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Abstract: The neurobiological mechanisms underlying Autism Spectrum Disorders (ASD) remains
controversial. One factor contributing to this debate is the phenotypic heterogeneity observed
in ASD, which suggests that multiple system disruptions may contribute to diverse patterns of
impairment which have been reported between and within study samples. Here, we used SFARI data
to address genetic imbalances affecting the dopaminergic system. Using complex network analysis,
we investigated the relations between phenotypic profiles, gene dosage and gene ontology (GO) terms
related to dopaminergic neurotransmission from a polygenic point-of-view. We observed that the
degree of distribution of the networks matched a power-law distribution characterized by the presence
of hubs, gene or GO nodes with a large number of interactions. Furthermore, we identified interesting
patterns related to subnetworks of genes and GO terms, which suggested applicability to separation
of clinical clusters (Developmental Delay (DD) versus ASD). This has the potential to improve our
understanding of genetic variability issues and has implications for diagnostic categorization. In
ASD, we identified the separability of four key dopaminergic mechanisms disrupted with regard
to receptor binding, synaptic physiology and neural differentiation, each belonging to particular
subgroups of ASD participants, whereas in DD a more unitary biological pattern was found. Finally,
network analysis was fed into a machine learning binary classification framework to differentiate
between the diagnosis of ASD and DD. Subsets of 1846 participants were used to train a Random
Forest algorithm. Our best classifier achieved, on average, a diagnosis-predicting accuracy of 85.18%
(sd 1.11%) on the test samples of 790 participants using 117 genes. The achieved accuracy surpassed
results using genetic data and closely matched imaging approaches addressing binary diagnostic
classification. Importantly, we observed a similar prediction accuracy when the classifier uses only
62 GO features. This result further corroborates the complex network analysis approach, suggesting
that different genetic causes might converge to the dysregulation of the same set of biological
mechanisms, leading to a similar disease phenotype. This new biology-driven ontological framework
yields a less variable and more compact domain-related set of features with potential mechanistic
generalization. The proposed network analysis, allowing for the determination of a clearcut biological
distinction between ASD and DD (the latter presenting much lower modularity and heterogeneity),
is amenable to machine learning approaches and provides an interesting avenue of research for
the future.
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1. Introduction
1.1. The Putative Role of Dopaminergic Signalling in ASD

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized
by social and communication impairments and restrictive and repetitive behaviors and
interests, yet its etiology and neurobiological mechanisms are still poorly understood [1].
The attribution of the diagnosis of ASD is assessed accordingly with the guidelines present
in the latest version of DSM (DSM-5). It admits only one macro-clinical condition, ASD,
and allows clinicians to specify the severity of different symptoms (which differs from
previous versions of DSM where different diagnostic profiles existed to differentiate diverse
symptom severity).

In the last years, many genetic variations have been associated with ASD; however,
in most cases, these patterns were only verified in small-size samples leading to a lack
of clarity [2–5]. The large range of different individual genetic manifestations and still-
unknown gene–environment interactions further compounds this problem [6,7]. Research
on putative causal aspects that relate to the different symptoms of ASD remains a priority.
The role of dopaminergic neurotransmission and its involvement in the causal pathway of
ASD deserves attention in this regard [8–10]. For example, disruptions in the nigrostriatal
pathway, now known to go beyond the classical link to motor functions, have been proposed
as a potential contributing cause of repetitive behaviors in ASD whereas disturbances in
the mesolimbic and mesocortical pathways, involved in reward- and cognitive-related
functions, may lead to affective and social cognitive impairments [11,12].

1.2. Addressing Complex Diseases with Complex Network Approaches

Complex diseases are often caused by a combination of many intrinsic and extrinsic
factors. Thus, this definition also implies that the disease’s cause can rarely be explained by
a single perturbation. Most neurodevelopmental diseases, such as autism, schizophrenia
and intellectual disability fall under this definition. Here we will focus on the genetic causes.

The multiple genetic causes behind a complex disease can be hard to identify given
the difficulty in isolating the individual effects of single genetic alterations. Most of the
time these individual effects might be small and rare, further increasing the difficulty
in correctly identifying their effects. For example, it is recognized that autism is highly
heritable, but, given the role of rare genetic variations, causality in this respect remains a
conundrum [13,14].

