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Abstract: This study investigated the druggability, pharmacokinetics and ethyl acetate extract of
Teucrium polium (EA T. polium) and the protective effect against carbon tetrachloride (CCl4) induced
liver cirrhosis in rats. The total antioxidant capacity (TAC) and scavenging activity of the extract were
examined. The in vivo protective study was based on the use of an animal model of CCl4-induced
liver cirrhosis. Four groups of rats have been used: Group I: control rats; Group II: received CCl4
in olive oil (0.5 mL/kg); Group III: received the EA T. polium (25 mg/kg) of pretreatment for seven
days by gavage then CCl4 in olive oil by gavage for 15 days. Group IV: received the EA of T. polium
for seven days (25 mg/kg). EA T. polium was found to possess significant antioxidant capacity. CCl4
caused a hepatotoxicity associated increase in both levels of AST and ALT, which were reduced
back to normal values following EA T. polium pretreatment. Hepatotoxicity associated structural
modifications of liver tissues and increase in thiobarbituric acid reactive substances (TBARS), conju-
gated dienes (CD) and carbonyl proteins (CP), associated decreases in several assessed antioxidant
enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT). The
in vivo findings on the protective effect of T. polium were supported by its druggability, its pharma-
cokinetic properties and molecular docking assays. These results confirm the modulatory antioxidant
and hepatoprotective potential of T. polium in this experimental liver cirrhosis model. T. polium
phytochemicals are good candidates for further pharmaceutical explorations and drug design.

Keywords: liver steatosis; Teucrium polium; CCl4; antioxidant; oxidative injury; pharmacokinetics;
histopathology; in silico

1. Introduction

Oxidative stress plays a crucial role in the progression of liver diseases by toxic
xenobiotics [1]. Many drugs derived from plants have been applied for the treatment of
such pathologies. Among these, T. polium is a plant which belongs to the Labiatae family.
Both the structural diversity of natural products and the better understanding of their
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nutraceutical/biological activities have led to increased interest in their applications in
drug discovery and development [2–5]. Teucrium species are commonly used as alimen-
tary plants, and some of them are currently used in herbal teas and infusions of leaves.
This genus is very important in food industries because many species are endowed with
antioxidant, antimicrobial and antifungal activities which enhance their use as biological
preservatives [6–8]. It is one of the richest sources of neoclerodane diterpenes, which
possess a key structure in several biological activities. Recent records indicate that more
than 220 of their secondary metabolites have been described, and many of them showed
considerable medicinal properties and/or ecological interest [7–9]. It is also commonly
used for antibacterial, antispasmodic, antiulcer, anorexic, and antipyretic agents and has a
hepato-protective activity against CCl4 induced hepato-oxidative stress in rats [10,11]. It
has been reported that extracts of T. polium are rich in phenolic compounds, which allow
them to possess hepato-protection via the inhibition of lipoperoxidation and enhancing the
activity of antioxidant enzymes [12]. Recently, using high resolution-liquid chromatogra-
phy mass spectroscopy (HR-LCMS), it was reported that T. polium dominant compounds
include several small peptides associated (1) 13R-hydroxy-9E,11Z-octadecadienoic acid,
(2) Rhoifolin, (3) Sericetin diacetate, (4) Selinidin, (5) Valtratum, (6) Triptonide, (7) Koparin
2′-Methyl Ether, (8) Dihydrosamidin, (9) 4, 16alpha, 17beta-Estriol 3-(beta-Dglucuronide),
(10) Cepharanthine, (11) Carapin-8 (9)-Ene, (12) 1-dodecanoyl-sn-glycerol [7,8]. In previous
works by our team, the protective effect of the aqueous extract of T. polium against CCl4-
induced toxicity in rats was assessed. Using ethyl acetate (EA), many more components
would be extracted due to the increased polarity and the biological effects might be more
efficient. In fact, several studies reported that the use of the plant whole extracts are usually
more efficient than the separated compounds.

