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Abstract: Populus ussuriensis Kom. is a valuable forest regeneration tree species in the eastern
mountainous region of Northeast China. It is known that diploid P. ussuriensis (CK) performed
barely satisfactorily under salt stress, but the salt stress tolerance of polyploid (i.e., triploid (T12)
and tetraploid (F20)) P. ussuriensis is still unknown. In order to compare the salt stress tolerance
and salt stress response mechanism between diploid and polyploid P. ussuriensis, phenotypic ob-
servation, biological and biochemistry index detections, and transcriptome sequencing (RNA-seq)
were performed on CK, T12, and F20. Phenotypic observation and leaf salt injury index analysis
indicated CK suffered more severe salt injury than T12 and F20. SOD and POD activity detections
indicated the salt stress response capacity of T12 was stronger than that of CK and F20. MDA content,
proline content and relative electric conductivity detections indicated CK suffered the most severe
cell-membrane damage, and T12 exhibited the strongest osmoprotective capacity under salt stress.
Transcriptome analysis indicated the DEGs of CK, T12, and F20 under salt stress were different in
category and change trend, and there were abundant WRKY, NAM, MYB and AP2/ERF genes among
the DEGs in CK, T12, and F20 under salt stress. GO term enrichment indicated the basic growth
progresses of CK, and F20 was obviously influenced, while T12 immediately launched more salt
stress response processes in 36 h after salt stress. KEGG enrichment indicated the DEGs of CK mainly
involved in plant–pathogen interaction, ribosome biogenesis in eukaryotes, protein processing in
endoplasmic reticulum, degradation of aromatic compounds, plant hormone signal transduction,
photosynthesis, and carbon metabolism pathways. The DEGs of T12 were mainly involved in plant–
pathogen interaction, cysteine and methionine metabolism, phagosomes, biosynthesis of amino acids,
phenylalanine, tyrosine and tryptophan biosynthesis, plant hormone signal transduction, and starch
and sucrose metabolism pathways. The DEGs of F20 were mainly involved in plant hormone signal
transduction, plant–pathogen interaction, zeatin biosynthesis, and glutathione metabolism pathways.
In conclusion, triploid exhibited stronger salt stress tolerance than tetraploid and diploid P. ussuriensis
(i.e., T12 > F20 > CK). The differences between the DEGs of CK, T12, and F20 probably are the key
clues for discovering the salt stress response signal transduction network in P. Ussuriensis.

Keywords: P. ussuriensis; triploid; tetraploid; salt stress; response

1. Introduction

In the modern world, the growing environment of natural plants is surrounded by
various biotic (i.e., herbivores, pathogens, weeds, etc.) and abiotic (i.e., water, salinity,
temperature and light) stress factors [1–3]. As one of the most common stress factors that
plant have to face, salt stress abidingly plays a negative effect role in the whole life cycle
of plant [4–6]. In order to adapt to a natural salinity environment, different plant species
developed different levels of salt stress tolerance in the evolutionary process. Meanwhile,
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different varieties/subspecies or ploidies of the same species also probably exhibit different
levels of salt stress tolerance [7,8].

The term “polyploid” refers to the cells and organisms which contain more than two
paired (homologous) sets of chromosomes. Additionally, it is reported that polyploidization
events perpetually play vital roles in the evolution process of global flora [9,10]. Generally
speaking, polyploidy is a common phenomenon in the plant kingdom. For instance,
wheat (Triticum aestivum), maize (Zea mays), banana (Musa nana Lour.), oat (Avena sativa),
strawberry (Fragaria × ananassa Duch.), Florists Dendranthema (Dendranthema morifolium
(Ramat.) Tzvel.), alfalfa (Medicago sativa), potato (Solanum tuberosum), cotton (Gossypium
hirsutum), and coffee (Coffea arabica), etc., are all polyploidy plants [11–17]. The polyploidy
plants include autopolyploid (whose chromosome complement consists of more than two
complete copies of the genome of a single ancestral species) and allopolyploid (whose
chromosomes are composed of more than two genomes each of which have been derived
more or less completely but possibly modified from one of two or more species), and most
natural polyploidy plants are allopolyploid [18,19]. Polyploidy may occur due to abnormal
cell division (during mitosis or metaphase I in the meiosis phase). Furthermore, polyploidy
can also be induced in plants and cell cultures by some chemicals: the best known is
colchicine, which can result in chromosome doubling, although its use may have other less
obvious consequences as well. According to the previously published report, colchicine-
induced octaploid tobacco performed better than tetraploid tobacco under drought- and
cold-stress conditions [8]. In addition, tetraploid Spathiphyllum wallisii exhibited stronger
drought-stress tolerance than its diploid plants [20].

