and the disparity in the appearances of the same neuron

across volumes can be even bigger than those between different neurons (Fig 5A). Second, the

location of a neuron is changing. What remains to be invariant and distinct across imaging

volumes of an animal is a neuron’s position relative to its surroundings (Fig 5B). We therefore

propose two discriminable features based on density distribution surrounding a neuron and

each neuron’s K-nearest neighbors.

PLOS COMPUTATIONAL BIOLOGY CeNDeR: C. elegans neuron detection and recognition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010594 October 10, 2022 9 / 27

https://doi.org/10.1371/journal.pcbi.1010594


Neuronal density feature. Let us provide a formal definition of the neuronal density

function at a position x = [x, y, z] using the Dirac δ function

giðxÞ ¼
X

fRjg

Rj=2N i

dðx � xRj
Þ;

ð3Þ

where xRj
is the location of a neuronal region Rj in our imaging volume, and the origin [0, 0, 0]

is the centroid of neuron i. Here and below, we ignore the size of a neuronal region by treating

it as a point in 3 dimensions, and utilize the C. elegans coordinate system (see Stage 1: Pre-pro-

cessing) to compute each neuron’s relationship with its surrounding.

We can understand the physical meaning of g(x) by integrating Eq (3) over a small volume

d3x at a separation x from the origin, which is identical to counting the number of neuronal

regions in that small volume. gi(x) is also called pair correlation function in statistical physics.

We introduce the subscript i to emphasize that gi(x) is a different function when a different

neuron N i is centered at the origin of the C. elegans coordinate system.

In practice, directly discretizing Eq 3 generates a very sparse feature vector that is difficult

for a neural network to learn (see below). We also need to take into account the observation

that neuronal distribution is anisotropic: cells are extensively distributed in the X-Y plane but

are confined in a narrow axial range. To extract meaningful statistics from data, we find it

advantageous to design the feature vector in the cylindrical coordinate [ρ, ϕ, z], and to inte-

grate gi(ρ, ϕ, z) over a larger volume. We therefore count the number of neuronal regions in
between two concentric cylinders, whose depth and radius are given by ðz; lÞ, and ðz � Dz; l �
DlÞ respectively (Fig 6A). To capture density variations in the azimuth and depth directions,

we further divide the volume of integration into 4 territories, anatomically corresponding to

ventral-dorsal and left-right sides. Such a division is empirical, reflecting the information cod-

ing and sparsity trade-off in the density feature engineering.

Mathematically, let us define Cða; b; c; d; e; f Þ as the set of points in a volume with a� ρ�
b; c� ϕ� d; e� z� f. Let us also define neuronal regions as a point set X ¼ fxRj

;Rj =2N ig.

Fig 5. A neuron’s relative position is a more discriminable feature than its shape and texture. (A) The shape or texture of a neuron in an imaging

volume is not a distinct feature, which varies significantly across volumes. (B) The position of a neuron relative to its neighboring partners is a more robust

and discriminable feature. For example, neuron n1 and n2 display similar relative positions in volumes 5 and 25.

https://doi.org/10.1371/journal.pcbi.1010594.g005
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Fig 6. Recognition of each neuron’s digital identity. (A,B) Neuronal feature engineering. In A, 3-dimensional atlas of all detected neuronal regions in a C.
elegans head region. The red point assigns neuron N i to the origin in the C. elegans coordinate system. The neuronal density feature is constructed by

counting the number of neuronal regions n between two color-coded concentric cylinders with expanding radii l and heights z. The n neuronal regions are

subdivided into 4 territories (see Section Stage 4: Neuron recognition for details). The length of a density vector is q × 4, where q + 1 is the number of

concentric cylinders. In B, radiating lines connect N i with its K-nearest neighbours (neuron objects), whose 3 coordinates are used as positional features.

The feature vector is constructed by concatenating F den
i in A and FKnn

i in B. (C) A multi-class recognition neuronal network. First, the input feature vector

is transformed into a high-dimensional embedding vector c. Second, the final linear layer computes the cosine similarity between c and each column vector
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Counting the neuronal regions in a given volume, for example, can be defined as

X \ Cð0; l; � p=2; p=2; 0; zÞ

�

Z z

0

dz
Z l

0

rdr
Z p=2

� p=2

d� giðr; �; zÞ
ð4Þ

Counting the number of neuronal regions in the aforementioned 4 territories is thus given by

ni l; zþ;Vð Þ ¼ X \ C 0; l; �
p

2
;
p

2
; 0;

z

2

� �
n C 0; l � Dl; �

p

2
;
p

2
; 0;

z � Dz

2

� �� �

ni l; z� ;Vð Þ ¼ X \ C 0; l; �
p

2
;
p

2
; �

z

2
; 0

� �
n C 0; l � Dl; �

p

2
;
p

2
; �

z � Dz

2
; 0

� �� �

ni l; zþ;Dð Þ ¼ X \ C 0; l;
p

2
;
3p

2
; 0;

z

2

� �

n C 0; l � Dl;
p

2
;
3p

2
; 0;

z � Dz

2

� �� �

ni l; z� ;Dð Þ ¼ X \ C 0; l;
p

2
;
3p

2
; �

z
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; 0

� �

n C 0; l � Dl;
p

2
;
3p

2
; �

z � Dz

2
; 0

� �� �

ð5Þ

On the left hand side of Eq 5, V/D indicates ventral/dorsal, and zþ/z� indicates left/right side

of a worm respectively. The neuron density feature is a vector

F den
i ¼ ½niðl1; zþ1 ;VÞ; . . . ; niðlq; z�q ;DÞ�, where lq and zq are discretized quantities for l and z.