Another aspect increasing the difficulty of studying complex diseases comes from
heterogeneity. Typically, the same diagnostic category is attributed to a spectrum of
similar phenotypes, yet it is unlikely to find two patients with the same diagnosis and
identical phenotypes. This explains why this condition has been renamed Autism Spectrum
Disorder, to encompass a set of conditions related to impairments in social interaction
and communication and stereotyped, repetitive behaviors [13]. However, the spectrum
admits both individuals totally dependent upon life support and individuals that can live
almost independently.

Therefore, this multifactorial scenario poses a big scientific challenge. Systems biology
approaches might be suitable to address this problem through analysis of complex net-
works mapping interactions between genes, proteins, molecules and disease phenotypes.
For example, in a disease network it is possible to observe several genetic alterations linked
to the same pathophysiological process where a perturbation in one gene can be propa-
gated and affect other genes throughout network interactions. This type of approach has
often led to the observation that different genetic backgrounds lead to similar phenotypes
(phenocopies) in line with the idea that these causes disturb the same biological mechanism
rather than being disconnected or acting in an isolated manner [15].

According to this view, molecular or cellular components belonging to particular
functional modules act in concert to perform essential biological tasks, and such interplay
can lead to abnormal interactions that are characteristic of complex diseases. These interac-
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tions can be represented as networks where nodes denote genes, gene products, biological
functions and/or disease categories, and links denote the interactions between them.

A network of biological interactions has characteristic topological properties [15].
One of these properties, shared by almost every biological network, is the scale-free prop-
erty [16]. Scale-free networks have a node degree distribution similar to a power-law
distribution meaning that a small number of nodes have a high number of connections
while the majority interacts only with a few neighbors. The highly connected nodes are
called hubs, and are of particular interest, because they frequently play a crucial role in a
biological mechanism [16]. Extending the analysis to the hub’s neighborhood allows for
the to identification of patterns of connectivity or groups of nodes underlying the logic of
particular biological functions [17,18].

1.3. Prediction of ASD Diagnosis with Machine Learning

Machine Learning (ML) approaches have proved useful in many health-related clas-
sification tasks. One of the strongest examples of this is the field of radiomics [19]. With
respect to ASD, ML classification has been applied in several studies to predict diagnosis;
however, prediction results are still limited.

A 2019 meta-analysis on the subject [20] observed a discrepancy in the diagnostic-
prediction accuracy between 60% and 98% across 57 different studies. In this analysis the
authors conducted a literature search on all studies that attempted to predict ASD clinical
diagnosis status either cross-sectionally or longitudinally on the basis of biology, cognition
and/or behavior, implementing a case-control design with only out-of-sample predictions
(i.e., a predictive model was trained on one part of the data and tested on another). The
reason given for such disparity was attributed to several aspects; for example, bias in the
sample, small sample sizes, usage of different validation methods, the heterogeneity of
ASD and data quality.

Another key factor that could be observed in the meta-analysis is related to the type
of data and scientific domains where the classification tasks were applied. We detected
that of the 57 studies, only one focused on genetic features to predict ASD diagnosis. In
this particular study [21], data from 487 ASD patients and 455 healthy individuals were
used to build an ML classifier. It relied on single-nucleotide polymorphism (SNP) data
to predict the diagnosis. The accuracy, sensitivity and specificity achieved by their model
were 73.67%, 82.75% and 63.95%, respectively.

Here, we decided to focus on the distinction between ASD and DD as an important
intermediate step, because of the relevance of differential diagnosis between clinical cate-
gories, and most importantly, because these categories might provide a clear-cut biological
distinction. We present an ML approach to predict diagnosis with genetic Copy Num-
ber Variations (CNV), aiming to address the aforementioned issues and propose a novel
framework using genetic data to predict the clinical category.