As one of the main forest regeneration tree species in the eastern mountainous region of
Northeast China, Populus ussuriensis Kom. (P. ussuriensis, belonging to Section Tacamahaca)
are also distributed in Korea and the Far East Asia region of Russia. The white wood
of P. ussuriensis is light and soft, and it is widely utilized in construction, shipbuilding,
papermaking, and matchstick-manufacturing industries [21–23]. Therefore, P. ussuriensis is
an important commercial tree species in the forest of Northeast China. According to the
previous research by our colleagues, the normal diploid P. ussuriensis plants were treated
with colchicine to produce tetraploid (autopolyploid) P. ussuriensis, and then the diploid
and tetraploid (autopolyploid) P. ussuriensis were utilized for hybridization to produce
triploid P. ussuriensis [24,25].

According to our previous study, diploid P. ussuriensis did not exhibit very strong
salt stress tolerance [26], while triploid and tetraploid P. ussuriensis performed well under
drought stress [24]. We are now asking ourselves the question whether triploid and
tetraploid P. ussuriensis also performed unsatisfactorily just like diploid P. ussuriensis under
salt stress. In consideration of the previously reported results in other polyploid plant
species, we have a hypothesis that triploid and tetraploid P. ussuriensis probably perform
differently to diploid P. ussuriensis under salt stress. In order to compare the salt stress
tolerance among different ploidies of P. ussuriensis, the diploid (CK), triploid (T12), and
tetraploid (F20) P. ussuriensis plants were selected as the plant materials for analysis. In the
present study, salt stress treatment was taken on CK, T12, and F20 plants; then, the salt-
stress-treated functional leaves of CK, T12, and F20 were harvested to perform physiological
and biochemical index (superoxide dismutase (SOD) activity, peroxidase (POD) activity,
malonaldehyde (MDA) content, proline content, relative electric conductivity, and leaf
salt injury index) determinations and transcriptome sequencing (RNA-seq). The results of
this study not only can answer the question of whether different ploidies of P. ussuriensis
exhibit different salt stress tolerance, but also can provide valuable clues for the molecular
mechanism of salt stress response difference among diploids, triploids and tetraploids
of P. ussuriensis.
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2. Result
2.1. The Leaf Salt Injury Levels of CK, T12, and F20 under Salt Stress

When the plants were cultivated under normal growth conditions (before salt stress
treatment), the T12 plants were higher than the CK plants, and the F20 plants were lower
than the CK plants, i.e., T12 > CK > F20 (Figure 1a). Meanwhile, the F20 leaves were
broader than T12, and the T12 leaves were broader than the CK leaves, i.e., F20 > T12 > CK
(Figure 1b).
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Leaf salt injury index analysis indicated there were significant injury level difference 
among CK, T12, and F20. CK suffered the most severe salt injury (12 d after salt stress, 
50.93 ± 3.57%; 15 d after salt stress, 57.81 ± 3.09%); T12 suffered the most slight salt injury 
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medium salt injury (12 d after salt stress, 45.37 ± 3.19%; 15 d after salt stress, 50.94 ± 3.54%) 
(Figure 2).  

Figure 1. Morphological observation on CK, T12, and F20 plants and functional leaves before and
10 days after salt stress. (a) The plants from left to right indicate CK, T12, and F20 plants under
normal growth conditions (i.e., before salt stress). (b) The leaves from left to right indicate the fifth
functional leaves of CK, T12, and F20 under normal growth conditions (i.e., before salt stress). (c) The
plants from left to right indicate CK, T12, and F20 plants 10 days after salt stress. (d) The leaves from
left to right indicate the fifth functional leaves of CK, T12, and F20 10 days after salt stress.

Morphological observation of the CK, T12, and F20 plants indicated that three clones
all exhibited salt injury symptoms 10 days after salt stress (Figure 1c). A close-up view
of the fifth functional leaves of three clones showed the salt injury spots spread over the
whole fifth leaf of CK; the fifth functional leaf of T12 did not exhibit significant salt injury;
and half of the fifth leaf of F20 contained salt injury spots (Figure 1d).

Leaf salt injury index analysis indicated there were significant injury level difference
among CK, T12, and F20. CK suffered the most severe salt injury (12 d after salt stress,
50.93 ± 3.57%; 15 d after salt stress, 57.81 ± 3.09%); T12 suffered the most slight salt injury
(12 d after salt stress, 24.69 ± 2.36%; 15 d after salt stress, 35.10 ± 3.37%); and F20 suffered
medium salt injury (12 d after salt stress, 45.37 ± 3.19%; 15 d after salt stress, 50.94 ± 3.54%)
(Figure 2).
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Figure 2. Leaf salt injury index of CK, T12, and F20. CK-12, T12-12, and F20-12 indicate the leaf salt
injury index of CK, T12, and F20 on the 12th day after salt stress treatment; CK-15, T12-15, and F20-15
indicate the leaf salt injury index of CK, T12, and F20 on the 15th day after salt stress treatment.