The current work is devoted to study the protective effect of EA T. polium against hep-
atotoxicity and oxidative stress induced by carbon tetrachloride in rats. Furthermore, the
druggability and pharmacokinetic properties have been evaluated for the major T. polium
phytochemicals based on their absorption, distribution, metabolism, excretion and toxi-
city (ADMET) attributes. Likewise, the molecular interactions of these phytochemicals
with two key receptors; cytochrome P450 (CYP) and the stimulator of interferon genes
receptors (STING), which are commonly targeted in the treatment of liver diseases, have
been explored.

2. Materials and Methods
2.1. Preparation of EA T. polium

The aerial parts of the T. polium specimens were washed with tap water, dried and
then crushed with a mortar. An amount of 100 g of the powder was first subjected to a
three-day maceration step in 80% ethanol. The obtained hydroalcoholic filtrate underwent
evaporation followed by solubilization in water. Later on, the obtained aqueous phase
was subjected to a fractionation step using hexane, butanol and ethyl acetate. The fraction
obtained was dried with the lyophilizer and then weighed to calculate the yield. Finally,
the resulting fractions were evaporated using a vacuum to get the following weights: 0.79 g
for hexane, 1.25 g for butanol and 3.2 g for ethyl acetate. The extracts were stored in the
dark at 4 ◦C until they were used for further analyses.

2.2. Total Antioxidant Capacities (TAC) Assay

TAC of EA T. polium was measured following the method described by Prieto et al. [13]
using the phosphomolybdenum and compared to the ascorbic acid as a standard. The
method included the reduction of Mo (VI) to Mo (V) by the assessed specimen, at acidic
pH, via the formation of phosphate/Mo (V): a green complex. TAC levels were expressed
as mg of ascorbic acid equivalents (AAEs)/gram of dry extract.
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2.3. Scavenging Activity of ABTS Radical Cation

The trolox equivalent antioxidant capacity (TEAC) method, which is based on the
reduction of the 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radi-
cal cation by the specimen’s antioxidants was used to assess the as previously reported
by Laporta et al. [14]. Briefly, the method was assessed spectrophotometrically and the
absorbance was measured at 734 nm. Methanol was used as the blank and various con-
centrations of Trolox (0–20 µM) have been used for the calibration curve. Results were
expressed as mM concentration of Trolox/g of dry extract.

2.4. In Vivo Antioxidant Properties
2.4.1. Animals Experiments

All the experimental procedure including the animal housing, the way they have been
treated, sacrificed . . . met the international standards (Council of European Communities
2010). This study followed the guidelines for the care and use of laboratory animals
at Sciences Faculty of Sfax, University of Sfax (Tunisia), which refers to the National
Academies Press (NAP) Guide for the Care and Use of Laboratory Animals (https://www.
nap.edu/read/12910/chapter/1 (accessed on 15 October 2021)), and was approved by the
local Ethical Committee (12/ES/15-2021).

Male Wistar rats weighing of about 180–200 g were purchased from the Central Phar-
macy of Tunisia (SIPHAT, Sfax, Tunisia). Standard housing conditions were used during
the experimental procedure: 22 ± 3 ◦C, 12 h/12 h and 40 ± 2%, for average temperature,
light/dark periods and humidity, respectively. The rats were given standard food (SICO,
Sfax, Tunisia) and drinking water ad libitum.

2.4.2. Experimental Protocols

For the purposes of this study, 24 rats were divided in four groups of six rats each.
Free access was given to both food and water. Dose, duration and route of treatment
were selected according to previous published reports in rats and ethno-pharmacological
studies [7,8,12].

1. Group I received drinking water for 15 days and constituted the control group.
2. Group II received 0.5 mL/kg of CCl4 in olive oil by gavage for 15 days and constituted

the CCl4 group.
3. Group III received a seven-day pretreatment with the EA T. polium (25 mg/kg) then

received 0.5 mL/kg of CCl4 in olive oil for 15 days. Both EA T. polium and CCl4 were
given by oral gavage. This group constituted the CCl4 + EA T. polium group.

