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Objective: Although gynecologic and breast (Pan-Gyn) cancers share a variety of
similar characteristics, their response to immunotherapy is different. Immune checkpoint
inhibitor therapy is not effective in all patients, while neoantigen load (NAL) may be a
predictive biomarker. However, the selection of a NAL cutoff point and its predictive
effect remain to be elucidated.

Methods: We divided 812 Pan-Gyn cancer samples from The Cancer Genome Atlas
into three groups based on 60 and 80% of their load percentile. We then correlated the
identified NAL subgroups with gene expression, somatic mutation, DNA methylation,
and clinicopathological information. We also characterized each subgroup by distinct
immune cell enrichment, PD-1 signaling, and cytolytic activity. Finally, we predicted the
response of each subgroup to chemotherapy and immunotherapy.

Results: Across Pan-Gyn cancers, we identified three distinct NAL subgroups. These
subgroups showed differences in biological function, genetic information, clinical
variables, and immune infiltration. Eighty percent was identified as a meaningful cutoff
point for NAL. In all patients, a higher NAL (top 20%) was associated with better
overall survival as well as high immune infiltration and low intra-tumor heterogeneity.
Furthermore, an interesting lncRNA named AC092580.4 was found, which was
associated with two significantly different immune genes (CXCL9 and CXCL13).

Conclusions: Our novel findings provide further insights into the NAL of Pan-Gyn
cancers and may open up novel opportunities for their exploitation toward personalized
treatment with immunotherapy.

Keywords: gynecologic and breast cancer, neoantigen load, immune infiltrate, intratumor heterogeneity,
immunotherapy

INTRODUCTION

In recent years, cancer immunotherapy, especially immune checkpoint inhibitor (ICI) treatment,
has revolutionized the traditional treatments of patients with advanced tumor. Antibodies
targeting CTLA-4 or PD-1/PD-L1 are effective in treating a variety of malignant tumors
(Callahan et al., 2016). However, durable benefits are limited to a minority of patients. The
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biological mechanisms that drive the individual heterogeneity of
these responses are not fully understood, but are important for
the design of personalized immunotherapy strategies. Recently,
some phase 3 clinical trials reported negative results for both
non-selective patients and selected groups, emphasizing the
importance of better predictive biomarkers for clinical demand
(Carbone et al., 2017; Powles et al., 2018). Early findings
have indicated that PD-L1 immunohistochemistry, peripheral
blood markers, several relative gene expression signatures,
and T cell receptor clonality may be associated with clinical
response (Gibney et al., 2016). For example, tumor-associated
macrophages (TAM) and regulatory T cells (Tregs) are associated
with tumor-promoting function (Nishikawa and Sakaguchi,
2014), while CD8+ T cells are associated with improved clinical
outcomes and immunotherapeutic responses (Tumeh et al.,
2014). The antitumor activity of antigen-specific CD8+ T cells
may be the basis for the efficacy of immune checkpoint blocking
therapy since the amount and activity of CD8+ T cells increase
with these drugs (Rizvi et al., 2015). Conversely, a low T cell
density is associated with poor prognosis (Galon et al., 2007).
Additionally, a correlation between a high mutation load and
clinical benefit to immune checkpoint blockade was observed
in a small cohort of patients with melanoma and lung and
colon cancers (Snyder et al., 2014; Le et al., 2015; Rizvi et al.,
2015; Hugo et al., 2016). Moreover, a high tumor mutational
burden (TMB) usually significantly correlates with higher tumor-
infiltrating lymphocyte (TIL) levels (Thomas et al., 2018), and
TMB has been proven to be a predictive biomarker for clinical
benefit after immunotherapy (Samstein et al., 2019).

Nowadays, with the development of new sequencing
technologies, specialized computational methods, and human
leukocyte antigen (HLA) binding predictions, neoantigen has
been utilized. These neoepitopes with specific amino acid
sequence variations generated by cancer somatic mutations
can be recognized by the immune system. Generally, patients
with high TMB have more neoantigens. However, it is unclear
whether a high neoantigen load (NAL) is robustly predictive of
clinical benefit across diverse human tumors.