Note that when applying the algorithm to datasets that do not possess neuronal region

information, and include only the centroid coordinates of 3D neuron objects, we can straight-

forwardly modify Eq 3 into:

giðxÞ ¼
X

fN jg

j 6¼ i

dðx � xjÞ;
ð6Þ

where we substitute xRj
by the location of a 3D neuronal object xj.

K-nearest neighbors feature. The cylindrical coordinates [ρ, ϕ, z] of K-nearest neurons

surrounding N i are used to build the K-nearest neighbor feature vector (see Fig 6B):

FKnn
i ¼ ½r1; �1; z1; . . . ; rK; �K; zK �. The K neuron objects are arranged in an ascending order

based on their distance from the origin.

Recognition neural network, training, and loss function. Next, a trained deep recogni-

tion neural network is used to predict each neuron’s digital identity. The inputs to the recogni-

tion network is each neuron’s feature vector, built by concatenating neuronal density feature

and K-nearest neighbors feature from a given volume (Fig 6C). Below, we discuss model

details.

In the final layer of our recognition neural network, an embedding feature vector c

(c 2 Rd
) for neuron N i is linearly transformed into an output y (y 2 RN

), and the probability

in the weight matrix W. Third, after incorporating margin penalty, scaling, and softmax operation, the model predicts the probability for each digital ID,

from which a cross entropy loss between the model result and the ground truth is computed and back propagated during the training phase. (D) Geometric

representation of embedding feature vectors. wj is a column vector in the weight matrix W. In the case of softmax classification (left), examining the dot

product between wj (blue arrow) and an embedding feature vector that belongs to the same class (solid black arrow) or a different class (dashed arrow)

suggests that the intra-class dot product could be smaller than inter-class dot product, resulting in classification error. Normalization and scaling drive the

embedding feature vectors onto a hypersphere (middle); margin penalties help reduce intra-class distance while increasing inter-class distance (right). After

training, every column vector wj now points toward the centre of a neuron cluster. (E) Four examples illustrate decision boundary and margin in a binary

classification task: a different parameter m in the loss function specifies a different geometry of the decision boundary. Adapted from [26].

https://doi.org/10.1371/journal.pcbi.1010594.g006
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of a given digital identity is computed using the softmax operation (Fig 6C):

y ¼WTc; W 2 Rd�N ð7Þ

pj ¼
eyj
P

je
yj ð8Þ

The corresponding cross-entropy loss Li for neuron N i is given by:

Li ¼ � log
ejwx jjcjcos yx

ejwx jjcjcos yx þ
P

j6¼xe
jwj jjcjcos yj

ð9Þ

where wj 2 R
d

is the jth column vector of the weight matrix W; ξ is the human-annotated

label identity for N i; θj is the angle between wj and c; θξ is the angle between wξ and c.

The softmax loss function, however, is not optimized for intra-class similarity, namely the

same neuron across volumes, and inter-class diversity, namely different neurons across vol-

umes. An example in Fig 6D left shows how the spatial distribution of embedding feature vec-

tors could lead to incorrect classifications. To improve the discriminability of the recognition

model, we introduce several modifications in Eq (9) [26–32]. First, motivated by the hard

examples in Fig 6D (left panel), we normalize c and wj so that the loss function is exclusively

computing the cosine similarity between a feature vector and a weight vector on a d-sphere.

Second, to further increase the inter-class distances, we introduce a hyperparameter s to scale

the hypersphere radius (Fig 6D middle panel). Third, we introduce margin penalties m as

hyperparameters (Fig 6C) to maximize intra-class compactness and inter-class distance (Fig

6D right panel) in the θ-space, the N-dimensional space spanned by the angles between an

embedding feature vector and every column vector in the weight matrix W.

Together, we consider the following loss function in our model

L0i ¼ � log
esðcosðm1yxþm2Þ� m3Þ

esðcos ðm1yxþm2Þ� m3Þ þ
P

j6¼xe
s cos yj

ð10Þ

The geometries of decision boundary in the θ-space, specified by m1, m2, m3 respectively, are

different [26]. As an illustration, let us consider a binary classification task with two neuron

classes (Fig 6E): m1 penalty changes the slope of decision boundary; m2 penalty translates the

decision boundary in the normal direction; m3 penalty makes the decision boundary nonlinear

[26]. All three parameters would enforce a larger angular margin. By hyperparameter tuning,

in practice we find that setting m1 = 1.05, m3 = 0.05 (S1 Table) gives the best performance in

the validation data.

Fig 6D (right panel) provides a geometric view of the trained embedding feature vectors: N
discrete neuron clusters are distributed sufficiently far away from each other on a d-sphere

with radius s. Because wξ is optimized to maximize its cosine similarity with c, each column

vector of W could well approximate a direction towards the centre of each cluster (also see S2

Fig).