1.4. Study Approach and Aims

In order to contribute to the discussion on the impact of the dopaminergic system in
ASD, and its biological properties, we studied several dopaminergic features coded in the
CNV gene content of ASD carriers [22]. A CNV involves unbalanced rearrangements that
increase or decrease DNA content and that can affect several nucleotides in a chromosomic
region. This type of alteration can occur across the genome and can be detected using
CMA (Chromosomal Microarray Analysis) technology. Genome-wide CMA is a first-tier
test for most neurodevelopmental disorders [23,24] and the CNVs detected through it
are classified into five categories according to the guidelines of the American College of
Medical Genetics and Genomics (ACMG) and Clinical Genome Resource (ClinGen) [25].
These categories represent different levels of a CNV being associated with a disease and
include the following: (1) Pathogenic, (2) Likely pathogenic, (3) Uncertain Significance,
(4) Likely Benign and (5) Benign.
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However, given the characteristics of complex diseases, we wonder about the impact of
multiple CNVs, their interplay at different risk-levels and the potential of CMA technologies
to help studying this problem. Hence, here we study participants with multiple CNVs
where dopamine-related genes were in duplicated or deleted chromosomic regions.

Firstly, we used QuickGO [26] to identify a set of gene ontology (GO) [27,28] terms
related to the dopaminergic system. Next, from the SFARI Gene CNV Module [29]
(sfari.org/resource/sfari-gene/, accessed on 17 September 2017), we selected participants
having CNVs matching genes of interest based on the previously defined GO terms.

To address the genetic variance, frequency and heterogeneity in ASD, we used complex
network analysis [30]. This approach also allowed us to model the data accordingly to
a functional polygenic view [31,32] through maps of interactions between participant
diagnosis, genetic alterations and affected biological mechanisms.

In the end, we transformed the network’s information into vectors suited for an ML
classification problem. We used Random Decision Forests [33] to predict the participants’
differential diagnosis when presented with dopamine-related features extracted from gene
alterations observed in participants.

2. Materials and Methods
2.1. Data Source and Participant Selection

With the QuickGO API we created a set of 110 GO terms related to dopaminergic
neurotransmission aspects that were used to identify a set of 125 genes from CNVs in
the public dataset curated by the SFARI Gene CNV module. The genes within each
CNV region were identified using the BioMart API [34,35]. For this study, we admitted
participants within the SFARI Gene CNV module with duplications or deletions in the
genes identified previously. We only included in the analysis participants with a single
clinical diagnosis. Overall, we selected 1318 (Male: 699; Female: 134; Not Specified: 485)
participants with diagnosis of ASD and 1327 (Male: 81; Female: 67; Not Specified: 1179)
participants with diagnosis of developmental delay (DD). The raw data used to start this
study as well as the data used to construct the networks and to perform the machine
learning approach are available in this public repository: https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/HO1JLJ (published on 8 March 2022) [36].

2.2. Building Networks of Participant’s Genomic Features and Diagnostics

We continue our approach by building a network using participants and gene alter-
ations as nodes [37]. In this network (Gene Dosage Network) each participant was linked
to a gene if a duplication or a deletion was present. Then, a network using GO terms and
participants as nodes (GO Network) was built by replacing each gene with the associated
GO terms. Lastly, we joined all information into a single network, consisting of links
between genes, GO terms and participants (Gene Dosage–GO Network). All networks
were built using NetworkX package (version 2.4, created by Aric Hagberg, Dan Schult,
and Pieter Swart, Los Alamos, USA) [38] and layout was performed with Gephi software
(version 0.9.2, created by Mathieu Bastian, Sebastien Heymann and Mathieu Jacomy, Paris,
France) [39] to show a spatial arrangement of the nodes and their links. Node degree (the
number of links attached to a node) was used to size nodes and colors were used to mark
different types of nodes. The Fruchterman–Reingold (FR) algorithm [40] organized the
nodes using a gravity approach where the higher the degree of a node, the stronger the
force by which it attracts the linked nodes and pushes the unlinked ones. In order to enable
visual comparisons, the parameters used on the FR algorithm—namely, the area used to
display the nodes, the gravity force and the speed at which changes occurred until the
stabilization of the algorithm—were set equal for all networks.