Gynecologic and breast (Pan-Gyn) cancers share several kinds
of similar characteristics: the Müllerian duct’s development,
the influence of female hormones, and the special gynecologic
oncology effect (Mullen and Behringer, 2014). Recently,
similarities in molecular characteristics have been found in
Pan-Gyn cancers in a comprehensive pan-cancer analysis study
(Berger et al., 2018; Hoadley et al., 2018). These cancers have
been proven to be highly immune-infiltrating tumors in various
clinical and genomic studies (Bregar et al., 2017). However,
the mechanisms of malignant tumor immunity infiltration and
immune response to treatment are still poorly understood.

In this study, we investigated the association between NAL
and overall survival across the following five The Cancer
Genome Atlas (TCGA) cancer types: breast carcinomas (BRCA),
uterine cervical carcinomas (CESC), ovary carcinomas (OV),
endometrial carcinomas (UCEC), and uterine carcinosarcomas
(UCS). They represent the most frequent and aggressive
gynecologic cancers. To better understand the complex impact of
neoantigens, we further comprehensively characterized the NAL

subgroups in a multiple omics view including somatic mutation,
gene expression, DNA methylation, and long non-coding RNA
expressions in these five gynecologic cancers. We characterized
the subgroups by immunity infiltration state, intra-tumor
heterogeneity (ITH), PD-L1 immune blocking point inhibitor,
and other immune signatures. We also predicted the response
of each subgroup to immunotherapy and chemotherapy. The
present research can provide necessary biological information
for NAL, guidance on personalized immunotherapy options, and
decision on patients’ management.

MATERIALS AND METHODS

Patients Tumor Samples
The mutation annotation file (MAF) files containing Pan-Gyn
cancers’ somatic mutation information and DNA methylation
beta value were obtained from The Cancer Genome Atlas Project
(TCGA) pan-cancer analyses data portal1. Transcriptomic
sequencing (RNA-Seq) raw count data of the Pan-Gyn cancers
with 2,199 tumor samples, including 1,049 BRCA, 186 CESC, 419
OV, 488 UCEC, and 57 UCS, were downloaded from the GDC
data portal2. Nine hundred and thirty one immune-related Pan-
Gyn samples were selected with p < 0.05 by the CIBERSORT
algorithm (Newman et al., 2015). The corresponding clinical and
pathologic information files were obtained from Firehose3. The
4,165 gynecologic tumor-specific potential neoantigens predicted
by NetMHCpan 2.8 were available from TSNAdb4 (Hoof et al.,
2009; Wu et al., 2018).

Neoantigen Load Assessment
The MAF file with 812 Pan-Gyn cancer samples was filtered
by tumor-specific neoantigens. The total number of neoantigens
identified was normalized to the exonic coverage sequenced.
The R package “maftools” was used to compute the Pan-Gyn
NAL with the MAF file (Mayakonda et al., 2018). Neoantigen
load cutoffs of 60 and 80% were selected based on the
different immune states, obtaining 163 samples as the neoantigen
load-high (NAL-H) group, 161 samples as the neoantigen
load-middle (NAL-M) group, and 488 samples as the neoantigen
load-low (NAL-L) group.

RNA Analysis
The Ensembl ID for genes was annotated in GENCODE27
to obtain gene symbol names. The protein coding genes
[messenger RNA (mRNA)] and long non-coding RNA (lncRNA)
were selected. Raw count data were then converted into
FPKM (the fragments per kilobase of exon per million
fragments mapped) values for analysis. To reduce noise, we
filtered out low-expression genes with FPKM values below
1 in at least 90% of the samples. Batch effect removal was
performed by the R package “combat.” Differential expression

1https://portal.gdc.cancer.gov/about-data/publications/pancanatlas
2https://portal.gdc.cancer.gov/
3http://www.firehose.org/
4http://biopharm.zju.edu.cn/tsnadb/
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analysis among the NAL subgroups was performed by the
R package “limma” with the standard comparison mode.
The significantly differentially expressed genes were obtained
with a false discovery rate (FDR) < 0.05 and fold change
greater than 2 for overexpression or less than 0.5 for down-
expression. Gene Ontology (GO) annotation was then performed
using the R package “clusterProfiler” to characterize the
subgroups according to the differentially expressed mRNAs.
The correlation between the lncRNAs and mRNAs was
computed, and differentially expressed lncRNAs were filtered
with a correlation higher than 0.6. lncRNA functions were
predicted with their highly correlated genes using gene set
enrichment analysis (GSEA) in the R package “clusterProfiler”
(Yu et al., 2012).

