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Abstract

The rate of Neonatal Abstinence Syndrome (NAS) has drastically increased over the past decade. 

The average hospital expense per NAS patient has tripled, while the number of babies born to 

opioid-dependent mothers has increased to 5 in 1000 births. Current treatment options are limited 

to opioid replacement and tapering. Consequently, we examined the efficacy of prenatal, low-dose 

and short-term vigabatrin (γ-vinyl GABA, GVG) exposure for attenuating these symptoms as well 

as the metabolic changes observed in the brains of these animals upon reaching adolescence. 

Pregnant Sprague-Dawley rats were treated in one of four ways: 1) saline; 2) morphine alone; 3) 

morphine+GVG at 25 mg/kg; 4) morphine+GVG at 50 mg/kg. Morphine was administered 

throughout gestation, while GVG administration occurred only during the last 5 days of gestation. 

On post-natal day 1, naloxone-induced withdrawal behaviours were recorded in order to obtain a 

gross behaviour score. Approximately 28 days following birth, 18FDG microPET scans were 

obtained on these same animals (Groups 1, 2, and 4). Morphine-treated neonates demonstrated 

significantly higher withdrawal scores than saline controls. However, GVG at 50 but not 25 

mg/kg/day significantly attenuated them. Upon reaching adolescence, morphine treated animals 

showed regionally specific changes in 18FDG uptake. Again, prenatal GVG exposure blocked 

them. These data demonstrate that low-dose, short-term prenatal GVG administration blocks 

naloxone-induced withdrawal in neonates. Taken together, these preliminary findings suggest that 
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GVG may provide an alternative and long-lasting pharmacologic approach for the management of 

neonatal and adolescent symptoms associated with NAS.
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Introduction

Every hour one baby is born in the United States suffering from Neonatal Abstinence 

Syndrome (NAS), a drug withdrawal disorder caused by gestational opioid abuse. Symptoms 

include autonomic dysregulation, seizures, difficulty feeding, and low birth weight. Between 

2000 and 2012, the incidence of NAS significantly increased from 1.20 to 5.80 per 1000 

hospital births per year (p<0.001). Simultaneously, opioid use increased 5 times [1–3]. 

While morphine, methadone, and buprenorphine replacement therapies are commonly y 

used to treat NAS, these drugs produce dependence themselves [4], frequently require 

prolonged treatment [5–7] and cause further neurodevelopmental and cognitive delays [8–

11]. One review described neurodevelopmental outcomes of infants exposed to opioids in 

utero. These data strongly suggest that infants born to opioid-dependent mothers are at high 

risk of cognitive and motor delay, persisting at least into the pre-school years [12]. 

Additionally, preliminary MRI data suggest altered maturation of connective neural tracts 

within the first six weeks of life, following in utero opioid exposure but these findings have 

yet to be correlated with longer term outcome [13]. Thus, the development of an effective, 

non-addictive, non-narcotic and cost-effective treatment for NAS has become a national 

healthcare concern [14,15].

There is an increased interest in selectively targeting γ-aminobutyric acid (GABA) for the 

treatment of opioid withdrawal [16–18]. We are particularly interested in the GABA mimetic 

compound, γ-vinyl GABA (GVG, vigabatrin, marketed as Sabril®), a non-addictive, non-

narcotic, irreversible inhibitor of GABA-transaminase (GABA-T). The U.S. Food and Drug 

Administration (FDA) recently approved GVG for an indication of infantile spasms and as 

an adjunct therapy for refractory complex partial seizures. Further, a large body of 

preclinical work has demonstrated that GVG blocks heroin self-administration [19] and 

inhibits heroin, cocaine, amphetamine/methamphetamine and alcohol-induced increases in 

extracellular dopamine [20]. Finally, a series of three clinical trials using GVG demonstrated 

its and safety for the treatment of cocaine addiction in adults [21–23]. While a more recent 

US clinical trial failed to reproduce these findings, ongoing investigations into these data are 

examining differences between them. More specifically, differences in subject selection, 

disease severity and length of substance dependence, motivation to eliminate use and the 

style and setting of treatment are important contributors to the success or failure of GVG, or 

any drug for that matter, in substance abuse treatment.