Inference. During inference, the trained recognition neural network transforms

concatenated feature vectors f½F den
i ;FKnn

i �g into embedding feature vectors {ci}, where the sub-

script i indicates different neurons. Next, we consider the following two cases.

• Tracking within an animal: the test and the training volumes belong to the same animal. We

compute the cosine distance matrix D with Dij ¼ 1 �
ci�wj
jci jjwj j

. The digital ID of each neuron

can be allocated by finding the best match between all pairs, namely the optimal row and
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column permutations that minimize the trace of D, a problem that can be solved by the Hun-

garian algorithm.

• Tracking across animals: the test and the training volumes belong to different animals. We

first select an inference volume as a template, compute {cj} from the template, and let W =

[c1, . . ., cN]. Next we also use the Hungarian method to allocate each neuron’s digital ID in

other inference volumes.

Digital ID, cell-type ID, and human annotation

Throughout the paper, we have used and discussed two kinds of neuronal identities that worth

formal definitions and clarification:

• Digital ID: a digital number assigned to a neuron. The number itself does not have any bio-

logical meaning. Because it is consistent across imaging volumes within an animal, digital ID

allows the extraction of whole brain neural activity. digital IDs across animals do not have to

correspond to each other.

• Cell-type ID: Uppercase letters indicating class based on anatomy and synaptic connectivity

followed by L (left), R (right), D (dorsal), or V (ventral) [33]. Digital ID and cell-type ID do

not have a fixed correspondence across animals.

Human annotation involves drawing bounding boxes to identify neuronal regions and

assigning each neuron a digital ID across volumes within a single animal. A total of 350 vol-

umes were labelled (C1, Table 1) in our main dataset. To identify neurons, we first label cells

around the amphid and ventral nerve cord, for these two regions have relatively sparsely dis-

tributed neurons. Next, we utilize local structural traits to label neurons within the nerve ring.

All labeled volumes are carefully examined and compared with a few pre-selected volumes. In

order to test whether the knowledge learned by the machine can be used to track neurons in

another animal, we also manually labelled volumes from two additional worms (C2 and C3,

Table 1).

Imaging setup

To capture whole brain neural activity in a freely behaving C.elegans, we combined a spinning

disk confocal inverted microscope (Nikon Ti-U and Yokogawa CSU-W1, Japan) with a cus-

tomized upright light path for worm tracking. Fluorescence signals, emitted from neurons at

different depths in a head ganglion, were collected by a high NA objective (40X, NA = 0.95,

Nikon Plan Apo), driven by a high-precision scanner (PI P721.CDQ). The measured lateral

resolution is 0.30 μm/pixel; the scanning step along Z-axis is 1.50 μm. An imaging volume

comprises 18 two-channel fluorescence images recorded at 100 fps by two sCMOS cameras

Table 1. The organization of CeNDeR dataset. To train and test CeNDeR, we used 3 human-annotated worms specified as C1, C2 and C3 in this paper. “/ vol” indicates

an average number per volume.

Dataset

name

Worm

name

Total

volumes

Training

volumes

Validation

volumes

Test

volumes

Number of labelled

neurons /vol

Number of tracked

neurons /vol

Strain

CeNDeR

C1 350 n 20 350 − (n

+ 20)

161 161 ZM9644

C2 30 0 0 30 142 142 ZM9644

C3 30 0 0 30 137 137 ZM9644

https://doi.org/10.1371/journal.pcbi.1010594.t001
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(Andor Zyla 4.2, England) simultaneously. Our imaging system thus has a volume rate� 5

Hz. Reducing the volume rate by increasing the inter-volume interval is not critical for CeN-

DeR, since both our training and inference methods are sequence-independent. A customized

infrared LED ring (850 nm) was mounted above a worm, and dark-field images of worm

behaviors were captured by an upright light path and recorded at 25 fps by a USB-3.0 camera

(Basler acA2000–165umNIR).

Red fluorescence channel for detecting and tracking neurons

Our calcium imaging experiments were carried out on transgenic animals (ZM9644 hpIs676
[Pregf-1::GCaMP6::3×NLS::mNeptune]), where green fluorescent calcium indicator GCaMP

and red fluorescent protein mNeptune are co-expressed in the cell nuclei by a pan-neuronal

promoter. The activity-independent RFP channel was used to detect and identify neurons; the

activity-dependent signal was extracted by linearly mapping the neuron position from the red

to the green channel (Fig 7). We inferred neural activity from the ratiometric measure:

R ¼
FGCaMP

FRFP
; ð11Þ

where the red fluorescence FRFP was used as a reference to reduce spurious signals arising

from animal movements.

Code availability

The CeNDeR pipeline as well as the human annotation and proofreading toolkit can be

accessed at https://github.com/Wenlab/CeNDeR.

