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Lattice kirigami, ultralight metamaterials, polydisperse aggre-
gates, ceramic nanolattices, and 2D atomic materials share an
inherent structural discreteness, and their material properties
evolve with their shape. To exemplify the intimate relation among
material properties and the local geometry, we explore the
properties of phosphorene––a new 2D atomic material––in a con-
ical structure, and document a decrease of the semiconducting gap
that is directly linked to its nonplanar shape. This geometrical
effect occurs regardless of phosphorene allotrope considered,
and it provides a unique optical vehicle to single out local struc-
tural defects on this 2D material. We also classify other 2D atomic
materials in terms of their crystalline unit cells, and propose means
to obtain the local geometry directly from their diverse 2D struc-
tures while bypassing common descriptions of shape that are
based from a parametric continuum.
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Two-dimensional materials (1–20) are discrete surfaces that
are embedded on a 3D space. Graphene (1, 2) develops an

effective Dirac-like dispersion on the sublattice degree of free-
dom and other 2D atomic materials exhibit remarkable plas-
monic, polariton, and spin behaviors too (18–20).
The properties of 2D materials are influenced by their local

geometry (12–17, 21–29), making a discussion of the shape of 2D
lattices a timely and fundamental endeavor (24, 30–32). A ded-
icated discussion of the shape of 2D materials is given here
within the context of nets. Nets are discrete surfaces made from
vertices and edges, with vertices given by particle/atomic posi-
tions (31–34). The discrete geometry that originates from these
material nets is richer than its smooth counterpart because the
net preserves the structural information of the 2D lattice com-
pletely, yielding exact descriptions of shape that remain accurate
as the lattice is subject to arbitrarily large structural deformations
(15, 16), as the particle/atomic lattice becomes the net itself.
A discrete geometry helps address how strain influences

chemistry (35), how energy landscapes (36–38) correlate to non-
planar shapes, and it provides the basis for a lattice gauge theory
for effective Dirac fermions on deformed graphene (39, 40). In
continuing with this program, the optical and electronic properties
of phosphorene cones will be linked to their geometry in the
present work. At variance with 2D crystalline soft materials that
acquire topological defects while conforming to nonplanar shapes
(12–15), the materials considered here have strong chemical bonds
that inhibit plastic deformations for strain larger than 10% (41).
The study is structured as follows: We build conical structures of

black and blue phosphorene, determine their local shape, and link
this shape to the magnitude of their semiconducting gap. It is clear
that a discrete geometry applies for arbitrary 2D materials.

Results and Discussion
Phosphorene (8, 9) has many allotropes that are either semi-
conducting or metallic depending on their 2D atomistic structure
(42–44). The most studied phase, black phosphorene (Fig. 1A),

has a semiconducting gap that is tunable with the number of
layers, and by in-plane strain (26, 27, 45, 46). Theoretical studies
of defects on planar phosphorene indicate that dislocation lines do
not induce localized electronic states (47), and algorithms to tile
arbitrary planar 2D phosphorene patterns have been proposed as
well (44). Unit cells of planar monolayers of black and blue
phosphorene are displayed in Fig. 1.
Four invariants from the metric (g) and curvature (k) tensors

determine the local geometry of a 2D manifold (24, 30):

TrðgÞ, DetðgÞ,  H ≡TrðkÞ=2TrðgÞ,  K ≡DetðkÞ=2DetðgÞ, [1]

where Tr (Det) stands for trace (determinant), H is the mean
curvature, and K is the Gaussian curvature.
An infinite crystal can be built from these unit cells, and the

geometry of such ideal planar structure can be described by
TrðgÞ= 1, DetðgÞ= 1 (i.e., no strain), H = 0, and K = 0 (i.e., no
curvature) at both sublayers S1 and S2. In addition, their thick-
ness τ is equal to τ0 before a structural distortion sets in: These
five numbers quantify the local reference, flat geometry. [In
principle, Tr(g) and Det(g) will be functions of the lattice con-
stant, but here they are normalized with respect to their values in
the reference crystalline structures seen in Fig. 1, to enable direct
comparisons of the metric among black and blue phosphorene
monolayers. τ0 = 2.27 (1.26) Å for black (blue) phosphorene in
these planar reference structures.]
Now, structural defects can induce nonzero curvature and