GVG is FDA approved for use during pregnancy. Case studies have demonstrated no 

obvious side effects of in utero exposure at low doses [24,25]. GVG crosses the placenta by 

simple diffusion through a hydrophilic pathway. Its elimination half-life in epilepsy patients 
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is reported to be between 5.3 and 7.4 h, while its biologic half-life may be longer due to its 

irreversible inhibition of GABA-T, which can take up to 6 days to resynthesize following 

drug cessation [11,26]. Even though GVG is not protein bound, cerebrospinal concentrations 

were found to be only 10% of the plasma concentration 6 h following a single oral dose [27]. 

Based on these findings and the favourable pharmacokinetic profile of GVG, we 

hypothesized that low-dose, short-term, prenatal GVG exposure would effectively attenuate 

naloxone-induced withdrawal in neonatal rats exposed to morphine throughout gestation.

Materials and Method

This study was conducted in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol 

was approved by the Institutional Animal Care and Use Committee (IACUC).

Timed-pregnant Sprague-Dawley rats were acquired from Taconic Farms and arrived on 

gestational day (GD)2. Upon arrival, dams received one of 4 treatments: 1) saline; 2) 

morphine alone; 3) morphine +GVG at 25 mg/kg (morphine+GVG25); 4) morphine +GVG 

at 50 mg/kg (morphine+GVG50). Morphine groups received an escalating dose (20–60 

mg/kg, for 6 days) and then 60 mg/kg/day until parturition (Figure 1). This escalating dosing 

scheduled was implemented to prevent morphine-induced infant loss. On the day of 

parturition, litters were randomly culled to 9 pups [28] and transferred to surrogates to 

ensure adequate nutrition. Weights were recorded daily from PND 0-21.

On postnatal day (PND) 1, neonates received an acute challenge of naloxone hydrochloride 

(1.0 mg/kg, intraperitoneally (IP)). Immediately following this challenge, animals were 

returned to their specially-designed, noise-attenuating, thermo-regulated environments with 

overhead cameras. Behaviours were recorded via video cameras from 15 min pre-naloxone 

administration to 45 min post-naloxone administration. Naloxone administration rapidly 

induced withdrawal. Videos were time sampled at 15 min intervals and were scored for 

frequency of locomotion, rolling, curling, and stretching [29,30], by three trained raters 

blinded to the treatment condition.

Three raters tallied the frequency of each behaviour. Rater’s scores were averaged to get an 

Individual Behaviour Score (IBS) for each behaviour. Finally, the IBSlocomotion, IBSrolling, 

IBScurling, IBSstretching for each animal were summed to get a Gross Behaviour Score (GBS) 

for each animal. The GBS was used to represent the intensity of withdrawal, and was 

compared between treatment groups. After ensuring that the data were approximately 

normally distributed [31–33] parametric statistical analysis was utilized. A multivariate 

ANOVA was carried out. A significant ANOVA prompted post hoc Fischer LSD tests. The 

experimental unit (EU) in these analyses was the neonate. Concern over a potential litter 

effect, prompted additional analyses using litters as the EU [34,35]. The average litter GBS 

[36] was acquired and analysed using a series of repeated-measures ANOVAs to verify that 

the observed effects of treatment seen in the first analysis were not due to Type-I error.

At 4 weeks following birth (adolescence), 33 pups (saline group=9 pups, morphine 

group=13 pups, morphine+GVG50 group=11 pups) were randomly selected and 
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anesthetized using ketamine/xylazine according to a standard animal anaesthesia protocol. 

Micro-positron emission tomography (microPET) scans were obtained using [18F[Fluoro-2-

deoxy-2-D-glucose (18FDG) in a Siemen’s Inveon tomograph. All emission images were 

corrected for attenuation. MicroPET images were analysed for regional increases and 

decreases in 18FDG uptake using PMOD (PMOD Technologies Ltd., Zurich, Switzerland). 

Images from saline, morphine and morphine+GVG50 groups were compared using SPM 5.0 

(Statistical Parametric Mapping, MATLAB, The Mathworks, Inc., USA).

Results

Morphine alone or in combination with GVG did not alter litter size. However, there were 

significant differences in birth weights and postnatal weight gain between groups (Figure 2).