4. Group IV received the EA of T. polium (25 mg/kg) by gavage for 15 days and consti-
tuted the EA of T. polium group.

2.4.3. Samples Collection and Preparation

At the end of the experimental period, all rats were sacrificed by decapitation. Serum
samples were collected following blood centrifugation (4000 rpm, 15 min, 4 ◦C). The organ
samples were also collected from each rat and used for biochemical and histological studies.

2.4.4. Serum Parameters

Standard commercial kits referenced as 80127 and 92027 (France) were used to measure
the serum activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST),
respectively. The activity of these enzymes was expressed as IU/L.

2.4.5. Thiobarbituric Acid Reactive Substances (TBARS) Measurement

Measurement of TBARS as estimation of the lipid peroxidation was determined spec-
trophotometrically according to the procedure of Yagi [15]. The absorbance was read at
530 nm and TBARS levels were expressed as nmol/mg protein.

https://www.nap.edu/read/12910/chapter/1
https://www.nap.edu/read/12910/chapter/1
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2.4.6. Determination of Carbonyl Protein Content

Levels of carbonyl protein were recorded using the method of Ardestani et al. [16].
Briefly, 1 mL of 2, 4-dini-trophenylhydrazine (DNPH, 10 mM) in 2M HCl was mixed with
1 mg of liver samples, then incubated at room temperature for 30 min. Cold TCA (1 mL of
10%, w/v) was added and the mixture was centrifuged (3000× g for 10 min). Ethanol/ethyl
acetate (2 mL, 1:1, v/v) was used to wash the protein pellet, which was finally dissolved in
of guanidine hydrochloride (1 mL, 6 M, pH 2.3). The absorbance was checked at 370 nm
and the carbonyl contents were expressed as nmol/mg protein.

2.4.7. Assessment of Conjugated Dienes (CDs)

CDs were assessed as previously described by Slater (1984) [17] based on the use
of a chloroform-methanol mixture (2:1) and centrifugation at 1000× g for 5 min. After
evaporating the chloroform at 50 ◦C, the resulted lipid residue was dissolved in methanol
(1.5 mL) and the absorbance was recorded at 233 nm.

2.4.8. Superoxide Dismutase (SOD) Assay

The SOD levels were measured as described by Asada et al. [18], which is based
on the inhibition of nitro-blue tetrazolium (NBT). Briefly, 1 mL of the liver homogenate
was mixed with phosphate buffer (50 mM, pH 7.8), methionine (39 mM), NBT (2.6 mM)
and EDTA-Riboflavin (2.7 mM). Twenty minutes after starting the reaction by turning
on the light, the changes in the absorbance were followed at 560 nm. One unit of SOD
corresponded to the required amount to inhibit 50% of NBT photoreduction. SOD activity
is reported as Units/mg of protein.

2.4.9. Glutathione Peroxidase (GPx) Assay

GPx activity was assessed spectrophotometrically as reported by Flohe and Gunzler [19].
The liver supernatant issued by centrifugation was mixed with phosphate buffer (0.1 M pH
7.8) and DTNB (0.4 mg/mL) at 0.2 and 0.7 mL, respectively. The absorbance was recorded
at 420 nm. GPx activity was expressed as µmol GSH min−1 mg protein−1.

2.4.10. Catalase (CAT) Assay

CAT was assessed using the method previously described by Aebi [20]. The reaction
started by adding H2O2 to the reaction mixture. The decrease in the absorbance, as
decomposition of H2O2 was recorded for 1 min, at 420 nm. CAT activity was expressed as
µmol H2O2/mg protein.

2.4.11. Protein Measurement

Protein measurement in liver samples was studied using the method of Lowry et al.
(1951), in which bovine serum albumin was used as a standard.