2.3. Network Analysis Methods

From the network topologies we extracted centrality measures [41,42], such as the
number of nodes, the number of edges (links), the average degree and the network diameter.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HO1JLJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HO1JLJ
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In graph theory, the degree of a node identifies the number of connections/links that a node
has, whereas the degree distribution gives the probability of finding a node in a network
for a given degree. The degree distribution of each network was compared to the Poisson
curve and the power-law curve. The Poisson curve represents a distribution of the node
degree, where most of the nodes have nearly the same degree with small deviations from
the average; this type of curve has a bell-like shape. In this scenario, the existence of a
node with higher degree than the average of the network degree is unlikely. Such a node
will be an outlier. Contrarily, the power-law curve predicts the existence of fewer nodes
with higher degree, named hubs (outliers in a universe of nodes characterized mainly by
lower degree nodes). This approach helped to understand if the networks were closer to
the Random Network model, described by the Poisson curve, or to the Scale-Free Network
model, described by the power-law curve [43].

Next, we analyzed the hubs of each network in terms of their degree and the average
degree of their neighbors. The former provides information about the number of partici-
pants linked to a particular disrupted gene or GO term. The latter gives information about
the average of participant interactions with other genetic imbalances beyond the hub [44].
These measures help to understand the importance of the hub in the network structure. For
example, a hub with high degree and average neighbor degree equal to one represents a
hub-and-spoke pattern, meaning that all its neighbors have on average only one link; that
link could only be the link to the hub. In this scenario, the hub is a central piece to keeping
the network connected; removing it will disconnect all the nodes linked to it, breaking
the structure of the network and consequently its scientific meaning. Another possible
scenario occurs when the hub has an average neighbor degree higher than one. This case
informs about participants linked to more than one gene or GO term where the hub is
a central part of a subnetwork. The study of these subnetworks could help identifying
groups of genes or biological mechanisms shared by participants. Therefore, we conclude
our network analysis addressing this type of interaction. Using participants’ generalized
similarities, we tried to identify groups of genes and GO terms strongly shared among
participants within the same diagnostic category. This type of knowledge helps not only
with comparing differences between clusters of biological mechanisms related to ASD and
DD diagnostics, but also allows us to collate differences between participants within the
same diagnostic category [45].

2.4. Applying Machine Learning in Differential Diagnosis

We transformed the features of the created networks in data for an ML classification
problem [46,47]. Figure 1 provides an overview of the ML approach. The target classifica-
tion variable was the clinical diagnosis of participants, and to predict it we used features
extracted from the network topology. We measured the importance of each non-participant
node by dividing the node degree (the number of other nodes attached to it) by the total
number of links in the network the node belongs to; for each participant, if it was linked to
a particular node, we use its node importance multiplied by the type of the participant gene
dosage (Figure 2). For example, in the gene network, each gene was a feature. The value for
each feature is given by the node degree over the total number of the network links, which
we denoted as network node importance, multiplied by a factor of 1 or −1 representing the
participant CNV type; a duplication or deletion, respectively. The gene ontology network
was framed in the same way. However, for the last network we constructed the features
differently. For a given GO term in the network, its value was given by the importance of
the gene node it was linked to plus its own node importance, multiplied by the participant
CNV type (Figure 2). We obtained three datasets relying on different types of data: (1) gene
dosage, (2) GO and (3) combined gene dosage and GO data.
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Figure 1. Overview of the Machine Learning approach. The sample was randomly split into a training
and a testing set. A feature reduction using a wrapper approach operating with a Random Forest
algorithm was performed on the training set. Next, the training set was used to train a Random
Forest algorithm. The test set was then accessed by the Random Forest algorithm and the classifier
performance was recorded. This process was repeated 100 times.
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Figure 2. Example of feature extraction from the networks. In the Gene Network the vector of features
is given by multiplying each gene node importance by the type of alteration (1 for duplications or
−1 for deletions) that links a participant to a gene. In the GO Network the same principle was
applied to build the features vector; when a GO term was shared by multiple genes its product was
summed. In the Gene–GO Network a participant feature vector was built inserting the gene node
importance and the GO node importance. However, in this network the GO term was influenced
by the importance of the gene node it was linked to. This step allowed us to weight differently GO
terms shared by multiple genes.
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The SciKit-Learn package (version 0.21.3, first released by Fabian Pedregosa, Gael
Varoquaux, Alexandre Gramfort and Vincent Michel, Rocquencourt, France) [48] was used
to train and to test Random Forest classifiers in order to predict the participants’ diagnosis
based on network features and on the participants’ type of gene dosage, duplication or
deletion. We started by randomly splitting the participants into a training and a test set,
with a 70/30 ratio, under an equal distribution of classes. In the training set we identified
the features with more discriminant power using a wrapper methodology with a threshold
of 1 × 10−3 for feature importance [49] which were then used to train the classifier. The
test set was validated on the previously trained algorithm and the confusion matrix was
recorded. This process was repeated 100 times for each type of dataset. At the end, we
calculate the mean and the standard deviation of several metrics, such as the accuracy, the
precision and the recall, from the confusion matrix obtained in each repetition [50].