In the first series of behavioural analyses, using the neonate as the EU, a significant effect of 

treatment was observed (p=0.003). Subsequent LSD post hoc tests were carried out and 

revealed that there were no significant differences in GBS between the treatment groups at 

the pre-naloxone time point. However, there were differences at 15, 30 and 45 min following 

acute naloxone administration. Neonates exposed to morphine alone had significantly higher 

GBS scores than saline animals at the naloxone time point (p=0.0005), 15 min time point 

(p=0.0005), 30 min time point (p=0.0005), as well as the 45 min time point (p=0.001). The 

morphine+GVG50 treatment group did not differ from the saline group at the pre-naloxone 

(p=0.090), naloxone (p=0.208), 15 min (p=0.080), 30 min (p=0.266) and 45 min (p=0.730) 

time points. The morphine+GVG50 group did, however, from the morphine group at the 

naloxone (p=0.002), 15 min (p=0.0005), 30 min (p=0.001), and 45 min (p=0.002) time 

points. Subsequent inspection of the means indicated that the saline and morphine +GVG50 

subjects had similar behavioural scores. The morphine +GVG25 group did not differ 

significantly from any other group at the pre-naloxone time point, but did have significantly 

higher GBS than saline at the naloxone (p=0.002), 15 min (p=0.005), 30 min (p=0.003) and 

45 min time points (p=0.013) and morphine+GVG50 at the same time points (p=0.033, 

0.018, 0.030, 0.021 respectively) (Figure 3).

In short, the morphine and the morphine+GVG25 groups exhibited significantly higher GBS 

than either the saline or morphine+GVG50 groups. That is, the morphine+GVG25 group did 

not differ significantly from the morphine alone group. However, the morphine +GVG50 

group displayed a similar degree of gross behavioural activity effect as the saline group. To 

rule out a potential due to litter, a subsequent analysis was carried out using litter means as 

the EU.

A repeated measures ANOVA carried out on the GBS litter averages revealed that there was 

a significant effect of behavioural time point (p=0.009). This suggests that on average, there 

were differences in average GBS at several time points. In general, certain litters had more 

activity on average at each time point. Inspection of the means revealed that saline and 

morphine+GVG50 dams had the lowest GBS, morphine had the highest, and morphine

+GVG25 fell somewhere in between. Since it is theoretically possible that these differences 

could be due handling during naloxone treatment and post-injection hyperactivity, the same 

analysis was carried out after removing morphine+GVG25 and morphine dams. Comparison 
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of the GBS of saline and morphine+GVG50 dams alone revealed no significant differences 

at any time points (p=0.118). Similar comparisons looking solely at morphine and morphine

+GVG25 groups indicate that these groups do differ at various time points (p=0.037) and 

that morphine +GVG25 and morphine+GVG50 do not differ when compared (p=0.190). 

This differs from our previous analysis, and could indicate a potential subtherapeutic effect 

of GVG (25 mg/kg). Although this second analysis was carried out to rule out a potential 

litter effects, we do acknowledge that when averaging litters into experimental units, there is 

a reduction in sample size, which could influence power.

Inter-group comparisons of microPET images obtained once these animals reached 

adolescence demonstrated that the morphine group had increased 18FDG uptake in the 

nucleus accumbens, cingulate cortex and infralimbic cortex. Further, the morphine group 

had decreased 18FDG uptake in the superior colliculi and parts of the hippocampus. 

However, the infralimbic cortex and superior colliculi were unaffected in the morphine

+GVG50 group (Figure 4).

Conclusion

Taken together, these demonstrat that neonates born to morphine-treated dams exhibited 

marked withdrawal behaviours following an acute naloxone challenge. Administration of 

GVG at 25 mg/kg/day during the last 5 days of gestation failed to alter this behaviour. 

However, when administered at 50 mg/kg/day for the same period of time, GVG reduced the 

GBS to control levels. Since GVG at 25 mg/kg/day was ineffective at reducing withdrawal 

behaviour, this group was excluded from subsequent microPET imaging.