2.2. SOD and POD Activity of CK, T12, and F20 Leaves under Salt Stress

In order to explore the antioxidant capacity of three clones under salt stress, the leaf
SOD and POD activity of them were detected after salt stress treatment. The detection
result showed that the SOD activity of CK (39.22 ± 2.83 U g−1) was a little lower than
T12 (47.69 ± 2.22 U g−1) and F20 (48.74 ± 3.67 U g−1) under normal growth conditions.
Generally speaking, the SOD activity of the three clones first increased and then decreased
to normal levels in the 12 days after salt stress treatment. The SOD activity of CK, T12,
and F20 reached peak values (CK, 88.80 ± 6.71 U g−1; T12, 147.33 ± 9.78 U g−1; F20,
117.65 ± 8.14 U g−1) on the third day after salt stress (Figure 3a). The POD activity of the
three clones in the 12 days after salt stress treatment exhibited a consistent change trend
as their SOD activity, i.e., the POD activity of T12 and F20, significantly increased to peak
values (T12, 882.14 ± 12.58 U g−1; F20, 703.26 ± 16.53 U g−1) on the third day after salt
stress and then decreased to normal levels, while the POD activity of CK increased to the
peak value (CK, 557.24 ± 12.79 U g−1) on the sixth day after salt stress and then decreased
to a normal level (Figure 3b).

2.3. MDA and Proline Content of CK, T12, and F20 Leaves under Salt Stress

In order to explore the salt injury grade and osmotic regulation capacity of three clones
under salt stress, the MDA and proline content of them were detected 0 d, 3 d, 6 d, 9 d,
and 12 d after salt stress. The result showed the MDA contents of CK, T12, and F20 leaves
have no significant difference under normal growth conditions. Then, the MDA contents
of the three clones showed a continuous increasing trend in the 12 days after salt stress,
and the CK leaves exhibited the maximum increase rate (267.02%), while the T12 leaves
exhibited the minimum increase rate (76.00%) on the third day after salt stress (Figure 4a).
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In general, proline content of the three clones first increased and then decreased in the
12 days after salt stress. The proline contents of the T12 (23.12 ± 4.69 µg g−1) and F20
(22.72 ± 4.19 µg g−1) leaves were a little higher than those of the CK (17.51 ± 3.82 µg g−1)
leaves before salt stress treatment (i.e., normal growth conditions). Then, the proline
contents of the three clones increased to peak values (CK, 20.72 ± 4.43 µg g−1, increase rate
18.37%; T12, 42.52 ± 4.39 µg g−1, increase rate 83.88%; F20, 28.55 ± 3.78 µg g−1, increase
rate 25.65%) on the third day after salt stress (Figure 4b).
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2.4. Relative Electric Conductivity of CK, T12, and F20 Leaves under Salt Stress

In order to evaluate the cell membrane permeability of the three clones, their relative
electric conductivities were dynamically detected in the 12 days after salt stress treatment.
The result showed the relative electric conductivities of CK, T12, and F20 leaves exhibited a
continuous increasing trend in the 12 days after salt stress. Under normal growth conditions
(0 d), there were no significant differences between the relative electric conductivity of CK
(13.65 ± 0.68%), T12 (13.03 ± 1.47%), and F20 (13.87 ± 1.53%). After salt stress treatment
(3 d, 6 d, 9 d, and 12 d), the relative electric conductivities of CK leaves were still significantly
higher than that of T12 and F20 leaves, and the T12 leaves still exhibited the minimum
relative electric conductivity among the three clones (Table 1).

Table 1. The relative electrical conductivities of CK, T12, and F20 leaves.

Clone REC-0 d REC-3 d REC-6 d REC-9 d REC-12 d

CK 17.65 ± 1.16 a 21.09 ± 1.84 a 25.96 ± 1.35 a 31.02 ± 3.00 a 35.64 ± 0.85 a
T12 11.70 ± 1.37 b 15.19 ± 1.44 b 16.45 ± 1.03 c 19.03 ± 1.40 c 22.79 ± 1.59 c
F20 13.87 ± 1.62 b 16.92 ± 0.19 b 19.37 ± 1.08 b 24.36 ± 1.02 b 28.69 ± 1.42 b

REC indicates the relative electrical conductivity, %. Data indicate means ± STDEV, “a, b, c “indicate the
significance of difference (n = 3, p < 0.05, multiple-comparison method: Duncan).

2.5. Basic Information of RNA-Seq

Finally, 820,030,512 clean reads (min 40,111,090–max 59,470,590 clean reads) were
obtained from 18 samples (sample name annotation: T01, T02, and T03 indicate the triple
biological repetitions of CK samples under non-salt-stress treatment; T04, T05, and T06
indicate the triple biological repetitions of T12 samples under non-salt-stress treatment; T07,
T08, and T09 indicate the triple biological repetitions of F20 samples under non-salt-stress
treatment; T10, T11, and T12 indicate the triple biological repetitions of CK samples under
salt stress treatment; T13, T14, and T15 indicate the triple biological repetitions of T12
samples under salt stress treatment; and T16, T17, and T18 indicate the triple biological
repetitions of F20 samples under salt stress treatment). The percent of clean data quality
value (Q) that no less than 30 of each sample ≥91.54%. After alignment, min 70.50%–max
72.80% clean reads per library can be mapped to the reference (Populus trichocarpa) genome
(Table 2). Based on the alignment result, 284 new genes (189 among them were annotated)
were discovered (Table S2). Additionally, 305,166–351,663 SNPs were discovered and
annotated (Figure S1).