Integrative Analysis of DNA Methylation
and mRNA Expression
We performed integrative analysis among the DNA methylation
and mRNA expression to explore epigenetically silenced or
activated genes (epi-silenced/activated genes). Specifically, we
chose methylation probes that were differentially expressed in the
NAL subgroups and excluded the correlations between probes
and mRNAs. Differentially methylated analysis was performed by
the R package “limma” on defined subgroups. The significantly
different methylation probes were obtained with FDR < 0.05.
We combined the differential expression information with the
differential methylation results by correlation analysis. The
methylation probes of interest were filtered with correlation
higher than 0.6.

Mutation Analysis
MutSigCV was used to infer significant tumor-mutated
genes (q < 0.05) with default parameters (Lawrence et al.,
2013). Significantly different mutations among neoantigens
load subgroups were obtained using the R package “limma”
(FDR < 0.05). According to the hg19 human reference
genome5, we also analyzed 30 mutation signatures with the
MAF file and compared the mutation signatures among the
identified subgroups.

Chemotherapeutic Response Prediction
We predicted the chemotherapy response for each sample
based on the largest public pharmacogenomics database, the
Genomics of Drug Sensitivity in Cancer (GDSC). Three
commonly used and three other useful chemicals were selected,
namely, cisplatin, docetaxel, paclitaxel, etoposide, vinorelbine,
and gemcitabine. The prediction process was performed by
the R package “pRRophetic,” in which the IC50 of the
sample was estimated by ridge regression and the prediction
accuracy was evaluated by 10-fold cross-validation based on
the GDSC training set. All parameters were set by the
fault value, with “combat” for batch effect removal and the
expression of repeated genes summarized as the average
(Geeleher et al., 2014).

5http://hgdownload.cse.ucsc.edu/

Statistical Analysis
All statistical tests were performed by R/3.6.1, using χ2 or
Fisher’s exact test for the categorical data, two-sample Wilcoxon
test (Mann–Whitney test) for continuous data, and Kaplan–
Meier curve of log-rank test and Cox regression for the
hazard ratio (HR). Survival analysis was executed by using
the R package “survival.” Log-rank test was used to estimate
the p value. Fisher’s exact independence test was used to
statistically test the association between the categorical clinical
information and the identified neoantigen subgroups. For all
statistical analyses, a p value less than 0.05 was considered
statistically significant. All statistical modeling and visualization
were performed using the R language.

RESULTS

Overview of Sample Selection and
Subgroup Identification
Among all 2,199 Pan-Gyn tumor samples, 931 significant
immune-related samples were diagnosed (p < 0.05) by the
CIBERSORT algorithm. Based on the mutation information of
the neoantigens in the MAF file, 812 samples were selected,
including 441 BRCA, 71 CESC, 96 OV, 180 UCEC, and 24 UCS
(Supplementary Figure S2). The 812 Pan-Gyn samples with full
survival and clinic pathological information were retained for
downstream analysis.

Four thousand one hundred and sixty-five potential
neoantigens from the TSNAdb gene sites were selected by
integrating the information obtained above. According to the
MAF file, the mutation information on the 4,118 neoantigen
gene sites were kept finally. We used the R package “maftools” to
describe the landscape of the filtered MAF files and compute the
NAL (Supplementary Figures S1, S2). Selecting 60 and 80% as
the NAL cutoffs, 163 samples as the NAL-H group, 161 samples
as the NAL-M group, and 488 samples as the NAL-L group
were identified.

Different Functional Pathways Among
the Neoantigen Load Subgroups
We firstly used “combat” to remove the batch effect in the
expression profiles (Supplementary Figure S2). Then differential
expression analysis identified five significantly dysregulated genes
(CXCL9, CXCL13, IGLL5, AGR3, and TFF3) with a threshold of
FDR< 0.05 and absolute log2(fold change)> 1 (Supplementary
Table S1). Among them, three genes (CXCL9, CXCL13, and
IGLL5) were all upregulated for the NAL-H and NAL-M subg
roups compared with the NAL-L subgroup (Figure 1) and were
involved in immunological processes such as T cell trafficking,
B lymphocyte migration, and antigen binding. Gene Ontology
annotation for these genes indicated enrichment of the immune-
related terms (Figure 1 and Supplementary Table S2), such as
humoral immune response (FDR = 0.001), chemokine-mediated
signaling pathway (FDR = 0.002), and adaptive immune response
based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains (FDR = 0.008). The Kyoto
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FIGURE 1 | (A) Heat map of the differentially expressed genes and an lncRNA of interest among the subgroups. (B) Gene Ontology (GO) functional annotation for
the differentially expressed genes from the cellular component (CC), molecular function (MF ), and biological process (BP) aspects. (C) Interaction network (generated
by GeneMANIA) by three differentially expressed genes. (D) GESA results for AC092580.4 related genes. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG)
results for three interesting differentially expressed genes.