Results

CeNDeR aims to rapidly detect all neuronal regions in a volumetric image, extract each neu-

ron’s 3D shape, and assign a consistent digital ID to each neuron across spacetime in a freely

behaving C. elegans. The entire pipeline is divided into two parts: neuron detection task and

neuron recognition task. To tackle neuron detection, we borrow deep learning methods from

object detection, and use a trained neural network to predict 2D bounding boxes of all

Fig 7. The CeNDeR system. (A) An RFP channel volume. (B) The CeNDeR pipeline takes the raw imaging data and

outputs the location, shape and identity of every neuron in a volume. (C) A calibrated linear map allows the

identification of each neuron’s location in the green channel, from which the calcium fluorescence signals, FGCaMP of

all recognized neurons can be extracted. (D) The whole-brain neural activity vector R can be inferred from the ratio of

FGCaMP to FRFP.

https://doi.org/10.1371/journal.pcbi.1010594.g007
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neuronal regions within a stack of fluorescence images. Next, by taking into account the physi-

cal constraints on spatial distribution of neuronal regions, we apply the Hungarian algorithm

to merge 2D regions into 3D neuron objects. Unlike 3DeeCellTracker and other related meth-

ods that use extensive image registration and segmentation algorithms, we strive to minimize

pixel/voxel-wise computations in order to maximize detection speed.

To tackle neuron recognition, we hypothesize that each neuron’s digital identity (see Digital

ID, cell-type ID, and human annotation) is encoded by the density distribution of cell regions

surrounding the neuron of interest and the relative positions between neurons. Using these

spatial information as inputs, we train a deep neural network classifier from a small number of

human-annotated examples to allocate each neuron’s digital ID across volumes. Because the

inference of digital IDs can be carried out independently for each volume, our recognition

algorithm is a sequence-independent method.

The Results section is organized as follows. First, we report the performance of the neuron

detection model. Because there is no publicly available raw imaging dataset with human-anno-

tated neuronal regions, we restrict the evaluation to the three datasets (Table 1) collected by

our imaging system. Second, we evaluate the performance of the neuron recognition model by

considering two tasks. In the first task, a small fraction of volumes collected from a single freely

behaving C.elegans are used for training, while the remaining volumes from the same animal

are used for testing. In the second task, we test the performance of our trained recognition

neural network on a different animal (either the same strain or different strains generated by a

different lab). Finally, we compare the model training time, inference speed, and accuracy with

other state-of-the-art recognition methods under the same benchmark.

Neuron detection

Neuron detection consists of two stages, neuronal region detection and neuron merging. The

algorithms are detailed in Stage 2: Neuronal region detection and Stage 3: 3D merging. We use

precision, recall, and F1 score to quantify region detection and merging results, respectively.

We chose the model whose performance on the validation volumes showed the best 2D F1

score during the training phase (see Table 2 for details). If the IoU (intersection over union)

between a predicted region and a ground truth region is greater than a threshold 0.3, the pre-

dicted region is a True Positive (TP). Precision is the ratio of the number of TPs to the number

of predicted regions, and recall is the ratio of TPs to the number of ground truth regions. F1

score is defined as the harmonic mean of precision and recall, namely 2/(recall−1 + precision−1).

Region correction. We applied a simple location transform to implement region correc-

tion, inspired by Girshick et al. [34]. During training, an ANN took an anchor box as an input

and generated a score S, as well as corrections to the box position and size ðDx̂;Dŷ; ô; ẐÞ. The

ground truth that has the maximum overlap with the box is the target. The ANN computed

the binary cross-entropy loss for S and L2 loss for position and size corrections. The targeted

corrections are defined as:

Dx ¼ ðxG � xAÞ=wA

Dy ¼ ðyG � yAÞ=hA

o ¼ wG=wA

Z ¼ hG=hA

ð12Þ

where xG, yG, wG, hG represent upper left coordinates, width and height of a ground-truth (tar-

get) region; xA, yA, wA, hA, zA represent upper left coordinates, width and height, and frame
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index of an anchor box. During inference, a box and its predicted corrections ðDx̂;Dŷ; ô; ẐÞ
were transformed into a neuronal region candidate (x, y, w, h, z):

x ¼ Dx̂ � wA þ xA

y ¼ Dŷ � hA þ yA

w ¼ ô � wA

h ¼ Ẑ � hA

z ¼ zA

ð13Þ

ANN training. Our detection neural network was trained by 30 randomly chosen vol-

umes and 20 validation volumes from C1, and tested by 300 volumes from C1, 30 volumes

from C2, and 30 volumes from C3. We used stochastic gradient descent with warm restarts

and cosine annealing optimization strategy [35] to optimize network parameters and avoid

gradient explosion. The detection model received inputs from 5-channel 41 × 41 concentric

multi-field images (Fig 3D), including an anchor box and 4 cropped images with various sizes

(15 × 15, 31 × 31, 41 × 41, 81 × 81). Smaller or larger patch size would facilitate local or global

feature learning respectively. A patch smaller than 41 × 41 was padded to 41 × 41; a patch big-

ger than 41 × 41 was resized to 41 × 41. The algorithm removed regions whose scores S< 0.4

and whose overlapping thresholds (derived from the non-maximum suppression algorithm)

are less than 0.20. These values gave the best performance in the validation data. Pre-defined

anchor box size was set to “9 × 9” or {“7 × 7”, “11 × 11”}. Table 2 presents performances from

different anchor box sizes, in which “9 × 9” represents the best trade-off between training

time, inference speed and accuracy, consistent with the observation that 9 is the average

regional size by human annotation (S1 Fig).

Neuron recognition

The neuron recognition model aims to allocate consistent digital IDs for detected neuron

objects across a 4D imaging dataset from a freely behaving C. elegans. Throughout this subsec-

tion, the word recognition is used interchangeably with the word tracking.