2.5. In Silico Molecular Interactions and Pharmacokinetic Assays

The physicochemical and pharmacokinetic properties of the T. polium phytochemicals,
which we had recently determined [7,8], were assessed. ChemDraw Pro 12.0 was used
to draw the chemical structures of these phytochemicals (Figure 1). The most pertinent
physicochemical parameters were used to assess the draggability and pharmacokinetic
properties based on ADMET. These parameters have been assessed in March 2022 using
ADMET properties. The tridimensional (3D) structure of CYP and STING receptors (1OG2
and 6DXL respectively), (Doi: 10.2210/pdb1OG2/pdb and 10.2210/pdb6DXL/pdb respec-
tively), and selinidin, (compound no. 4, Accession number: 668079) were obtained from
the RCSB PDB and pubchem®, respectively. Both ligand and receptors were processed for
minimization and saved in pdbqt format as previously described [21–23].
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Figure 1. Chemical structure of the T. polium identified compounds. (1) 13R-hydroxy-9E,11Z-
octadecadienoic acid, (2) Rhoifolin, (3) Sericetin diacetate, (4) Selinidin, (5) Valtratum, (6) Triptonide,
(7) Koparin 2′-Methyl Ether, (8) Dihydrosamidin, (9) 4, 16alpha, 17beta-Estriol 3-(beta-Dglucuronide),
(10) Cepharanthine, (11) Carapin-8 (9)-Ene, (12) 1-dodecanoyl-sn-glycerol.
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The binding assessment used in molecular docking and calculation of the binding
energy was based on the CHARMm force field using MGL tools and Vina® software
(version 4.2.6) as previously described [3,21,24]. The ability of the ligands (major component
of T. polium: selinidin) to bind to androgen receptors CYP-LBD and STING-LBD was studied
after the removal of heteroatoms (warfarin) and water molecules and adding Coleman
charges. Both CYP and STING receptors are involved in xenobiotic biotransformation and
the etiology of diverse liver pathology including hepatotoxicity, liver cancer and infectious
diseases [25,26].

2.6. Histopathological Analysis

The liver was collected and fixed in 10% formalin and then processed for standard his-
tological preparation. Several sections of 5 µm-thick were prepared and then stained with
hematoxylin and eosin (H&E). The histological slides have been examined for histopatho-
logical changes under an optic microscope.

2.7. Statistical Analysis

All results were expressed as mean ± standard deviation. To check the significant
differences between the different groups, a one-way ANOVA and Tukey’s post hoc test
were carried out using the SPSS software package. Differences were considered significant
whenever p < 0.05.

3. Results

Extraction with different solvents showed that EA T. polium has a better activity
compared with those of two other solvents; hexane and butanol.

3.1. TAC of EA T. polium In Vitro

The TAC of EA T. polium was measured spectrophotometrically using the phospho-
molybdenum method. The TAC of EA T. polium extract was 123.85 ± 60 mg AAEs/g of
dry extract (Table 1). In this study, the ABTS radical scavenging assay was also used. The
principle of the method is based on the ability of an antioxidant to stabilize the ABTS+ by
trapping a proton with the antioxidant. A comparison was made with the ability of Trolox
to capture ABTS+. Our results showed that T. polium has a significant antioxidant capacity
equal to 0.62 mM equivalents Trolox/mg of extract (Table 1). A statistical analysis showed
that both TAC and ABTS scavenging activity of EA T. polium were much better than hexane
and butanol extract.

Table 1. Antioxidant activity of EA T. polium by TAC and ABTS tests.

Parameters/Fractions Hexane Butanol Ethyl Acetate

TAC (EAAs/g extract) 60.21 ± 33.02 92.11 ± 36.33 123.85 ± 60 *
ABTS (mM Equivalents

Trolox/mg extract) 0.11 ± 0.02 0.23 ± 0.06 * 0.62 ± 0.14 ***###

Values are mean ± SD of three distinct measurements. * p < 0.5 vs. Hexane. *** p < 0.001 vs. Hexane. ### p < 0.5
vs. Butanol.

3.2. Serum Biochemical Parameters

The activities of AST and ALT, in the different studied groups, are shown in Table 2.
Both AST and ALT activities increased significantly in the CCl4 group once compared to
control. Pretreatment with EA T. polium decreased the activity of the above enzymes with
statistically significant levels. Animals given EA T. polium showed no disrupted levels of
ALT and AST as compared to the control group.
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Table 2. Effects of CCl4, EA of T. polium (25 mg/kg) and their combination on serum ALT and AST
activity (IU/L).