Analyses of microPET images demonstrated that prenatal morphine exposure produced 

changes in brain metabolism that persisted into adolescence. Specifically, these changes 

were noted in the nucleus accumbens, cingulate cortex, infralimbic cortex, superior colliculi, 

and parts of the hippocampus. These regions have been associated with reward modulation, 

learning and reinforcement, fear inhibition, vision, attention shifting, and memory with 

spatial navigation. Prenatal GABAergic intervention eliminated these metabolic changes in 

the infralimbic cortex and the superior colliculi.

Discussion

These data suggest that a low-dose pharmacotherapeutic strategy selectively targeting the 

GABAergic system late in gestation may effectively attenuate or even eliminate acute opioid 

withdrawal behaviours in neonates. Further, this approach also appears to selectively 

diminish alterations in brain glucose metabolism in regions associated with fear inhibition, 

vision, and attention shifts that persist into adolescence. With respect to the clinical 

implications of these findings, it should be noted that in rats, it is generally accepted that the 

first two human trimester equivalents occur in utero, between GD 1-21, while the third 

human trimester equivalent occurs ex utero, from PND 1-7 [30,37]. Thus, in the present 

study, prenatal GVG treatment occurred during the human equivalent of the terminus of the 

second trimester.
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In our previous studies, GVG administered throughout gestation (GD 2-21) at doses of 150 

and 300 mg/kg/day resulted in reduced litter sizes. These doses are within a range previously 

shown to produce fetal anomalies and growth retardation [38]. Therefore, due to potential 

teratogenic properties of GVG, the dosing schedule selected for this specifically study was 

designed to be both low in dose and short in duration. It is important to note that there were 

no differences in pregnancy weight gain of the dam, litter size, or neonatal weight gain 

between saline and morphine+GVG groups.

Opioid withdrawal is spontaneous and varies based on drug half-life. For example, heroin 

withdrawal begins around 8–12 h, peaks between 36–72 h and can last up to two weeks [39–

41]. Due to this marked variability associated with spontaneous withdrawal, behavioural 

scoring can be especially difficult and inconsistent. For these reasons, we employed a more 

consistent approach in the service of establishing a preclinical animal model that may be 

used in the subsequent development of new treatment strategies for NAS. Specifically, using 

an acute dose of the full agonist, naloxone, withdrawal behaviours occur in a quicker, more 

intense, and most importantly, more reproducible manner [30,42–44]. That is, this acute 

precipitated design was chosen to ensure that opioid withdrawal behaviour could be 

recorded and scored within a timeframe that is considerably shorter and far more consistent.

Smith and colleagues [45,46] conducted magnetic resonance spectroscopy studies in 

children who had been exposed to cocaine or methamphetamine prenatally. They found that 

their total brain creatinine levels were elevated, suggesting abnormalities in energy 

metabolism. In the present study, we used microPET imaging to identify brain regions in 

adolescent animals that experienced altered metabolism as a consequence of prenatal opioid 

exposure.

Our findings are consistent with adult studies using related drugs for the treatment of opioid 

withdrawal. GABApentin (Neurotin®), a GABA analog, effectively reduced withdrawal 

symptoms in opioid-dependent patients undergoing methadone-assisted detoxification [16]. 

Other GABA agonists including carbamazepine, topiramate, tiagabine, and baclofen have 

also proven effective at reducing withdrawal symptoms associated with opioid exposure 

[17]. In a single case report, a 43 year old patient suffering from opioid withdrawal was able 

to control withdrawal symptoms using 300 mg/day of Pregabalin (Lyrica®), a GABA-

mimetic drug. Pregabalin binds to the α2δ subunit of voltage-gated calcium channels, 

thereby inhibiting the release of excitatory neurotransmitters including glutamate, 

norepinephrine, substance P and calcitonin gene-related peptide [18]. These data highlight 

the clinical importance of noradrenergic and glutamatergic signaling in the regulation of 

symptoms associated with opioid withdrawal [47].