Table 2. 2D neuron detection and 3D merging results. During detection, two different sets of predefined anchor box sizes—“9 × 9” or {“7 × 7”, “11 × 11”}—are used.

Three experimental 3D merging results are presented: merging of human annotated neuronal regions, where 2D detection performance is irrelevant and thereby repre-

sented by “-”; 3D merging of neuronal regions detected by an ANN. Box sizes of “7, 11” have slightly better 2D detection and 3D merging F1 score, but this combination

exhibits lower inference speed and requires significantly longer training time than box size “9” does. “ms/vol” refers to milliseconds per volume.

CeNDeR C1 CeNDeR C2/C3

Task name Anchor box size Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%) Training time Inference time (ms/

vol)

Region

detection

9 (2.7 μm) 90.67 94.91 92.74 90.43 94.85 92.58 4.5 hours 556

7,11 (2.1 μm, 3.3

μm)

90.58 95.78 93.11 89.93 96.39 93.05 8 hours 1087

Merging

- 98.54 85.82 91.74 95.48 91.68 93.53 - 43

9 (2.7 μm) 84.31 82.87 83.58 84.58 86.89 85.72 - 50

7,11 (2.1 μm, 3.3

μm)

85.91 84.09 84.99 86.24 88.52 87.36 - 54

https://doi.org/10.1371/journal.pcbi.1010594.t002
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Tracking neurons within an animal. To evaluate the performance of our algorithm, we

first trained our recognition neural network on a small number of randomly chosen, human-

annotated imaging volumes, 20 validation volumes, and then tested the model on the remain-

ing volumes from the same animal.
Our algorithm is detailed in Stage 4: Neuron recognition. Briefly, the recognition neural

network received a concatenated feature vector (Fig 6A and 6B) from each neuron, including a

k × 3 dimensional K-nearest neighbor feature and a q × 4 dimensional neuronal density fea-

ture. Each input feature vector was embedded onto a d-dimensional sphere with radius s. k,q,

d,s were optimized hyperparameters in the model (S1 Table). Furthermore, we introduced and

optimized margin penalty hyperparameters (S1 Table) in the cross entropy loss (Eq 10) to

maximize inter-class distances while minimizing intra-class distances.

First, we report the tracking performance on C1 (Table 1), a total 350 human-annotated

sequential imaging volumes collected by our imaging system. Notably, trained embedding fea-

ture vectors formed N = 163 + 1 segregated neuron clusters with a large inter-cluster distance

(Fig 8A). N is a hyperparameter representing the number of neuron classes (see S1 Table),

where + 1 denotes an extra class. Dimensionality reduction (Fig 8B) reveals that the majority

of validation and test samples were organized near the corresponding trained cluster centers.

The top-1 recognition accuracy increases monotonically with the number of training volumes,

reaching an average 88.25% with 30 randomly sampled training volumes (Fig 8C). Further-

more, the accuracy approaches 95.48% with 130 training volumes. Across the 200 remaining

test volumes, the recognition accuracy fluctuates, including a few cases where the performance

drops below 60% (Fig 8D). Examining the MIP images suggests that these instances corre-

spond to rapid and deep head bends, when dramatic deformation caused some neurons to be

much closer to other sets of neurons. This precluded an accurate inference since our recogni-

tion method relies on relative positional information to identify neurons.

Second, we report the tracking performance on the public dataset NeRVE ([11] and

Table 3). With 130 training volumes, the top-1 recognition accuracy approaches an average

86.51% (Fig 8E), lower than the performance on C1. We suspect two differences in the datasets

affecting the recognition accuracy: (1) fewer neurons were detected and annotated in NeRVE

(Table 3); (2) NeRVE only includes the centroid locations of neuron objects, while C1 also

contains neuronal region information (see Stage 2: Neuronal region detection and S2 Table).

Tracking neurons in a different animal with a pretrained model. We next evaluate the

performance of our algorithm when the recognition neural network, trained on 130 imaging

volumes of C1, was tested on a dataset from a different animal.
First, we tested the tracking performance on C2 or C3, data collected from the same strain

(Table 1) and by an identical imaging system. The top-1 inference accuracy drops to an aver-

age 66.70% across the 60 test volumes (Fig 9A and 9B). Second, we tested the performance on

NeRVE, data collected from a different pan-neuronal imaging strain and by a different lab

([11] and Table 3), and found that the top-1 inference accuracy is 50.08% (Fig 9A and 9B).

These results suggest that worm-to-worm and strain-to-strain variability has a strong impact

on the performance of our recognition algorithm.

We asked whether the variability across different datasets is a major challenge for other

neuron recognition methods. Indeed, when the fDNC model [12] was tested on our datasets,

the inference accuracy drops to an average 41.51% (green violin plots in Fig 9B).