strain (35), and may also be the culprits for the chemical deg-
radation of layered phosphorene. To study the consequences of
shape on the optical and electronic properties of phosphorene
monolayers, we create finite-size conical black and blue phos-
phorene monolayers, characterize the atomistic geometry, and
investigate the influence of shape on their semiconducting gap.
[We have proposed that hexagonal boron nitride could slow the
degradation process while allowing for a local characterization of
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phosphorene allotropes (48), and a study of chemical reactivity
of nonplanar phosphorene will be presented elsewhere.]
Phosphorene cones are built from finite disk-like planar structures

that have hydrogen-passivated edges (Fig. 2). The black phosphor-
ene cone seen in Fig. 2A is created as follows: We remove an an-
gular segment—that subtends a ϕ= 46° angle—from a planar
structure that has a dislocation line (47). The two “ridges” that are
highlighted by the red segments on the planar structure in Fig. 2A
are joined afterward to create a disclination line. Atoms are placed
in positions dictated by an initial (analytical) conical structure, and
there is a full structural optimization via molecular dynamics at the
ab initio level to relieve structural forces throughout (Methods).

Blue phosphorene has a (buckled) honeycomb structure rem-
iniscent of graphene, so the conical structure seen to the left of
Fig. 2B was generated by removing an angular segment sub-
tending a ϕ= 60° angle on planar blue phosphorene, and fol-
lowing prescriptions similar to those used in creating the black
phosphorene cone afterward.
The subplots displayed to the right in Fig. 2 A and B show the

local discrete geometry at individual atoms (Eq. 1; see details in
Methods). For each allotrope, the data are arranged into three
rows that indicate the geometry of the planar structure at sub-
layer S1, and the local geometry of the cones at sublayers S1 and
S2. An additional plot shows the value of τ=τ0 that tells us of local
vertical compression.
There is strain induced by the dislocation line on the planar

black phosphorene structure, as indicated by the color variation
on the TrðgÞ and DetðgÞ plots, which implies having atoms at
closer/longer distances than in the reference structure, Fig. 1. A
slight curvature on the black phosphorene planar structure, in-
duced by the dislocation line, is also visible in the H plot in Fig.
2A. The planar blue phosphorene sample does not have any
dislocation line, and for that reason the metric shows zero strain
[TrðgÞ= 1 and DetðgÞ= 1] and zero curvature (H = 0 and K = 0)
on that reference structure (Fig. 2B).
The black phosphorene conical structure seen in Fig. 2A has

the following features: A compression near its apex, as displayed
by the white color on the metric invariants; this compression is
not radial-symmetric. An asymmetric elongation is visible toward
the edges. In addition, there is a radially asymmetric nonzero
curvature; the observed asymmetry reflects the presence of the
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Fig. 1. Unit cells for (A) black and (B) blue phosphorene monolayers that are
formed by two sublayers (S1 and S2) separated by a distance τ0. Sublayers in
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Fig. 2. (A) Black and (B) blue phosphorene cones are built by removing the angular segments in white from the planar structures (as illustrated at the upper-
right corner of the conical structures), joining the cut structures along the red (disclination) lines, and a subsequent structural optimization. The discrete local
geometry of these conical structures at sublayers S1 and S2 is given by four local invariants [TrðgÞ, DetðgÞ, H, and K] that are obtained at each atomic position.
These invariants are contrasted with the geometry of planar structures [TrðgÞ= 1, DetðgÞ= 1, H= 0, and K = 0] that is depicted at the uppermost row for
sublayer S1. The change in relative height τ=τ0 is shown at each atomic position as well. Features such as (i) strain induced by the dislocation line in planar
black phosphorene, (ii) a sensible compressive strain near the apex, (iii) curvature lacking a radial symmetry, and (iv) the lack of significant changes in τ on
conical black phosphorene, are clearly seen. The disclination line on the blue phosphorene cone is reflected on the metric invariants and on H: This disclination
has a semicylindrical shape, which yields an overall radially symmetric Gaussian curvature K. In addition, a decrease of τ, and an in-plane compression
(elongation) at sublayer S1 (S2) near the apex can also be seen on the blue phosphorene cone.
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dislocation/disclination axis, which provides the structure with an
enhanced structural rigidity. This rigidity is confirmed by the
ratio τ=τ0 close to unity, which indicates almost no vertical
compression–elongation of this conical structure (Fig. 2A).
The blue phosphorene cone has a more apparent radial sym-