Pregabalin, GABApentin, and other GABA agonists, potentiate the inhibition of these two 

excitatory neurotransmitter systems making them useful candidates to alleviate neuronal 

hyperexcitatory states, such as opioid withdrawal [16]. Furthermore, in prepubescent mice, 

baclofen prevented the expression of naloxone-induced morphine withdrawal signs. These 

effects were greater in males than females and were secondary to a regionally specific 

increase in μ-opioid receptor binding observed in males only [48]. Taken together, these 

findings suggest that GVG may be working by either potentiating inhibitory control over 
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these excitatory pathways or by preventing μ-opioid receptor downregulation secondary to 

chronic opioid exposure. While the mechanism of GVG is likely related to that of the other 

GABAmimetic compounds discussed, there is an advantage that GVG might have over these 

compounds. Namely, our novel approach utilizes an enzyme-mediated mechanism of action.

Pregabalin, GABApentin, and other agonists exert their effect on the GABA receptor 

complex or transporter. GVG, alternatively, acts as an irreversible inhibitor of GABA-

transaminase (GABA-T), which is responsible for the catabolism of GABA. GVG 

administration therefore leads to increased brain GABA [49,50], which likely modulates 

excitatory hyperactivity and consequently reduces morbidity and mortality in animals born 

to opioid-dependent dams. Furthermore, since GVG does not directly compete for opioid or 

any other receptors, it is less likely to produce dependence, tolerance, or withdrawal [51–

53].

Abdulrazzaq et al. reported that in pregnant mice, peak levels of GVG occurred in the 

placenta and embryo about 3.5 h following an acute injection and decreased remarkably 

within 6 h [37]. In the present study, the mean time between the last dose of GVG 

administered to pregnant dams and the acute naloxone challenge administered to their 

offspring was approximately 44 h. Together, these data suggest that GVG concentrations in 

these neonates, at the time of their naloxone challenge, would be minimal if at all 

measureable.

Although GVG has a very short elimination half-life, it has been found to have a very long 

biologic effect [26]. This is likely related to the normalization of GABA-T levels, which 

have been shown to take up to 6 days to return to baseline after treatment cessation [49]. 

These data in combination with the pharmacokinetic profile of GVG eliminate the need for 

continuous administration to a neonate. By allowing the developing brain to leverage 

endogenous plasticity, GVG might prevent the signs and symptoms of opioid withdrawal. 

The advantage of treating dams immediately prior to parturition is that it precludes 

withdrawal. If treatment were given postpartum, one would expect that neonatal opioid 

receptors would already be up-regulated and occupied. Finally, while there seems to be 

obvious advantages to administering low-dose GVG, an effective, non-addictive, and non-

narcotic drug prior to the emergence of NAS, we recognize that it may be possible to 

intervene at other times with other GABAergic drugs in the perinatal continuum.
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Figure 1. 
Study overview and timeline, Morphine was administered to pregnant dams in escalating 

dose (20–60 mg/kg/day) for the first 6 days and 60 mg/kg/day each day until parturition. 

Morphine +GVG groups received morphine in the same dose as morphine only groups. The 

morphine+GVG25 group received GVG at 25 mg/kg/day and the morphine+GVG50 group 

received GVG at 50 mg/kg/day. GVG was administered only for the last 5 days of gestation.
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Figure 2. 
Average pup weight gain over time, Average daily pup weight up to PND 21. Birth weights 

from morphine, morphine +GVG25 and morphine+GVG50 treatment groups were 

significantly lower than control pups (p<0.01). However, by PND 21, weights of the 

morphine+GVG25 (p=0.90) and morphine +GVG50 groups (p=0.49) returned to control 

values while pup weights exposed to morphine alone did not (p=0.01).

Santoro et al. Page 13

J Addict Res Ther. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Withdrawal behaviour vs. naloxone time point, Intensity of withdrawal before and after 

naloxone administration.
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Figure 4. 
Adolescent microPET 18FDG Imaging Findings, PET images showing increased 18FDG 

uptake in infralimbic cortex (A) as well as nucleus accumbens and cingulate cortex; (B) of 

morphine group as compared to saline group (p<0.01) PET images showing 

decreased 18FDG uptake in superior colliculus; (C) and hippocampus (D) of morphine group 

as compared to saline group (p<0.01) PET images showing unaltered 18FDG uptake in 

infralimbic cortex; (E) and superior colliculus; (F) of morphine +GVG50 group as compared 

to morphine group (p>0.01).
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