Enzymes
(IU/L) Control EA T. polium CCl4

CCl4 + EA
T. polium

ALT 1738 ± 44.3 ## 1768 ± 73.74 # 1913 ± 37.08 **## 1805 ± 29.39
AST 137.7 ± 16.47 139.8 ± 5.48 575.5 ± 58.72 ## 523.5 ± 52.42 ##

Values are mean ± SD for six determinations. ** p < 0.01 vs. Control. # p < 0.5 vs. CCl4. ## p < 0.01 vs. CCl4.

3.3. Oxidative/Antioxidative Status

The administration of CCl4 significantly elevated the TBARS level, an indicator of
lipid peroxidation, while the pretreatment with EA T. polium resulted in the reduction
of the serum activity of liver marker enzymes when compared to CCl4 intoxicated rats.
This hepatoprotective activity may be due to the anti-oxidant activity of EA T. polium. The
effects of CCl4, EA of T.polium and their combination on serum conjugated dienes (CD)
and carbonyl protein (CP) in the different groups are shown in Table 3. As compared to
controls, the levels of these parameters were significantly increased in CCl4 treated rats.
The pretreatment with EA T. polium lowered the level of these parameters. No difference
was detected between the group pretreated with EA T. polium and control.

Table 3. Thiobarbituric acid reactive substances (TBARS), carbonyl protein (CP) and conjugated diene
(CD) levels of control and treated rats with CCl4, EA of T. polium (25 mg/kg) and their combinations
(CCl4 + EA T. polium).

Treatment/Parameters Control EA T. polium CCl4
CCl4 + EA
T. polium

TBARS (µmol/mg
protein) 5.96 ± 3.09 5.90 ± 2.97 10.2 ± 3.53 ** 8.2 ± 2.80 **##

Carbonyl protein
(nmol/mg protein) 0.69 ± 0.023 0.69 ± 0.007 1.38 ± 0.013 *** 1.296 ± 0.004

Conjugated dienes
(nmol/mg protein) 9 ± 0.02 9.45 ± 0.14 13.21 ± 0.04 ** 11.11 ± 0.37 #

Values are mean ± SD for six determinations. ** p ≤ 0.01 and *** p ≤ 0.001 vs. Control group. #p< 0.05 vs. CCl4
group. ## p< 0.01 vs. CCl4 group.

The lipid peroxidation was associated with a concomitant decline in the activity of
antioxidant enzymes such as SOD, GPx and CAT (enzymes involved in the defense against
oxidative stress) respectively in the CCl4 treated rats compared to the control rats. However,
pretreatment with EA T. polium significantly restored the activity of antioxidant enzymes in
CCl4 treated rats (Table 4). The administration of EA T. polium was also able to significantly
restore the enzyme level compared to CCl4 alone.

Table 4. Effects of CCl4, EA T. polium (25 mg/kg) and their combination (CCl4 + EA T. polium) on the
SOD, GPx and CAT enzymatic activities in hepatic tissues of different studied groups.

Parameter/Treatment Control EA T. polium CCl4
CCl4 + EA
T. polium

SOD (Units/mg
protein) 1.62 ± 0.19 1.65 ± 0.27 0.44 ± 0.09 *** 0.51 ± 0.01

GPx (µmol GSH min−1

mg protein−1)
0.91 ± 0.014 0.92 ± 2.5 0.49 ± 0.01 *** 0.93 ± 0.01 #

CAT (µmol H2O2/mg
protein) 174.02 ± 44.3 176.32 ± 22.18 85.9 ± 6.25 *** 149.4 ± 44.29 ##

Values are mean ± SD for six rats in each group. *** p ≤ 0.001 vs. Control group. # p< 0.05, ## p< 0.01 vs.
CCl4 group.
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3.4. Druggability and Pharmacokinetic Properties of EA T. polium Main Compounds