Encyclopedia of Genes and Genomes (KEGG) pathway analysis
denoted that these genes were involved in cytokine–cytokine
receptor interaction, Toll-like receptor signaling pathway, and
leukocyte transendothelial migration (Figure 1). The genetic
interaction network of the three differentially expressed genes
was generated by GeneMANIA. Different line and node colors
in Figure 1 represent different types of interactions and different
immune-related functions.

We compared the correlation between the lncRNA genes and
the three genes above. Interestingly, we found a lncRNA named
AC092580.4, which had strong correlations with CXCL9 and
CXCL13 and was significantly upregulated in the NAL-H and
NAL-M subgroups (Figure 1). To better understand its function,
we selected 37 genes that were highly related with AC092580.4

as a gene set (Supplementary Table S3) and used GSEA to
analyze this pre-ranked gene list (Figure 1). Nineteen terms
were enriched under this lncRNA (Supplementary Table S4),
such as immune-related cells [e.g., CD8 T cells, CD4 T,
and cells and natural killer (NK) cells] and pathways (e.g.,
lymphocyte activation, leukocyte activation, cell death, and
positive regulation of immune system process).

Somatic Mutation Landscape of the
Neoantigen Load Subgroups
Under a stringent threshold of q < 0.05, MutSigCV identified 30
significantly mutated genes (SMGs) among all Pan-Gyn tumor
samples, including 18 neoantigen gene sites of greater interest
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(Figure 2 and Supplementary Table S5). All these mutated genes
differed in the frequency of somatic mutations among the NAL
subgroups (FDR < 0.05). For the top 5 most frequently mutated
genes [TP53 (48% of the samples mutated), PIK3CA (33%),
PTEN (22%), ARID1A (15%), and PIK3R1 (12%)], we described
their distributions in the NAL subgroups (Figure 2). These five
genes have been reported in previous papers (Berger et al., 2018).
However, among all the TCGA gynecologic landmark papers,
there were no previous reports of ACVR2A (Supplementary
Table S5), one of the 18 significantly different neoantigen
mutations (Berger et al., 2018). ACVR2A is a member of the
transforming growth factor beta superfamily that plays a role
in pathways associated with tumor progression and suppression
(Ikushima and Miyazono, 2010).

Here, we also evaluated 30 mutation signatures to better
understand the complex mutational processes. Mutational
signatures provide insight into the mechanisms of tumor
development and contribute to patient treatment decisions
(Helleday et al., 2014). Among them, five significantly different
signatures were obtained, including signature 1, signature 3,
signature 6, signature 13, and signature 30 (FDR < 0.05)
(Figure 2). NAL-H was enriched in signature 6, which is related
to a DNA mismatch repair defect that suggests sensitivity to
checkpoint inhibitors (Berger et al., 2018). NAL-M was enriched
in signatures 3, 13, and 30. Signature 3 is closely associated
with germline and somatic BRCA1 and BRCA2 mutations in
breast, pancreatic, and ovarian cancers. Signature 13 indicates
AID/APOBEC family activity of cytidine deaminase. Signature

FIGURE 2 | (A) Oncoprint shows the somatic mutation landscape of MutSigCV detecting differentially mutated genes among the subgroups. (B) Heat map of the
differential mutation signatures among the subgroups.
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30 has been observed in a small subset of breast cancers. NAL-
L was enriched in signature 1, indicating that the endogenous
process was initiated by the spontaneous demineralization of
5-methylcytosine.

Association Between Neoantigen Load
Subgroups and the Clinical Outcomes
As expected, NAL-H showed the best survival compared with
NAL-M and NAL-L (p = 0.048, HR = 0.578, 95% CI = 0.361–
0.924) (Figure 3). We then compared the differences in the
clinical covariates among the identified subgroups (Table 1).