metry, except for the disclination line that is created by the
conical structure, as reflected on the metric invariants and on H.
There is compression (elongation) at the apex, and elongation
(compression) along the disclination line in sublayer S1 (S2). The
disclination line has a semicylindrical shape and hence a zero
radius of curvature along the disclination line, resulting in a zero
Gaussian curvature along such line; the Gaussian curvature looks
radially symmetric overall.
Fig. 2 indicates that the blue phosphorene cone acquires the

largest curvatures of these two cones. This is so because the
angular segment removed from the planar blue phosphorene
sample has a comparatively larger value of ϕ. One notes the
rather smooth curvature at the apex on the blue phosphorene
conical structure after the structural optimization.
The change of τ with respect to τ0 is created by an out-of-plane

strain or by shear. The blue phosphorene cone shows out-of-plane
compression near the apex. The distance among planes in black
phosphorene is closer to its value in an ideal planar structure
throughout, showing scatter around the dislocation line.
The main point from Fig. 2 is the strain induced by curvature.

The strain pattern observed in that figure is far more complex
than those reported before for planar phosphorene (26, 27, 45,
46), and the discrete geometry captures the strain pattern with
the precision given by actual atomic positions. We will describe

the tools that lead to this geometry based from atoms later on
(Methods), but we describe the effect of shape on the material
properties of these cones first.
Black and blue phosphorene monolayers are both semi-

conducting 2D materials with a direct bandgap, and we in-
vestigate how this semiconducting gap evolves with their shape.
The semiconducting gap Eg = is equal to 1.1 (2.2) eV for the
finite-size planar black (blue) phosphorene monolayers on dis-
play in Fig. 2, before the removal of the angular segments. These
electronic gaps are highlighted at the rightmost end of Fig. 3. All
gaps were computed after a structural optimization, to avoid
unbalanced forces on these samples that would bias their mag-
nitude (Methods).
We determine size effects on the semiconducting gap on

planar structures first: The magnitude of the gap Eg increases as
the number of atoms decreases on strain-free disk-like planar
structures, as seen in Fig. 3. For an infinite number of atoms––
i.e., for a fully periodic planar 2D crystal––the gap converges to
the values indicated by the dash and dash-dot lines on Fig. 3,
namely, 0.8 eV and 2.0 eV for black and blue phosphorene, re-
spectively. These magnitudes were obtained from standard density-
functional theory (8, 42). Although we acknowledge that other
methods describe the dielectric properties more accurately on
smaller samples (27), our focus is on the trend the gap follows,
and given that the trend is geometrical in nature, it will stand
correct despite the particular method used in computing the
semiconducting gap.
The conical structures have fewer atoms than their parent

planar structures once the angular segments seen in Fig. 2 A and
B are removed. We learned in the previous paragraph that the
electronic gap increases as the number of atoms is decreased on
planar structures. Following that argument, one may expect the
semiconducting gap for the conical structures to be larger than
the one observed on their parent planar structures.
However, instead of increasing with the removal of atoms, the

gap decreases dramatically on the conical structures, going down
to 0.84 (1.70) eV for the black (blue) phosphorene cone, as in-
dicated by the open red symbols, and the tilted arrows in Fig. 3:
Shape influences phosphorene’s material properties. A practical
consequence of this result is that optical probes could provide a
measure of the local shape of phosphorene. The relation be-
tween the semiconducting gap and a nonplanar shape has been
observed in transition metal dichalcogenide monolayers recently
(25), and we establish here that structural defects on semi-
conducting 2D materials create a similar effect. Let us next ad-
dress the reason for such reduction of the semiconducting gap.
The semiconducting gap is a global material property. On fi-

nite samples it is possible to project the electronic density onto
individual atoms to learn about the spatial localization of the
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electronic states below and above the Fermi level, whose energy
difference is equal to the electronic gap. Those states are known
as the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO), and they were
spin-degenerate in all of the samples we studied. Additionally,
the nth electronic orbital below (above) the HOMO (LUMO) is
labeled HOMO−n (LUMO+n).
The HOMO and LUMO states cover the entire planar black and

blue phosphorene structures (Fig. 4) and are thus delocalized. On
the other hand, the conical samples have orbitals below and above
the Fermi energy that display a certain amount of localization.
Such effect is most visible for the HOMO and HOMO−1