The previous T. polium identified compounds were studied to assess their druggability
and pharmacokinetic properties [7,8]. Interestingly, the studied compounds displayed
nil alert. Furthermore, regardless of the compound no. 2 (rhoifolin), which stands out of
the boiled egg model (Figure 2), all the other phytochemical compounds had acceptable
consensus Log Po/w, obeyed to the Lipinski’s rule and have good gastro-intestinal absorp-
tion, lipophilicity and bioavailability score (0.55–0.58). This permit these compounds to be
placed in the pink zone of the bioavailability polygons (Figure 3). Moreover, all the assessed
T. polium compounds are not suitable for transdermal delivery. All the T. polium identified
phytochemicals displayed negative skin permeability ranging from −0.55 to −9.94 cm/s
(Table 5), which indicates low to moderate skin permeability. These results might support
the selected route of T. polium administration in our study (gavage) and their potential
biological activities: antioxidant and hepato-protective effects. Selinidin, which possessed
good pharmacokinetic properties and oral bioavailability, have been further assessed for
potential hepato-protective effect using in silico analyses.
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Figure 2. Boiled-egg model of the T. polium studied compounds using ADMET properties. (1) 13R-
hydroxy-9E,11Z-octadecadienoic acid, (2) Rhoifolin, (3) Sericetin diacetate, (4) Selinidin, (5) Valtratum,
(6) Triptonide, (7) Koparin 2′-Methyl Ether, (8) Dihydrosa-midin, (9) 4, 16alpha, 17beta-Estriol 3-(beta-
Dglucuronide), (10) Cepharanthine, (11) Carapin-8 (9)-Ene, (12) 1-dodecanoyl-sn-glycerol.
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Figure 3. Bioavailability polygons of T. polium identified compounds based on their physicochemical
parameters using ADMET properties. (1) 13R-hydroxy-9E,11Z-octadecadienoic acid, (2) Rhoifolin,
(3) Sericetin diacetate, (4) Selinidin, (5) Valtratum, (6) Triptonide, (7) Koparin 2′-Methyl Ether,
(8) Dihydrosa-midin, (9) 4, 16alpha, 17beta-Estriol 3-(beta-Dglucuronide), (10) Cepharanthine,
(11) Carapin-8 (9)-Ene, (12) 1-dodecanoyl-sn-glycerol.LIPO: Lipophilicity, SIZE: Molecular size,
POLAR: Polarity, INSOLU: Insolubility, INSATU: Insaturation, FLEX: Flexibility, The pink area repre-
sents the most suitable physicochemical zone for oral bioavailability. Note that some compounds,
including selinidin, stand in the pink area, which is the most suitable for oral bioavailability.
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Table 5. Draggability and pharmacokinetic properties of T. polium main compounds based on
the ADMET properties. (1) 13R-hydroxy-9E,11Z-octadecadienoic acid, (2) Rhoifolin, (3) Sericetin
diacetate, (4) Selinidin, (5) Valtratum, (6) Triptonide, (7) Koparin 2′-Methyl Ether, (8) Dihydrosa-midin,
(9) 4, 16alpha, 17beta-Estriol 3-(beta-Dglucuronide), (10) Cepharanthine, (11) Carapin-8 (9)-Ene, (12)
1-dodecanoyl-sn-glycerol.

Entry 1 2 3 4 5 6 7 8 9 10 11 12

Druglikeness/Medicinal Chemistry

Consensus Log
Po/w

4.52 −0.81 5.19 3.40 2.78 1.93 2.27 3.19 2.43 5.36 3.27 3.22

Lipinski’s Rule Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Bioavailability
Score 0.85 0.17 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

PAINS (alerts) 0 0 0 0 0 0 0 0 0 0 0 0

Synthetic
accessibility 4.01 6.33 4.74 4.08 6.17 5.96 3.20 4.58 3.74 7.01 6.36 3.42

Pharmacokinetics

GI absorption High Low High High High High High High High High High High

BBB permeant Yes No No No No No No No Yes No No Yes

P-gp substrate No Yes No No No No No No Yes No Yes No

CYP1A2
inhibitor Yes No No No No No Yes No No No No No

CYP2C19
inhibitor No No Yes No No No No Yes No No No No

CYP2C9
inhibitor Yes No Yes No No No Yes Yes No No No No

CYP2D6
inhibitor Yes No No No Yes No Yes No Yes No No Yes

CYP3A4
inhibitor No No No No Yes No Yes Yes No No No No

Log Kp (cm/s) −4.31 −9.94 −5.2 −8.87 −7.63 −8.02 −0.55 −6.38 −6.32 −5.36 −7.53 −5.02