Based on the clinical information of patients, we examined
multiple variables including age, gender, tumor stage, tumor
type, clinical stage, histological grade, and menopause status.
For the age of patients belonging to the continuous variable, all
samples were divided into two groups with a cutoff point equal
to 55. For other categorical variables, we used their classification
information for group comparison. Four significantly different
variables were obtained, including age, tumor type, clinical
stage, and histological grade. We then converted them into
latent variables and performed univariate Cox regression to
determine whether these parameters affected patient outcome
(Figure 3). Older patients had an increased risk of poor prognosis

FIGURE 3 | (A) Kaplan–Meier curves of the overall survival time for comparing the three subgroups. (B) The forest plot shows some clinical variables affecting
patients’ overall survival.
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TABLE 1 | Comparison of cohorts according to clinical parameters.

Index Group Subgroups p value

NAL-H NAL-M NAL-L

Age (years) ≤55 103 106 271 0.0276*

>55 58 55 217

Gender Female 163 161 484 0.4797

Male 0 0 4

Tumor stage Stage I 5 10 56 0.7686

Stage II 28 52 191

Stage III 7 14 61

Stage IV 0 1 11

Tumor type BRCA 40 78 323 0.0005***

CESC 17 20 34

OV 13 45 38

UCEC 91 16 73

UCS 2 2 20

Clinical stage Stage I 74 20 79 1.42e−105***

Stage II 11 11 12

Stage III 32 47 57

Stage IV 5 4 15

Histological grade G1 18 3 18 0.0387*

G2 28 15 37

G3 71 62 88

G4 4 1 1

Menopause status Premenopausal 24 24 87 0.5402

Postmenopausal 105 79 295

Indeterminate 10 4 32

*p < 0.05; **p < 0.01; ***p < 0.001.

(HR = 2.27). BRCA, CESC, and UCEC patients had better
prognosis (HR = 0.43, 0.81, and 0.60, respectively). Early tumor
stage and a lower histological grade could favor the prognosis
of patients (stage I: HR = 0.32; stage II: HR = 0.50; G1:
HR = 0.07; G2: HR = 0.63).

Immune Infiltration Differences
Associated With the Neoantigen Load
Subgroups
We evaluated several immune-related signatures to gain further
immunologic insights on these subgroups by single-sample
GSEA. Interestingly, there were significant differences in immune
enrichment among the three subgroups. As shown, NAL-H and
NAL-M had significantly higher degrees of adaptive immune
infiltration in T cells, B cells, and cytotoxic lymphocytes, while
NAL-L enriched with innate immune infiltration in eosinophils,
NK cells, mast cells, and interdigitating cells (iDC), and the
differences within these subgroups need to be further studied
(Figure 4). Further research is needed on the causes of the
different immune infiltrations among subgroups.

Specifically, we noticed that NAL-H had significantly lower
ITH, which corresponded with early findings that a low
ITH was an important determinant of good response to
checkpoint therapy (Wolf et al., 2019). Intra-tumor heterogeneity
is independent of tumor mutation burden and can affect

tumor invasiveness and immunity. A high-ITH tumor has a
strong immunosuppressive tumor microenvironment. Moreover,
NAL-H was significantly enriched in T helper cells. A recent
paper reported that the activity of tumor antigen-specific
CD8+ and CD4+ T cells could induce antitumor response in
immunotherapy. The immune response of T helper cells is that
CD4+ T cells can recognize MHC II antigen, which plays an
important role in anticancer activity (Alspach et al., 2019).

Differential Response With
Chemotherapy and Immunotherapy in
Subgroups
To evaluate the traditional chemotherapeutic response of the
NAL subgroups, we trained a predictive model using the GDSC
cell line dataset by ridge regression and assessed its satisfactory
prediction accuracy by 10-fold cross-validation. We estimated
the IC50 for each sample in the Pan-Gyn cancers based on
a predictive model of six chemical drugs (Supplementary
Figure S3). We identified significant differences in the estimated
IC50 for these subgroups of all these chemotherapeutic drugs
(cisplatin: p = 0.0005; paclitaxel: p = 0.0057; docetaxel: p = 0.0001;
etoposide: p = 0.0076; vinorelbine: p = 0.0032; and gemcitabine:
p = 0.0010). NAL-H and NAL-M could be more sensitive to all
six drugs than NAL-L. Specifically, NAL-M had a significantly
sensitive response to docetaxel, etoposide, and paclitaxel. NAL-M
was composed of most basal-like breast carcinomas (BLBC). This
finding was consistent with the report that BLBC has a relative
sensitivity to chemotherapy, which may provide opportunities for
optimizing treatment (Bertucci et al., 2012).