In Table 4, we summarize our within-animal-tracking and across-animal-tracking results

and compare them with other recognition methods under the same benchmark, together with

training time and inference speed. It is important to point out that 3DeeCellTracker cannot be

directly applied to freely behaving C.elegans: an imaging volume must first be straightened and

coarsely aligned to a common template.
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Fig 8. Neuronal feature embedding and classification in the recognition model. (A) Distance matrix between neuron clusters in the feature

embedding space. The matrix represents the cosine distance D ¼ 1 �
wi �wj
jwi jjwj j

between trained weight vectors in the final layer of the recognition neural

network (Fig 6C and 6D). wi can well approximate the direction towards the corresponding neuron cluster center. (S2(B) and S2(C) Fig). The matrix

indices, representing digital IDs, are rearranged by the hierarchical clustering method. Dmin = 0.28, Dmax = 1.62 when values along the diagonal are

excluded, suggesting large inter-cluster distance. (B) t-SNE visualization of the feature embedding space. The low-dimensional representation reveals

intra-class similarity (S2(A) Fig) and inter-class differences among neurons (related to A). For the sake of clarity, feature vectors from 4% of the

training, validation and test volumes are drawn. (C) Train CeNDeR on C1 with different number of randomly chosen volumes and then test on the

remaining volumes of C1. The top-1 accuracy reaches 88.25% with 30 training volumes (star), while the triangle denotes a 95.48% accuracy with 130

training volumes. (D) Overall tracking accuracy of C1 across 200 test volumes when the neural network was trained on 130 volumes. Inset shows MIP

images of two cases with low recognition accuracy. (E) Train CeNDeR on NeRVE dataset with different number of randomly chosen volumes and then

test on the remaining volumes of NeRVE. The top-1 accuracy reaches 84.10% (star) with 80 training volumes, the best performance among existing

tracking methods (see Table 4). The triangle denotes a 86.51% accuracy with 130 training volumes. (F) Overall tracking accuracy of NeRVE dataset

across 1222 test volumes when the network was trained with 130 volumes. In D,F, the horizontal axis represents the volume index over time.

https://doi.org/10.1371/journal.pcbi.1010594.g008
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Cell-type ID recognition

CeNDeR is not a method for identifying cell-type identities (see Digital ID, cell-type ID, and

human annotation). Neurons with defined cell-type exhibit large positional variability across

worms [17, 36], both in absolute positions along dorsal/ventral and anterior/posterior axis,

and in pairwise distances between neurons (Fig 2 in [36]), a finding that is inconsistent with

the central assumption behind our recognition algorithm. Indeed, when testing our recogni-

tion method on the NeuroPAL datasets (Table 3), which contain volumes from different ani-

mals with annotated cell-type IDs, the top-1 inference accuracy is merely 30% (Table 5).

Therefore, additional information, such as color [17], is required, and must be combined with

our current method to allocate cell-type IDs.

Table 3. Description of all Datasets. All datasets used to train or test CeNDeR throughout this paper. The definition of Digital or Cell-type ID could be found in Digital

ID, cell-type ID, and human annotation.

Dataset name State ID type Number of

animals

Number of

volumes

Number of labelled

neurons /vol

Number of tracked

neurons /vol

Strain Reference

CeNDeR Freely

moving

Digital 3 410 158 158 ZM9644 This

paper

NeRVE� Freely

moving

Digital 1 1372 69 118 AML32 [11, 12]

NeuroPAL Yu Immobile Cell-

type

11 11 58 134 AML320(via

OH15262)

[12]

NeuroPAL

Chaudhary

Immobile Cell-

type

9 9 64 119 OH15495 [21]

� The actual dataset used is from [12], which has been rearranged into a more convenient form.

https://doi.org/10.1371/journal.pcbi.1010594.t003

Fig 9. Performance of tracking neurons in a different animal with a pretrained model. (A) Tracking accuracy of

C2/C3 and NeRVE dataset when CeNDeR was trained on C1 with different number of volumes. (B) Violin plot shows

the distribution of tracking accuracy across animals. Pink colors: NeRVE dataset, C2 and C3 inferred by the CeNDeR

method when CeNDeR was trained on 130 volumes from C1; purple colors: C1, C2 and C3 were inferred by the

CeNDeR method when CeNDeR was trained on 130 volumes from NeRVE dataset; green colors: C1, C2, C3 and

NeRVE dataset inferred by the fDNC method. Box plot inside each violin shows 25 and 75 percentiles of the

distribution and the circle indicates the mean.

https://doi.org/10.1371/journal.pcbi.1010594.g009
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Table 4. Tracking methods comparison. We summarize the performances of four different methods in tracking neurons. The task is to assign neurons with consistent

digital IDs across a 4-D imaging dataset. “s/vol” refers to seconds per volume.

Task Method Condition Test dataset Accuracy

(%)

Training

dataset

Training

volumes

Training

time

Inference

time(s/vol)

Model

name

Reference

Tracking neurons

within an animal

CeNDeR Freely

moving

CeNDeR C1 95.48 CeNDeR C1 130 10 mins 0.02 M1♠ This

paper

CeNDeR Freely

moving

CeNDeR C1 88.25 CeNDeR C1 30 6 mins 0.02 M2♠ This

paper

CeNDeR Freely

moving

NeRVE 86.51 NeRVE 130 9 mins 0.01 M3♠ This

paper

NeRVE(1)� Freely

moving

NeRVE 73.1 NeRVE 1 - 10 - [11, 12]

NeRVE(100)� Freely

moving

NeRVE 82.9 NeRVE 100 - > 10 - [11, 12]

3DeeCellTracker

(single mode)?
Immobile Straightened

NeRVE

73 NeRVE

+ synthetic

1

+ 500,000,000

- � 73 - [13]