3.5. In Silico Molecular Interactions

Selinidin established three H-bonds with CYP via both its heterocyclic ring (with
Arg329) and its branched chain (with Asn133 and Phe134). With STING receptor, the
Gln266 established a couple of H-bonds with the first heterocyclic ring (Figures 4 and 5).
Furthermore, selinidin was found to be strongly embedded particularly with the pocket
region of the CYP receptor. It showed a network of conventional H-bonds, electrostatic and
hydrophobic bonds.
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3.6. Histopathological Study

Histological study performed on the liver showed healthy liver parenchyma (normal
liver cells, centrilobular and sinusoidal veins and normal hepatocyte trabeculae) in the
control rats. Moreover, there was a severe alteration of the architecture with the presence of
inflammatory aspects, leukocyte infiltration and cytoplasmic vacuolization of the hepato-
cytes and hepatic necrosis in CCl4 treated rats. These modifications were less pronounced
in CCl4 + EA T. polium treated rats. This study shows that there was conservation of the
usual liver structure in rats treated with EA T. polium in comparison to controls (Figure 6).
These results parallel both biochemical and oxidative/antioxidative status findings.
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4. Discussion

Antioxidants from medicinal herbs may play an important protective role against
oxidative injury and maintain the healthy physiological function of cells. T. polium was re-
ported to possess a potent scavenging activity against the reactive oxygen species [7,8,11,27].
Hence, the obtained results data revealed that the EA fraction of the studied plant pos-
sesses potent anti-oxidant properties. The results of our study supported those of Mova-
hedi et al. [28] who demonstrated that the EA extract of T. polium possessed the highest
antioxidant activity by DPPH and FRAP tests, and by total phenolic and flavonoid con-
tents. Our results are also in agreement with previous research activities which revealed
that T. polium possessed an antioxidant activity by DPPH method and the IC50 values
were about 90 µg/mL [7,8,29]. These results parallel both the biochemical and oxida-
tive/antioxidative findings.

AST and ALT enzymatic activities associated carbohydrate and amino acid metabolisms.
The increased activity of these enzymes reflects liver injury and the inflammation of hepatic
parenchyma [1]. Our results revealed that that of CCl4 induced significant increases in both
AST and ALT activities, which corroborate the findings of previous studies that also reported
the interest of phytotherapy in reducing the increases of these parameters comparatively
with CCl4 treated rats [30].

Our results supported those of Rahmouni et al. [31], who showed that subchronic
exposure to CCl4 increased TBARS levels and decreased antioxidant enzymes. Our studies
also supported those of Sun et al. [32], who reported new insights into the acute liver
pathogenesis via CCl4 and some potential novel strategies for its treatment. Similarly,
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Bellassoued et al. (2018) evaluated the protective effect of Mentha piperita L. (which also
belongs to Lamiacee family), and reported potential benefits mainly due to menthol and
its derivatives.