Considering that immunotherapy has revolutionized the
treatment of patients with cancers, we used some immune
signatures to evaluate the ICI treatment response. Early studies
have shown that a high immune cytolytic activity (CYT)
is significantly associated with significant pan-cancer survival
benefits (Rooney et al., 2015) and effectively corresponds to anti-
CTLA-4 and anti-PD-L1 immunotherapy (Ji et al., 2012; Herbst
et al., 2014). We found significant high CYT in NAL-H and
NAL-M, corresponding to the upregulation of PD-1 signaling
signature genes (Figure 4). In conclusion, the presence of CYT,
high immune infiltration, and PD-1 signaling may suggest that
NAL-H and NAL-M have good response to immunotherapy,
especially ICI treatment.

Further Exploration of the Difference
Between NAL-H and NAL-M
Based on the above analysis, NAL-H and NAL-M were
similar in many aspects, including differentially expressed genes,
levels of immune infiltration, response to treatment, etc. In
order to further understand the differences between these
two subgroups, differential expression analysis identified 74
significantly dysregulated genes with a threshold of FDR < 0.05
and absolute log2(fold change)> 0.5, including 34 overexpressed
and 40 down-expressed genes (Figure 5). The GSEA for these
genes indicated enrichment of 15 terms, and three of them
caught our interest, including ESR1 targets down in NAL-
H (FDR = 0.0078), ESR1 up in NAL-H (FDR = 0.0078),
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FIGURE 4 | Heat map of gynecologic cancers’ immune infiltrate state. High and low enrichment scores are presented in red and blue, respectively.

and martens tretinoin response up in NAL-M (FDR = 0.014)
(Supplementary Table S6). Gene Ontology annotations of ESR1
included DNA-binding transcription factor activity and identical
protein binding. A volcano plot was used to display the fold
difference of these genes between the subgroups (Figure 5).

We also compared the correlation between the significantly
different DNA methylation probes and the 74 genes above.
Specifically, we found an interesting methylation probe named
cg17240454, which had strong negative correlation with
SPDEF (Figure 5).

DISCUSSION

Good predictive biomarkers are needed to predict survival
after immunotherapy in Pan-Gyn cancers. In this study, to
investigate the ability of NAL as a predictive biomarker, we
performed an integrative, multi-omics data analysis of the
TCGA Pan-Gyn cancers based on 812 samples. We studied the
relationship between the NAL subgroups and overall survival,
the characterization of the NAL subgroups with multiple omics
data, the estimation of the immune infiltrate status from several
immune signatures, and the ability to predict the outcome of
immunotherapy and chemotherapy. As NAL provides important
information for clinical immunotherapy selection, we attempted
to explain the biological mechanism behind it.

We selected 80 and 60% as the NAL cutoff points, which
divided the 812 samples into three groups: NAL-H, NAL-M,
and NAL-L. Three significantly overexpressed genes (CXCL9,
CXCL13, and IGLL5) in NAL-H and NAL-M were found, and

the GO annotation and KEGG analysis indicated that these genes
were enriched in immune-related terms and pathways. The TNF-
α network activates macrophages and B cells, leading to strong
upregulation of the gene expressions of several chemokines,
especially CXCL13 (Shu et al., 2012). The IFN-γ network
causes CXCL9 to be upregulated in different cells, including
macrophages (Shu et al., 2012). Lymphocyte chemoattractants
(CXCL9 and CXCL13) as immune-activating factors revealed
a high immune state of NAL-H and NAL-M, and they were
highly significant predictors of therapy response. Interestingly,
we found an lncRNA named AC092580.4, which was significantly
correlated with CXCL9 and CXCL13 genes and was significantly
upregulated in NAL-H and NAL-M. This lncRNA may promote
the expressions of CXCL9 and CXCL13. We further studied
the function of AC092580.4 and found that it had an upward
regulation effect on some immune-related cells and pathways.