2.6. The DEGs among CK, T12, and F20 under Salt Stress Treatment

Compared with the non-salt-stress-treated CK (T01, T02, T03), T12 (T04, T05, T06),
and F20 (T07, T08, T09) samples, there were 2060 (1295 up-regulated DEGs and 765 down-
regulated DEGs), 655 (387 up-regulated DEGs and 268 down-regulated DEGs) and 1039
(591 up-regulated DEGs and 448 down-regulated DEGs) DEGs in the salt-stress-treated CK
(T10, T11, T12), T12 (T13, T14, T15), and F20 (T16, T17, T18) samples, respectively. A Venn
diagram and cluster analysis of the DEGs among T01, T02, T03 vs. T10, T11, T12; T04, T05,
T06 vs. T13, T14, T15; and T07, T08, T09 vs. T16, T17, T18 are exhibited in Figure 5 and
Figure S2.

Among the DEGs between T01, T02, T03 vs. T10, T11, T12, there were 31 WRKY
transcription factors (TFs), 48 NAM TFs, 45 MYB TFs, and 27 AP2/EREBP TFs. There were
15 WRKY TFs, 11 NAM TFs, 11 MYB TFs, and 17 AP2/EREBP TFs in the DEGs between
T04, T05, T06 vs. T13, T14, T15. As for the tetraploid samples, there were 15 WRKY TFs,
16 NAM TFs, 21 MYB TFs, and 27 AP2/EREBP TFs in the DEGs between T07, T08, T09 vs.
T16, T17, T18 (Table S3).
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Table 2. Basic information of RNA-seq of CK, T12, and F20 before and after salt stress.

Sample Name Clean Reads Mapped Clean Reads %≥ Q30

T01 41,910,366 30,375,971 92.38%
T02 41,040,924 29,443,067 92.26%
T03 40,111,090 28,728,047 92.32%
T04 44,212,562 32,116,907 91.93%
T05 45,811,970 32,832,194 91.54%
T06 42,112,362 30,218,367 92.16%
T07 41,468,618 30,189,953 91.86%
T08 45,156,026 32,502,831 92.58%
T09 40,742,788 28,892,712 91.59%
T10 40,754,178 28,732,594 91.63%
T11 45,714,746 32,271,613 91.74%
T12 45,579,522 32,301,725 92.16%
T13 57,068,718 40,927,502 92.16%
T14 45,700,546 32,576,326 91.78%
T15 47,126,662 33,622,560 92.31%
T16 48,398,450 34,772,614 92.76%
T17 59,470,590 42,382,740 92.82%
T18 47,650,394 34,081,348 92.47%

Sample name annotation: T01, T02, and T03 indicate the triple biological repetitions of diploid samples under
non-salt-stress treatment; T04, T05, and T06 indicate the triple biological repetitions of triploid samples under
non-salt-stress treatment; T07, T08, and T09 indicate the triple biological repetitions of tetraploid samples under
non-salt-stress treatment; T10, T11, and T12 indicate the triple biological repetitions of diploid samples under
salt stress treatment; T13, T14, and T15 indicate the triple biological repetitions of triploid samples under salt
stress treatment; T16, T17, and T18 indicate the triple biological repetitions of tetraploid samples under salt stress
treatment. Mapped Clean Reads, the amount of clean reads which were mapped to the reference (P. trichocarpa)
genome; %≥ Q30, the percentages of the bases whose Quality Score ≥ 30 (the base calling error rate ≤ 0.1%).
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2.7. GO Classification and GO Term Enrichment on the DEGs among CK, T12, and F20 under Salt
Stress Treatment

GO classification and GO term (biological process) enrichment on the DEGs between
T01, T02, T03 and T10, T11, T12 indicate that most of the significant differentially expressed
genes in CK under salt stress were involved in the metabolic process, cellular process,
biological regulation, signaling, immune system, and cell-killing processes (Figure 6a and
Figure S3a). GO classification and GO term (biological process) enrichment on the DEGs
between T04, T05, T06 and T13, T14, T15 indicate that most of the significant differentially
expressed genes in T12 under salt stress were involved in the cellular process, response
to stimulus, signaling and immune system processes (Figure 6b and Figure S3b). GO
classification and GO term (biological process) enrichment on the DEGs between T07, T08,
T09 and T16, T17, T18 indicate that most of the significant differentially expressed genes
in F20 under salt stress were involved in growth, developmental, metabolic, signaling,
immune system and cell-killing processes (Figure 6c and Figure S3c).
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2.8. KEGG Enrichment on the DEGs among CK, T12, and F20 under Salt Stress Treatment