3DeeCellTracker

(ensemble mode)?
Immobile Straightened

NeRVE

99.8 NeRVE

+ synthetic

1

+ 500,000,000

- � 86 - [13]

Tracking neurons

in a different animal

with a pretrained

model

CeNDeR Freely

moving

CeNDeR C2/

C3

66.70 CeNDeR C1 130 10 mins 0.02 M1♠ This

paper

CeNDeR Freely

moving

CeNDeR C1/

C2/C3

39.93 NeRVE 130 9 mins 0.01 M3♠ This

paper

fDNC Freely

moving

CeNDeR C1/

C2/C3

41.51 Synthetic 268000 12 hours 0.01 - [12]

CeNDeR Freely

moving

NeRVE 50.08 CeNDeR C1 130 10 mins 0.02 M1♠ This

paper

fDNC Freely

moving

NeRVE 79.28 Synthetic 268000 12 hours 0.01 - [12]

♠ Model hyperparameters and feature vector design can be found in S1 Table. If a dataset does not have neuronal region information, we constructed corresponding

feature vectors from neuronal objects.
? 3DeeCellTracker takes 1 additional training volume from the experimental dataset. The reported accuracy covers only the first 300 volumes of the NeRVE dataset.
� NeRVE(1) uses one template for tracking; NeRVE(100) is the full NeRVE model that takes 100 templates from the same individual to make a single prediction ([12]).

https://doi.org/10.1371/journal.pcbi.1010594.t004

Table 5. Cell-type IDs recognition. We summarize and compare the performances of CeNDeR with CRF and fDNC when tested on NeuroPAL strains. Selecting different

template volumes would produce variable recognition results. Here, we present the mean and standard deviation of the recognition accuracy. We reevaluated fDNC results

using their given model. “s/vol” refers to seconds per volume.

Method NeuroPAL Yu

Accuracy (%)

NeuroPAL Chaudhary

Accuracy (%)

Training

dataset

Training

vols

Training

time

Inference time (s/

vol)

Model

name

Reference

CeNDeR 27.79 ± 1.11 42.97 ± 2.35 CeNDeR C1 130 10 mins 0.02 M1♠ This

paper

CeNDeR 27.22 ± 1.35 39.82 ± 0.64 NeRVE 130 9 mins 0.02 M3♠ This

paper

CRF (open atlas) - 40 Synthetic - - - - [21]

CRF (data driven

atlas)

- 74 Synthetic - - - - [21]

fDNC 57.84 ± 4.26 75.65 ± 3.15 Synthetic 268000 12 hours 0.01 - [12]

♠ Model hyperparameters and feature vector design can be found in S1 Table. If a dataset does not have neuronal region information, we constructed corresponding

feature vectors from neuronal objects.

https://doi.org/10.1371/journal.pcbi.1010594.t005
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Speed analysis

We present, in Fig 10, a detailed analysis of the processing time at each step in the CeNDeR

pipeline. The two ANNs (detection and recognition neural networks) ran on a GeForce RTX

3090 GPU (24 GB, 29 TFLOPS in single precision) with CUDA 11.4, and other computations

ran on an Intel Xeon Gold 5220R CPU (24 Cores, 2.2 GHz). Our analysis excludes the time for

data loading and results saving. CeNDeR is a highly-encapsulated and parallelized system that

is able to process acquired volumes simultaneously (e.g., 410 volumes in 5 minutes). Table 6

also compares the speed of CeNDeR pipeline with other methods.

Discussion

CeNDeR is able to rapidly detect and recognize neurons (<1 sec/vol) from whole brain imag-

ing data without compromising the accuracy (Tables 2 and 4). If speed is a concern, our stage

2 and stage 3 in the pipeline (see Stage 2: Neuronal region detection and Stage 3: 3D merging)

provide an alternative to neuron detection methods that rely heavily on pixel- or voxel-wise

segmentation of neuronal objects such as 3D-UNet [14] and watershed algorithm [13]. There

are several other promising approaches for neuron detection. The one-stage deep-learning

detection algorithm (e.g., YOLO [37]) may be a faster solution given that neurons in our data-

set possess similar shapes and sizes; 3D detection or 3D instance segmentation (e.g., Mask

R-CNN [38]) may be an end-to-end solution to detect or segment three-dimensional neurons

directly.

Here a “9 × 9” anchor box (2.7 μm in size) was selected for neuron detection, reflecting a

trade-off between training time, speed and accuracy. Since data collected by customized opti-

cal systems entail different pixel resolutions, a different lab may opt for a different box size to

suit their best need. In addition, different axial resolutions can affect the performance of 3D

merging and neuron recognition, for lower Z resolution results in fewer neuronal regions. In

the extreme case when only 3D neuron objects were used for feature engineering, as in the

NeRVE dataset, we found that the accuracy of neuron recognition could be significantly differ-

ent from that using neuronal region information (S2 Table).

Fig 10. Speed of the CeNDeR pipeline. The processing time (ms/vol) of the entire pipeline and at each step. The

detection step consists of finding local pixel intensity maxima and an ANN detection model. The recognition step

contains feature engineering and a multi-class ANN model.

https://doi.org/10.1371/journal.pcbi.1010594.g010

Table 6. Pipeline speed comparison. We compare the speed of CeNDeR pipeline with other methods, which must

tackle both detection and tracking tasks. “s/vol” refers to seconds per volume.