3. Results

Data used in this work come from SFARI Gene CNV Module which gathers CNV data
related to ASD from several studies. In Table 1 the number of participants discriminated
by diagnostic categories are listed. The listed participants have CNVs where dopamine-
coding genes were present. About 94% were diagnosed with DD (47.14%) or ASD (46.82%),
providing an adequate balance for the analysis, whereas the remaining 6% were distributed
over thirteen other diagnoses, for example, schizophrenia (1.78%) and intellectual disability
(1.67%). Our analysis proceeded with participants having the diagnosis of ASD or DD
due to the differences shown in the frequency of the diagnoses, which led us to focus on
this type of differential diagnosis and the underlying neurobiology. Given the number of
participants without sex specification we decided not to do a split-sex analysis.

Table 1. Distribution of Participant Diagnosis: Diagnosis and the number of participants (N) identified
with duplicated or deleted genes containing information related with dopaminergic aspects in SFARI
Gene CNV Module. The sex of the participants is reported in the Sex column as males (M), females (F)
or not specified (NS). Only participants with a single diagnostic category were considered. * denotes
participants investigated in this study.

Diagnosis Total (N) Sex(M/F/NS)

Developmental Delay (DD) 1327 * 81/67/1179

Autism Spectrum Disorder (ASD) 1318 * 699/134/485

Schizophrenia 50 18/10/22

Intellectual Delay (ID) 41 20/18/3

Middle Cerebral Artery Syndrome (MCA) 23 8/11/4

Epilepsy 17 11/6/0

Childhood Apraxia of Speech (CAS) 13 6/3/4

Polymicrogyria (PMG) 10 0/0/10

Attention Deficit and Hyperactivity Disorder
(ADHD) 6 4/0/2

Bipolar Disorder 3 1/2/0

Schizoaffective Disorder 3 0/3/0

Borderline Personality Disorder (BPD) 1 0/1/0

Congenital Heart Disease (CHD) 1 0/1/0

Microcephaly 1 0/1/0

Angelman Syndrome 1 0/1/0
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3.1. Macroscopic Network Features