According to the KEGG enrichment analysis, the DEGs between T01, T02, T03 and
T10, T11, T12 were mainly involved in plant–pathogen interaction, ribosome biogene-
sis in eukaryotes, protein processing in endoplasmic reticulum, degradation of aromatic
compounds, plant hormone signal transduction, photosynthesis, and carbon metabolism
pathways (Figure 7a). Most of the DEGs between T04, T05, T06 and T13, T14, T15 were
involved in plant–pathogen interaction, selenocompound metabolism, cysteine and me-
thionine metabolism, phagosomes, biosynthesis of amino acids, phenylalanine, tyrosine
and tryptophan biosynthesis, plant hormone signal transduction, and starch and sucrose
metabolism pathways (Figure 7b). Most of the DEGs between T07, T08, T09 and T16, T17,
T18 were involved in plant hormone signal transduction, plant–pathogen interaction, zeatin
biosynthesis, and glutathione metabolism pathways (Figure 7c).
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2.9. QRT-PCR Verification

According to the RNA-seq result, WRKY40 (Potri.001G044500) was significantly up-
regulated (37.01 folds), while WRKY4 (Potri.008G091900) was significantly down-regulated
(0.38 folds) in CK under salt stress; NAM (Potri.005G069500) was significantly up-regulated
(20.39 folds), while MYB (Potri.005G001600) and NAC (Potri.007G135300) was signifi-
cantly down-regulated (0.23 and 0.30 folds, respectively) in T12 under salt stress; and
AP2_ERF (Potri.018G038100) was significantly up-regulated (46.53 folds) in F20 under salt
stress. Subsequent qRT-PCR verification indicated that the expression of Potri.001G044500,
Potri.005G069500, and Potri.018G038100 was significantly up-regulated, while the ex-
pression of Potri.008G091900, Potri.005G001600, and Potri.007G135300 was significantly
down-regulated 36 h after salt stress (Figure 8).
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MYB, Potri.005G001600; NAC, Potri.007G135300).

3. Discussion

In plant organisms, the superoxide dismutase (SOD) can protect cells against oxida-
tive damages by scavenging the reactive oxygen species which were caused by salinity
stress [27,28]. As heme-containing monomeric glycoproteins in plants, peroxidases (POD)
catalyze the zymolyte oxidation by utilizing hydrogen peroxide as the electron acceptor.
Additionally, as the result of catalysis, hydrogen peroxide and phenols/amines toxicity in
plant cells are effectively obviated [29]. In the present study, the SOD and POD activity of
diploid was a little lower than triploid and tetraploid P. ussuriensis under normal growth
conditions, and this phenomenon is probably due to their genome size difference [30,31].
The SOD activity of CK, T12, and F20 significantly increased to peak values in three days
and then decreased to normal levels after salt stress, and the SOD activity increase rate
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of T12 (208.91%) on the third day was significantly higher than CK (126.43%) and F20
(141.37%). The POD activity of T12 and F20 significantly increased to peak values (increase
rate, T12, 123.27%; F20, 83.17%) in three days and then decreased to normal levels, while
the POD activity of CK reached the peak value (increase rate 53.17%) on the sixth day
and then decreased to a normal level after salt stress. These results indicate the salt stress
response capacity of T12 was stronger than that of CK and F20 (i.e., T12 > F20 > CK).

Malondialdehyde (MDA) is one of the final products of peroxidation of unsaturated
fatty acids in phospholipids, and its content can reflect lipid peroxidation or cell-membrane
damage in plant tissues [32,33]. Proline plays a typical osmoprotectant role when the
plant suffered osmotic stress (such as salinity and drought), and the instant proline ac-
cumulation presents osmoprotective capacity [34–36]. Relative electric conductivity is a
well-recognized physiological index which can reflect the osmotic regulation capacity of
the plasma membrane under salt stress [37]. In this study, the MDA contents of three
clones all exhibited a continuously increasing trend in the 12 days after salt stress, and the
increase rate of T12 was significantly higher than CK and F20. The proline contents of three
clones increased to peak values on the third day after salt stress, and the increase rate of
T12 was the maximum. Relative electric conductivity of CK leaves was still significantly
higher than that of T12 and F20 leaves, and the T12 leaves still exhibited the minimum
relative electric conductivity among the three clones in the 12 days after salt stress. These
results indicate CK suffered the most severe cell-membrane damage, and T12 exhibited the
strongest osmoprotective capacity, among the three clones, under salt stress.

According to phenotypic observation and leaf salt injury index analysis, CK leaves
suffered the most severe (i.e., CK > F20 > T12) salt injury among three clones in the 15 days
after salt stress. Combined with the above physiology and biochemistry indexes (SOD and
POD activity, MDA and proline content, relative electric conductivity) detection results,
we can conclude that the triploid P. ussuriensis exhibited the strongest salt stress tolerance,
while diploid P. ussuriensis exhibited sensitivity to salinity.