Method Inference time (s / vol) Reference

3DeeCellTracker (ensemble mode) 86 [13]

3DeeCellTracker (single mode) 73 [13]

NeRVE 48 [11]

CeNDeR 0.8 This paper

https://doi.org/10.1371/journal.pcbi.1010594.t006
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Our lightweight recognition model is suitable for tracking neurons over a long recording in

freely behaving C. elegans and it complements state-of-the-art methods. Both fDNC and CeN-

DeR can rapidly track neurons at 10–20 ms/vol, but ours requires much less training time

(Table 4). To use our method, we recommend the following steps to achieve the best

performance.

1. Annotate carefully a small number (*30) of imaging volumes that cover different head

postures among the recorded 4D imaging dataset.

2. Train the recognition neural network from scratch.

3. Perform inferences on the remaining imaging volumes.

While the overall performance of our recognition method is excellent on the within-ani-

mal-tracking task, there are worst-case scenarios when head bending and brain deformation

are dramatic. Human annotation of 30 volumes may still be a non-trivial amount of user

input. Furthermore, tracking neurons across animals remains an unsolved and challenging

problem. Here we suggest several ways to improve our current algorithm with the aid of newly

developed genetic, imaging, and computational methods.

• Whole brain calcium imaging has been augmented by sparse and combinatorial labeling of

neurons that can be seen in orthogonal color channels [17, 36]. These landmark neurons

possess invariant features and can be added to the existing feature vectors to improve the rec-

ognition accuracy. Color information could be very helpful in the scenario of large brain

deformation, namely when head movement causes a large group of neurons to be squeezed

into a very small region. In addition, combinatorial color labeling can be combined with our

current method to provide cell-type ID information.

• In order to completely solve the neuron recognition problem under the umbrella of super-

vised learning, we, as a community, should make a great effort for sharing and standardizing

datasets collected from different animals, different strains, and by different labs. Creating an

equivalent ImageNet [39] database for C. elegans and other model organisms can leverage

the power of deep-learning for reliably and accurately tracking neurons across animals.

• The idea of generating synthetic datasets [12, 13] that quintessentially capture the neuron

movements and their variability across animals is appealing. Better algorithms can be devel-

oped in this direction. With sufficient supervised data, different ideas, such as the trans-

former [12, 40] and our feature embedding method, can be combined to further improve the

recognition accuracy.

CeNDeR is a versatile method for detecting and recognizing neurons and their activity in a

freely behaving animal. When dealing with data collected under different experimental condi-

tions (e.g., different imaging systems and worm strains), our method aims to quickly learn the

statistical representation of neurons and their relationships from a small number of human-

annotated examples. We have also made an effort to minimize the number of parameters that

need to be blindly tuned. Our supervised approach is potentially applicable to a spectrum of

volumetric imaging data, including neural activity recordings in other model organisms, such

as Drosophia, zebrafish, and mice.

Supporting information

S1 Table. Summary of tuned hyperparameters and feature vector design. For a given train-

ing dataset, identical hyperparameters are used for feature engineering and network training.

Neuronal regions (Region) or objects (Object) are used to build KNN and density feature
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vector, respectively. k and q are parameters for the KNN and neuronal density feature, respec-

tively. d is the dimensionality of the feature embedding space and s is the hypersphere radius.

m1, m2 and m3 are margin penalty coefficients. N is the number of neurons to be recognized.

(PDF)

S2 Table. An exploration of feature vector design using neuronal region or neuronal

object. The recognition model was trained on C1 by using KNN and neuronal density as a

concatenated input vector and tested on various benchmarks, from which the mean accuracy

was calculated. 4 different combinations (neuronal regions or objects) were used to construct

input feature vectors during the training stage, and we refer to M1 in S1 Table for the hyper-

parameters. If the test benchmark does not contain neuronal region information, we con-

structed feature vectors using only neuronal objects.

(PDF)

S1 Fig. Human-annotated region size distribution. The median and average size is 9, so we

design two types of anchor boxes: size 9 and size 7, 11. The second type would better cover

regional size� 6 or� 13. See Table 2 for task performance.

(PDF)

S2 Fig. Statistical analysis and visualization of the recognition model. (A) Intra-class cosine

distance distributions in every neuron cluster. Y-axis is cluster index; X-axis is the cosine dis-

tance between an embedding feature vector c and the corresponding weight vector wξ across

the training set. A dashed line indicates a truncation to fit the figure panel into the page. (B)

Distribution of cosine distance between a neuron cluster centroid and the corresponding

weight vector wξ across the training set. Because the distance is very small (with a median�

0.04), {wj} could represent neuron cluster centers. (C) t-SNE visualization of neuron cluster

centroids and weight vectors in the embedding space, related to B.

(PDF)

S3 Fig. Detected neuronal regions with bounding boxes and digital IDs. Detection (pink

rectangle) and neuron tracking results (blue number inside a pink rectangle) of C2. Note that

a raw imaging volume (1024 × 1024 × 18) has been automatically cropped into a smaller size

(273 × 237 × 18) to embed a head region.

(PDF)
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