A recent phytochemical screening study using HR-LCMS revealed that the T. polium
composition included several beneficial compounds and small peptides [7,8]. The phyto-
chemical profiling of the plant was associated with promising bioactivities such as antioxi-
dant, anticancer, antibacterial and antiviral effects [7,8]. In this study, these compounds
were assessed for their draggability and pharmacokinetics based on their ADMET charac-
teristics, as previously described [5,22,33]. The assessment of such parameters was reported
to be important to avoid drug failure in the advanced steps of clinical applications [23,24].
The majority of the compounds obeyed the Lipinski’s rule and all of them were associated
with zero alerts as they meet the Lipinski rule of five. Such results indicate the safe use
of the T. polium phytochemicals and/or extracts as reported in previous studies, [7,8] and
supported its ethno-pharmacological applications [8,31]. The partition coefficient between
octanol and water, as an indicator of lipophilicity (Log Po/w), also indicated that all the
assessed compounds, except no. 2, possessed acceptable lipophilicity, as Log Po/w varied
between 1.93 and 5.36. Previous reports indicated that Log Po/w < 5 is usually associated
with good lipophilicity [5,21,22,33]. Their bioavailability scores prove their potential biolog-
ical activities and the possibility of oral administration. This was further confirmed by the
bioavailability polygons (Figure 3). Regardless of compound No. 2, all T. polium studied
phytochemicals possessed high gastro-intestinal absorption (GI). Compounds No. 1, 9
and 12 were categorized as blood-brain-barrier (BBB) permeant. The majority of T. polium
identified compounds were predicted not to be a substrate of P-glycoprotein (P-gp), which
indicates the absence of significant disruption of drug transport [21,22]. Compounds No. 2,
4, 6, 10 and 11 inhibited none of the targeted CYP isoforms CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4. None of the remaining compounds was predicted to be a potent
inhibitor of the CYP studied isoforms, thus, indicating the lack of disrupted metabolism
and excretion [21,23]. Log Kp varied between –0.55 and –9.94, which indicated moderate
to low skin permeability. Taken together, T. polium sounds containing suitable drug-like
molecules with good synthetic scores that might have promising systemic effects, including
alleviation of hepatic disorders.

CYP and STING receptors have been selected, as they are commonly associated with
both liver pathogenesis and are targeted in drug design and development [34,35]. The
molecular interactions of T. polium’s major compounds with these key receptors, which are
targeted in liver therapy, were studied. Both CYP and STING are considered key areas of
focus for liver diseases, and thus constituted excellent targets for liver medication [36,37].

The selinidin heterocyclic ring and branched chain were predicted to establish three
H-bonds with CYP residues: Arg329, Asn133 and Phe134. With STING receptor, the
Gln266 established a couple of H-bonds with the first selinidin heterocyclic ring. Moreover,
selinidin was found to be strongly embedded, particularly with the pocket region of
the CYP receptor. In fact, the distance to the closest residues was 1.811 Å for CYP and
2.461 Å for STING receptors. These results prove that a hepatoprotective effect of the
studied extract is possible. The in silico and molecular docking results of the current study
mirror the pharmacokinetic, biochemical and histological findings. Furthermore, selinidin
associated with the other phytochemical compounds of T. polium may possess a synergistic
effect. These molecular interactions may justify the in vivo findings in rats, specifically the
hepato-protective potential of the T. polium extract via its rich phytochemical profile. It was
previously suggested that the use of the cure plant extracts normally has better effects than
the plant phytochemical components [3,24,38,39]. In this study, the whole extract was used,
and further analyses of molecular dynamics may support our results.

Similar results were obtained by Sakr et al. in rats intoxicated by CCl4 [40]. In fact,
the liver is a major metabolizing organ for which the biochemical markers are commonly
disturbed by toxic products including CCl4 [1,41,42]. The current results parallel those
of Sreelatha and Padma [43] and Seghatoleslam et al. [44], who reported liver damage
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associated severe pathological/degenerative features following subchronic exposure to
CCl4. This study proved the conservation of the usual liver structure in rats treated with
EA T. polium in comparison to controls.

5. Conclusions

Our study revealed that T. polium displayed an efficient antioxidant activity using both
in vitro and in vivo tests such as ABTS scavenging, TAC, TBARS, SOD... EA T. polium was
proven to be effective in preventing CCl4 induced hepatic injury in rats by restoring both
the levels of liver biochemical markers (AST and ALT) and oxidative/antioxidative status,
which resulted in correction of liver histological morphology. Druggability, pharmacoki-
netics and molecular docking assays support the in vitro and in vivo approaches. In fact,
the in silico results suggest the satisfactory draggability and the promising properties of
the T. polium phytochemicals, particularly selinidin. The therapeutic potential may include
CYP and STING receptors as assessed by docking and molecular interactions. Further
investigations regarding the molecular dynamics of T. polium components with several
receptors are needed for a better understanding of the pathway and the action mechanism
to encourage the use of the plant extract against liver injury. In fact, its beneficial effects are
promising and encouraging for its use in pharmaceutical processes.
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