WRKY, NAM, MYB, and AP2/EREBP TFs were all fatal regulation nodes in salt stress
response signal transduction processes in plant [38–42]. Generally speaking, there were
abundant WRKY, NAM, MYB, and AP2/ERF family members clustered among the DEGs
in CK, T12, and F20 under salt stress. However, the detail change fold and amount of
these differentially expressed WRKY, NAM, MYB, and AP2/ERF genes were not identical
in CK, T12, and F20. For instance, WRKY3 (Potri.008G091900) was down-regulated in
CK, while it was not differentially expressed in T12 and F20 under salt stress. WRKY40
(Potri.001G044500) was significantly up-regulated, and MYB86 (Potri.005G001600) was sig-
nificantly down-regulated in CK, T12, and F20 under salt stress. MYB39 (Potri.004G033100)
was up-regulated in CK, while it was not differentially expressed in T12 and F20 under
salt stress. These results indicate that there were not only similar salt-stress-responsive
mechanisms but also different salt-stress-response signal transduction mechanisms in
diploid, triploid, and tetraploid P. ussuriensis. Exploring the biological function of these
special DEGs (such as Potri.008G091900 and Potri.004G033100) is valuable for the further
refinement of the salt-stress-response signal transduction network of P. ussuriensis.

GO term enrichment indicated that most of the DEGs of T12 are involved in response
to stimulus, signaling, and immune system processes. As for the DEGs of CK and F20,
except for some stress response processes, an amount of the DEGs of CK and F20 are
involved with the metabolic process, cellular process, growth, and developmental progress.
These phenomena indicated that the basic growth processes of CK and F20 were obviously
influenced in 36 h under salinity stress, while T12 immediately launched salt stimulus
response processes.

KEGG enrichment indicated the DEGs of CK were mainly involved in plant–pathogen
interaction, ribosome biogenesis in eukaryotes, protein processing in endoplasmic reticu-
lum, degradation of aromatic compounds, plant hormone signal transduction, photosyn-
thesis, and carbon metabolism pathways. Endoplasmic reticulum (ER) stress can induce the
accumulation of unfolded protein in ER and further induce apoptosis [43,44]. Plant aromatic
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compounds such as phenolics are antioxidants under oxidative stress [45]. Plant hormone
signal transduction is also a common stress response pathway [46,47]. Meanwhile, photo-
synthesis and carbon metabolism are basic growth- and development-related pathways of
plants. The DEGs of T12 were mainly involved in plant–pathogen interaction, cysteine and
methionine metabolism, phagosomes, biosynthesis of amino acids, phenylalanine, tyrosine
and tryptophan biosynthesis, plant hormone signal transduction, and starch and sucrose
metabolism pathways. Cysteine is the major component of glutathione, while glutathione
is related to the plant abiotic-stress response. Methionine can control the production of
stress metabolites such as ethylene and glucosinolates. Therefore, cysteine and methionine
metabolism are important abiotic-stress-response processes [48,49]. Glucosinolates are
known as plant-defense-reaction-related compounds. Indole and aromatic glucosinolates
are derived from tryptophan and phenylalanine or tyrosine. Therefore, the biosynthesis of
phenylalanine, tyrosine, and tryptophan is also a vital stress response process in plants [50].
The DEGs of F20 were mainly involved with plant hormone signal transduction, plant–
pathogen interaction, zeatin biosynthesis, and glutathione metabolism pathways. Zeatin is
an important hormone in plant biotic- and abiotic-stress responses [51,52]. Glutathione also
plays an important role in plant abiotic stress tolerance [53,54]. In addition, the enriched
pathway, plant–pathogen interaction, indicated CK, T12, and F20 probably meet with
pathogen stress from the air.

In conclusion, the present study analyzed and compared the salt stress tolerance
of diploid, triploid, and tetraploid P. ussuriensis on phenotypic, physiological, biochem-
ical, and transcriptome levels. The results demonstrated that our hypothesis is correct,
i.e., triploid and tetraploid P. ussuriensis indeed displayed different salt stress tolerance with
diploid P. ussuriensis. Phenotypic, physiological, and biochemical (SOD and POD activity,
MDA and proline content, relative electric conductivity) differences between CK, T12, and
F20 under salt stress indicated diploid, triploid, and tetraploid P. ussuriensis launched
different molecular-response mechanisms to deal with salt stress. Vice versa, the RNA-seq
results (such as the above-mentioned DEG differences between CK, T12, and F20, WRKY3
(Potri.008G091900), MYB86 (Potri.005G001600) and MYB39 (Potri.004G033100), etc.) prob-
ably can explain the phenotypic, physiological, and biochemical differences among CK,
T12, and F20 under salt stress on a molecular level. In further research, the biological
functions and salt-stress-response-signaling mechanisms of these special DEGs (WRKY3,
MYB86, and MYB39) should be studied and verified through a transgenic system, yeast
one- and yeast two-hybrid assays, chromatin immunoprecipitation, and other biological or
biochemical experiments.