We used several immune signatures to compare the
differences of the immune infiltrate status among subgroups.
Similarly, we noticed that NAL-H and NAL-M were significantly
enriched in higher degree of adaptive immune infiltration,
including T cells, B cells, and cytotoxic lymphocytes, while
NAL-L was enriched in innate immune infiltration, including
eosinophils, NK cells, mast cells, and iDC. To better understand
the response of treatment, we evaluated subgroup responses
to six traditional chemotherapy drugs. NAL-H and NAL-M
could be more sensitive to all six drugs than NAL-L, and
the higher enrichment of CYT, immune infiltration, and PD-
1 signaling might suggest that NAL-H and NAL-M had good
response to immunotherapy. Both NAL-H and NAL-M appeared
to respond well to chemotherapy and immunotherapy. Based on
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FIGURE 5 | (A) Heat map of the differentially expressed genes between the neoantigen load—high (NAL-H) and neoantigen load—medium (NAL-M). (B) The
volcano plot shows the differential genes between groups. (C) Heat map of a gene of interest and its highly related methylation probe. (D) Correlation of a gene of
interest and its highly related methylation probe.

the above analysis, it seems that the 60% cutoff point of NAL
can effectively distinguish the different immune status among
Pan-Gyn cancers.

However, NAL-H had a significant better prognosis than
the other two subgroups, and we found that NAL-H was
related with significantly lower ITH and enriched in T helper
cells. A recent paper reported that a high-ITH tumor had
a strong immunosuppressive tumor microenvironment (Wolf
et al., 2019). The relative expressions of the neoantigens in
the high-ITH tumor were reduced, reducing the homing ability
of TILs to their target cells and sufficient cytotoxic reactions.
In our NAL-H subgroups, more neoantigens are exposed to
the tumor microenvironment, which enhances the immune
system’s antitumor ability. Meanwhile, with the higher T helper
cells, it can further enhance the antitumor ability in NAL-
H because CD4+ T cells can recognize MHC II antigen
and work together with CD8+ T cells. These may be the
reasons why NAL-H patients had better survival than did NAL-
M patients.

We identified 30 SMGs among the identified subgroups,
including 18 neoantigen gene sites of greater interest. The top five
most common SMGs were TP53, PIK3CA, PTEN, ARID1A, and
PIK3R1. Driver mutant genes (e.g., TP53, KRAS, and PIK3CA)
may interfere with genomic stability and may affect the immune
status by generating neoantigens (Markowitz and Bertagnolli,
2009). We also used 30 mutation signatures to better understand
the complex mutational processes. Interestingly, we found that
NAL-H was enriched in signature 6, which was more common
in uterine tumors and related to DNA mismatch repair defects.
Some studies have proven that mutant signature 6 may indicate
that samples are sensitive to the immune inhibitors (Berger et al.,
2018). NAL-H may be better responded to by ICI therapy.

To further explore the differences between NAL-H and NAL-
M, we integrated gene expression and methylation data. Martens
tretinoin response was up in NAL-M. Under physiological
concentrations of tretinoin, PML-RARα has been reported to
bind with RXR, which may be crucial to its carcinogenic
potential (Martens et al., 2010). NAL-M may have more
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complex carcinogenic mechanisms. The ESR1 gene encodes
an estrogen receptor, whose expression status distinguishes
ER-positive from ER-negative tumors. A recent work showed
differential methylation between these two distinct diseases
(Dedeurwaerder et al., 2011). We found that a key CpG
site, whose Illumina ID is cg17240454, was negatively related
with the gene SPDEF. SPDEF is a member of the ETS
family, whose high expression can promote the migration
and invasion of various cells (Turner et al., 2007). The
downregulation of SPDEF in NAL-M may stimulate the
migration of cancer cells.

Our analyses were limited by the data form TCGA because
pathologists excluded tumor samples with less than 60% tumor
cell nucleus from the study and some important immune
infiltrate samples might be lost (Berger et al., 2018). We also
lacked experimental verification on the targeted classical cellular
immunoassays for confirming cell phenotypic distribution. We
hope that we could further understand the features of various
NAL subgroups across Pan-Gyn cancers.

In summary, this comprehensive analysis of Pan-Gyn cancers
revealed that 80% may be a good cutoff point for NAL
across multiple tumor types. Among all samples, a higher
NAL (highest 20% in each tumor) was associated with
better overall survival. The obtained NAL subgroups were
characterized by molecular features, immune signatures, and
clinical outcome. As we increasingly recognize the impact
of NAL on disease progression and treatment response,
this biomarker may play an important role in predicting
disease outcomes.
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