states for the blue phosphorene cone in Fig. 4B. Thus, unlike a
dislocation line (47) the pentagon defect that is responsible for
the curvature of the blue conical structure is localizing the
HOMO state within an ∼10 Å radius. Given that the pentagon
defect originates curvature itself, we conclude that curvature
leads to a reduction of the electronic gap on this system.
Given the localization observed on some of these orbitals, we

can further ask: At a given atomic position, what is the first orbital
with a nonzero density at such location below and above the Fermi
energy? This question can be rephrased in terms of the difference
in energy among the first orbitals below and above the Fermi level
that have a nonzero probability density at a given atomic location:
In the third column in Fig. 4 A and B we display such energy
difference ΔEi at every phosphorus atom i. There exists a clear
correlation among ΔEi and the localization pattern of the orbitals
below and above the Fermi energy, as should be the case. The
reduction on the semiconducting gap on the cones is emphasized
by normalizingΔEi in terms of Eg, which yields a 20% reduction of
the semiconducting gap for both allotropes: a nonplanar geometry
that is created by structural defects on any phosphorene allotrope
will lead to a sizable reduction of the semiconducting gap.
To end this work, we must state that the discrete geometry used

to tell the shape of the phosphorene conical structures applies to
other 2D atomic materials with varied unit cells, some of which
are listed here: (i) Regular honeycomb lattices [graphene (2, 39,
40, 49) and hexagonal boron nitride (4)]. (ii) Low-buckled hon-
eycomb hexagonal lattices [silicene and germanene (5); we
established that freestanding stanene (50) is not the structural
ground state]. (iii) “High-buckled” hexagonal close-packed bi-
layers of bismuth (51), tin, and lead (52). (iv) Thin trigonal–pris-
matic transition-metal dichalcogenides (53, 54). (v) Materials with
buckled square unit cells––quad-graphs (31)––such as AlP (7).
Structures (i)–(iv) are equilateral triangular lattices with a

basis, for which individual planes represent regular equilateral
triangular nets; and structure (v) realizes a regular quad-graph.
Low-buckled structures (silicene, germanene, blue phosphorus),

hexagonal close-packed bilayers (bismuth, tin, and lead), and black
phosphorus have two parallel sublayers, S1 and S2. Transition-

metal dichalcogenides and AlP have three parallel sublayers S1–S3.
The discrete geometry clearly stands for other 2D materials that do
not form strong directional bonds (12, 14) as well.

Concluding Remarks
Shape is a fundamental handle to tune the properties of 2D
materials, and the discrete geometry provides the most accurate
description of 2D material nets. This geometry was showcased on
nonplanar phosphorene allotropes for which the electronic gap
decreases by 20% with respect to its value on planar structures.
The discrete geometry can thus be used to correlate large
structural deformations to intended functionalities on 2D ma-
terials with arbitrary shapes.

Methods
Creation of Conical Structures. Consider structures having atomic positions at
planar disks; these positions can be parameterized by ri, θi, and zi = f0, τ0g. Calling
ϕ the angular segments being removed from these planar structures, the range
of the angular variable θi is ½0,2π −ϕ�, and the conical structures are initially built

by the following transformation: r′i = ri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðϕ2=4π2Þ

q
, θi′ = ð2π=ð2π −ϕÞÞθi, and

z′i = zi − riðϕ=2πÞ. These conical structures containing about 500 atoms undergo a
structural optimization via ab initio (Car–Parinello) molecular dynamics (55) with
the SIESTA code (56, 57), until forces are smaller than 0.04 eV/Å.

Calculation of the Electronic Gap of Phosphorene Samples. We obtain ΔEi as
follows: Let EF be the charge neutrality level or Fermi energy, and ρiðEÞ the
density of electronic states projected onto atom i. We call EA

i (EB
i ) the first

energy level observed on ρiðEÞ lying above (below) EF at atom i, and report
ΔEi=Eg ≡ ðEA

i − EB
i Þ=Eg in Fig. 4. We note that all structures we worked with

had a final net zero spin polarization on spin-polarized calculations.

A Discrete Geometry Based on Triangulations at Atomic Positions. There is an
extrinsic and continuum (Euclidean) geometry in which material objects exist.
These material objects are made out of atoms that take specific locations to
generate their own intrinsic shape.