4. Materials and Methods
4.1. Plant Materials and Salt Stress Treatment

The diploid (CK), triploid (T12), and tetraploid (F20) of P. ussuriensis plants were
first grown in a substrate (1/2 Murashige and Skoog (1/2 MS) basal medium (Phy-
toTechnology Laboratories, Shawnee Mission, KS, USA) supplemented with 0.1 mg L−1

1-naphthaleneacetic acid (NAA) (Sigma-Aldrich, St. Luis, MO, USA), and then were trans-
planted into plastic pots (20 cm diameter × 18 cm depth) that contained sand and peat
(v/v = 1:2). The transplanted plants were cultured in a culture room of State Key Labora-
tory of Tree Genetics and Breeding, Northeast Forestry University (Harbin, Heilongjiang,
China, northern latitude 45◦43′, eastern longitude 126◦38′) under the following growth
conditions: culture temperatures, 20 ◦C–28 ◦C; relative humidity, 55 ± 5%; photoperiod,
16 h light/8 h dark; photosynthetic photon flux, 150 µmol m−2 s−1. When all the plants
grew to approximately 30 cm, they were subjected to salt stress (120 mM NaCl) treatment.
The NaCl solution was supplied to CK, T12, and F20 plants for 24 h. For physiological
and biochemical index detection: the fourth to sixth functional leaves of CK, T12, and
F20 plants were harvested just before salt stress treatment (i.e., 0 d samples) and 3 d,
6 d, 9 d, and 12 d after salt stress treatment at 8:30 am. Meanwhile, the third functional
leaves of CK, T12, and F20 plants (three biological replicates) were collected just before
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(i.e., 0 h samples) and 36 h after salt stress for the subsequent transcriptome sequencing
and qRT-PCR (relative quantitative real-time PCR) verification. After sample collection, the
tissues were frozen immediately in liquid nitrogen and stored in −80 ◦C freezers prior to
the further experiments.

4.2. Leaf Salt Injury Index Survey

Twelve and fifteen days after salt stress treatment, the leaf salt injury degrees of CK,
T2 and F20 were evaluated (ten biological replicates) by “Leaf salt injury index”. The
evaluation standard of “Leaf salt injury index” referenced the computational formula that
Zhao et al. utilized [55]:

Plant leaf salt injury index =
∑ (i × Ni)

(NT × Gmax)
× 100%,

where i indicates salt injury level (I = 0−4); Ni indicates the number of “i level” leaves; NT
indicates the total number of leaves; Gmax indicates the highest salt injury level (i.e., 4).

4.3. SOD and POD Activity, and MDA and Proline Content Detection

Leaf SOD and POD activities, and MDA and proline contents of each line (CK, T12,
and F20) were determined by Superoxide Dismutase Assay kit-Visible Spectrophotometry
(SOD-2-Y, Comin, Suzhou, China), Peroxidase Assay kit-Visible Spectrophotometry (POD-2-
Y, Comin, Suzhou, China), Malonaldehyde Assay kit-Visible Spectrophotometry (MDA-2-Y,
Comin, Suzhou, China), and Proline Content Detection kit-Visible Spectrophotometry
(PRO-2-Y, Comin, Suzhou, China), respectively, and the detailed detection procedures were
conducted by utilizing a Lambda 25 UV/VIS Spectrophotometer (Perkin Elmer, IL, USA)
according to the manual that the manufacturers provided. All the samples were detected
by three independent repeats.

4.4. Relative Electric Conductivity Detection

To detect the relative electrolytic leakages of CK, T12, and F20 leaves, approximately
0.3 g leaf tissues were taken from each leaf sample by a puncher. First, the leaf tissues were
soaked in distilled water, and their conductivity values (designed as C1) were detected by
a conductometer (FiveEasyPlus FE38, METTLER TOLEDO, Zurich, Switzerland). Then,
the leaf samples were transferred into boiling water for 20 min, cooled down to room
temperature (distilled water was added to make a total volume of 30 mL), and utilized for
total conductivity value (designed as C2) detection. All the leaf samples were detected by
three independent repeats. The relative electrolytic leakages of all samples were calculated
as follows:

Relative electrolyte leakage = (C1/C2)× 100%

where C1 is the first detected conductivity value of each leaf sample, C2 is the total
conductivity value of each leaf sample.

4.5. RNA-Seq

In order to further explore the difference between CK, T12, and F20 in molecular level,
RNA-seq was performed. The EASYspin Plus Plant RNA kit (Aidlab, Beijing, China) was
utilized to extract total RNA from each sample. Then, the total RNA of each sample was
taken to perform transcriptome sequencing in Biomarker Technologies Co., Ltd. (Beijing,
China): The mRNA was purified by magnetic oligo-dT beads, and was broken with
fragmentation buffer. The cDNA was synthesized by the addition of dNTPs, Rnase H,
DNA polymerase I, and GEX second strand buffer. The synthesized cDNA was purified
with AMPure XP beads (Beckman Coulter, Fullerton, CA, USA), and subsequently eluted
in EB buffer for end-repair and poly-A addition. Suitable fragments were selected for
PCR amplification by Beckman AMPure XP beads. The PCR amplicons produced a cDNA
library with inserts (approximately 200–500 bp in length). Finally, the amplified library was
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sequenced using high-throughput Illumina HiSeq 4000 platform (Illumina, San Diego, CA,
USA), with both ends of the inserts being sequenced.

Clean reads were obtained by removing artificial linkers, adaptors, and low-quality
reads (i.e., <20 bp or reads containing more than 5% unknown nucleotides). High-quality
clean reads were then mapped according to the P. trichocarpa mRNA reference sequence
(https://www.ncbi.nlm.nih.gov/genome/?term=Populus+trichocarpa, accessed on 5 De-
cember 2021) using the spliced mapping algorithm in TopHat (ver. 2.0.9) [56]. GATK2
software was utilized to perform SNP (single-nucleotide polymorphisms) calling. Raw vcf.
Files were filtered with GATK standard filter method and other parameters (clusterWin-
dowSize: 10; MQ0 ≥ 4 and (MQ0/(1.0 × DP)) > 0.1; QUAL < 10; QUAL < 30.0 or QD < 5.0
or Hrun > 5), and only SNPs with distance >5 were retained [57]. Transcript abundance was
quantified using the Cufflink module in the Cufflinks program (ver. 2.1.1) [58]. Gene expres-
sion levels were measured as fragments per kilobase of transcript per million mapped reads
(FPKM). Differentially expressed genes (DEGs) were identified with a false discovery rate
(FDR) < 0.05 (the p value was adjusted using the Benjamini–Hochberg method [59]) and fold
change (FC) ≥ 2. The DEGs and their encoded amino acid sequences were annotated as He
et al. described [60]. To identify gene ontology (GO) terms, the DEGs were imported into
the Blast2GO program [61]. We completed singular enrichment analyses using the agriGO
database (http://bioinfo.cau.edu.cn/agriGO/analysis.php, accessed on 1 December 2021)
to identify significantly enriched GO terms among the DEGs. The KEGG Orthology-Based
Annotation System 2.0 (KOBAS, http://kobas.cbi.pku.edu.cn/program.run.do, accessed
on 1 February 2022) was utilized to identify significantly enriched KEGG pathways [62,63].

4.6. QRT-PCR

In order to verify the accuracy of RNA-seq, qRT-PCR was performed subsequently.
Total RNA was extracted from stress-treated samples using the Universal Plant Total
RNA Extraction kit (Spin-column) (type 1) (BioTeke Corporation, Beijing, China). Double-
stranded cDNA was synthesized by reverse transcription using the ReverTra Ace qPCR RT
Master Mix with gDNA Remover (Toyobo, Osaka, Japan).

Gene-specific primers for WRKY40 (Potri.001G044500), NAM (Potri.005G069500),
AP2_ERF (Potri.018G038100), WRKY4 (Potri.008G091900), MYB (Potri.005G001600), NAC
(Potri.007G135300) (Table S1) were designed using Primer Premier 6.0 software and the
Primer-BLAST tool in NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?
LINK_LOC=BlastHome, accessed on 9 June 2022). According to our previous research [64],
the housekeeping gene At4g33380-like was selected as the reference gene. The qRT-PCR
was completed in triplicate using the SYBR Green Real-time PCR Master Mix Plus (Toyobo,
Osaka, Japan) and the ABI PRISM 7500 Real-Time PCR system (Applied Biosystems, Foster
City, CA, USA). The qRT-PCR program was as follows: 95 ◦C for 1 min; 40 cycles of 95 ◦C for
15 s; and 60 ◦C for 1 min. Dissociation curves were constructed using the thermal-melting
profile generated after the last PCR cycle under the following conditions: 95 ◦C for 15 s
followed by a constant increase in temperature from 60 to 95 ◦C. The final expression data
were analyzed using the 2−∆∆Ct method [65].

5. Conclusions

Phenotypic observation and leaf salt injury index calculation indicated CK suffered
more severe salt injury than T12 and F20 under salt stress. SOD and POD activity detections,
MDA content, proline content, and relative electric conductivity detections indicated
triploid (T12) P. ussuriensis exhibited stronger salt stress tolerance than tetraploid (F20) and
diploid (CK) P. ussuriensis (i.e., T12 > F20 > CK).

Transcriptome analysis indicated the DEGs of CK, T12, and F20 under salt stress were
different in category and change trend, and there were abundant WRKY, NAM, MYB, and
AP2/ERF genes among the DEGs in CK, T12, and F20 under salt stress. Additionally, these
results indicated that there were not only similarities but also differences (such as WRKY3
(Potri.008G091900), MYB86 (Potri.005G001600), and MYB39 (Potri.004G033100)) between

https://www.ncbi.nlm.nih.gov/genome/?term=Populus+trichocarpa
http://bioinfo.cau.edu.cn/agriGO/analysis.php
http://kobas.cbi.pku.edu.cn/program.run.do
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
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the DEGs of CK, T12, and F20 before and after salt stress. We suspect that these differences
are the key clues for discovering the salt stress response mechanism differences between
diploid and polyploid P. ussuriensis. Therefore, further research should pay more attention
to these special DEGs. For instance, the biological functions and salt-stress-response-
signaling mechanisms of these special DEGs should be studied and verified through a
transgenic system, yeast one- and yeast two-hybrid assays, chromatin immunoprecipitation,
and other biological or biochemical experiments.
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