The intrinsic shape of 2D atomic materials can be idealized as a continuum:
The basic assumption of continuum mechanics is that a continuum shape is
justified at length scales l much larger than interatomic distances that are
characterized by a lattice parameter a0 (l � a0). The common understanding
of shape arises from within this continuum perspective that is based on the
differential geometry of 2D manifolds. This continuum approximation is valid
down to interatomic scales (l≤ a0) for slowly varying deformations, but not
when curvature concentrates at atomic-scale bonds or pleats, such as in the
examples provided in refs. 11 and 14. And so, whereas these sharp structures
may be disregarded or approximated within the context of a continuum sur-
face, we hold the opinion that an intrinsic geometry that is exact at the atomic
scale must form part of the theoretical toolset to deal with 2D materials. The
discrete geometry to be described in the next paragraphs bypasses de-
scriptions of shape that are based on an effective continuum, and it brings an
understanding of the shape of material nets at a fundamental level.

Consider three directed edges e1, e2, and e3, such that e1 + e2 + e3 = 0, and
define QI

l ≡ el ·el (l= 1,2,3), representing the square of the smallest finite
distance among atoms on the 2D lattice. This is the discrete analog of the
infinitesimal length element ds2 (Fig. 5).

Now consider the change in orientation among normals n̂j and n̂k,
and project such variation onto their common edge el: This is, define
QII

l ≡ ðn̂k − n̂jÞ ·el (see Fig. 5; j, k, l are permutations of integers 1, 2, and 3).
The reader may recall that the curvature tensor is defined as n̂ · ð∂gα=∂ξβÞ, but
the discrete tensor carries a constant edge, and it rests on changes of the
local normals instead. In the previous equation, n̂l is the average over in-
dividual normals at triangulated area elements within the polygon sur-
rounding atom l and highlighted by dashed lines. The dual edge is defined
by el*≡ el × ν, with ν the normal to the triangle formed by atoms 1, 2, and 3
and AT is the triangle area (−e2 × e1 = 2AT ν).

This way, the discrete metric tensor takes the following form on the basis
given by dual edges*:

e1

e3

e2

e3*

n3
^

3 n2
^

2
n1
^

1

Si

e1*

e2* ν

Fig. 5. Discrete tensors based on triangulations are expressed in terms of aver-
aged normals n̂j, edges ej, the normal of the triangle ν, and dual edges ej*≡ ej × ν
(j=1,2,3). These tensors can be used in quad-nets, irregular lattices, and structures
containing defects as highlighted by the pentagon surrounding atom 1.

*Weischedel C, Tuganov A, Hermansson T, Linn J, Wardetzky M (2012) Construction of
discrete shell models by geometric finite differences, The 2nd Joint Conference on Multi-
body System Dynamics, May 29–June 1, 2012, Stuttgart, Germany.
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g=−
1

8A2
0

X
ðj,k, lÞ

�
QI

j −QI
k −QI

l

�
ej* ⊗ ej*, [2]

with A0 the area of the triangulated area element at the reference (non-
deformed and defect-free) plane.

The discrete curvature tensor has an identical structure:

k=−
1

8A2
T

X
ðj, k, lÞ

�
QII

j −QII
k −QII

l

�
ej* ⊗ ej*. [3]

The parentheses ðj, k, lÞ indicate a sumof three terms, as follows: (j= 1, k=2, l= 3),
(2, 3, 1), and (3, 1, 2). Eqs. 2 and 3 become 3× 3 matrices with explicit values forQI

l,
QII

l , and ej* from atomic positions (Fig. 5). For instance, the discrete curvature tensor
has eigenvalues {0, k1, k2} at each triangulated area element, yielding
H= ðk1 + k2Þ=2 and K = k1k2. The geometrical invariants reported at point j are
averages over their values at individual triangles sharing this vertex.

Topological defects (exemplified by a pentagon seen by a dot-dash line in
Fig. 5) break translation symmetry, making it impossible to recover a crys-
talline structure by means of elastic deformations. However, Eqs. 2 and 3
provide a geometry along topological defects seamlessly still, as seen in the
geometry provided in Fig. 2.

The computation of the distribution of the thickness τ in both conical
structures was performed by finding for each atom in the lower sublayer
S1 the three nearest neighbors on the upper sublayer S2. The distance
between the centroid of these three atoms and the atom in question
at the S1 sublayer amounts to the thickness τ of the structure at that
specific atom.
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