The methodology used to construct the networks allowed us to highlight macroscopic
differences between networks (Figures 3–5). For example, in the Gene Dosage Network,
related to dopaminergic neurotransmission (Figure 3), nodes with larger size are found near
the limits of the figure and distant from each other, whereas in the GO Network (Figure 4)
a distinct and reorganized pattern is observed: larger nodes appear at the center of the
figure and closer to each other. This is likely related to the number of links each larger
node has attached and with the number of links in its vicinity which impacts the results of
the Fruchterman–Reingold algorithm. This algorithm relies heavily on gravity concepts to
display the nodes in a network (consult Section 2.2. for technical details).
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Figure 3. Gene Dosage Network: A network of participants with ASD (pink nodes) or DD (green
nodes) diagnosis and their links to duplicated or deleted genes (orange nodes). The node labels
represent a unique gene identification attributed by Ensembl (ENSG nodes). The size of a node
reflects its own degree. In this network, ASD nodes represent 45.49% of the total number of the
nodes (N on Table 2), DD 47.08% and genes 7.44%. Links were omitted for visualization purposes.
Produced with Gephi software (version 0.9.2, created by Mathieu Bastian, Sebastien Heymann and
Mathieu Jacomy, Paris, France), using the Fruchterman–Reingold layout (parameters: Area = 10,000,
Gravity = 5, and Speed = 5).
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Figure 4. GO network. A network of participants with ASD (pink nodes) or DD (green nodes)
diagnosis where the links to their genes were replaced by GO terms: biological processes (orange
nodes), molecular functions (blue nodes) and the cellular component representing the dopaminergic
synapse where gene-products perform actions (olive node). The node labels represent a unique
term identification established by GO. The size of the node reflects its own degree. In this network,
ASD nodes represent 48.43% of the total number of the nodes (N on Table 2), DD 48.84%, biological
processes 1.88%, molecular functions 0.81% and the cellular component 0.04%. Links were omitted
for visualization purposes. Produced with Gephi software (version 0.9.2, created by Mathieu Bastian,
Sebastien Heymann and Mathieu Jacomy, Paris, France), using the Fruchterman–Reingold layout
(parameters: Area = 10,000, Gravity = 5, and Speed = 5).
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Figure 5. Gene Dosage–GO Network. A network of participants with ASD (pink nodes) or DD (green
nodes) diagnosis, their links to their genes (orange nodes) and to GO terms: biological processes
(blue nodes), molecular functions (olive nodes) and the cellular component (grey node). The gene
labels refer to Ensembl-attributed unique gene identifiers, and GO term labels represent unique GO
identifiers. The size of the node reflects its own degree. In this network, ASD nodes represent 44.65%
of the total number of the nodes (N on Table 2), DD 44.95%, genes 7.89%, biological processes 1.73%,
molecular functions 0.75% and the cellular component 0.03%. Links were omitted for visualization
purposes. Produced with Gephi software (version 0.9.2, created by Mathieu Bastian, Sebastien
Heymann and Mathieu Jacomy, Paris, France), using the Fruchterman–Reingold layout (parameters:
Area = 10,000, Gravity = 5, and Speed = 5).



J. Pers. Med. 2022, 12, 1579 11 of 26

Table 2. Network Centrality Measures: the total number of nodes (N), the total number links (L),
the average degree for unidirectional networks (<k>), the density, the diameter and the radius of
each network.

Network N L <k> Density Diameter Radius

Gene Dosage 2770 9387 3.389 0.001 16 8

GO 2719 12669 4.659 0.002 7 4

Gene Dosage–GO 2952 22568 7.645 0.003 7 4

In the Gene Network (Figure 3) participants were linked either to a single gene or
instead to a set of genes, so each larger gene node will pull their linked participants and
push the other (unlinked) nodes way. In Figure 4 (GO Network) we swap the genes nodes
by their corresponding GO terms and the links organization between the two types of
nodes (participants and GO terms) changed completely. This resulted in an interesting and
revealing structural alteration of the network (in comparison to the Gene Dosage Network)
showing that many participants share dysregulations in sets of the same dopaminergic
domains although prevenient from different genes.

Furthermore, we observed that the percentage of gene nodes (7.44%) in the Gene
Dosage Network was higher than the sum of the percentage of the different GO terms
nodes (total = 2.73%; biological processes: 1.88%; molecular functions: 0.81%; the cellular
component: 0.04%). This property might be helpful when analyzing problems with high
genetic variance and low occurrence.

Importantly, in this work we were aware that by only looking at one of the types of
networks we might be missing the information contained in the other. Thus, to overcome
this problem, we built the Gene Dosage–GO Network (Figure 5) by linking participants,
genes and GO terms.

3.2. Network Analysis

Analyses of centrality measures, degree distribution and hubs helped to confirm
the previously observed patterns, and to identify new relations between dopaminergic
neurotransmission features and the underlying diagnosis of the participants under different
contexts. These may be difficult to detect if one relies only on simple descriptive analysis
of visual patterns. For example, simply counting the number of nodes and links of each
network is quite cumbersome. Table 2 presents the centrality measures of each network.
Considering N (number of nodes) and L (number of links) we identify that the Gene
Network has higher N and lower L than the GO Network. This decreases the <k> (average
degree) and density properties of the Gene Network. Compare to the other two networks,
we observe that the Gene Network is the most poorly connected, in line with the notion
that it is more limited in providing direct biological information.

Moreover, when we analyze the diameter of the networks, we observe that it is
decreased ~2.3 times from the Gene Network to the GO Network; this result is in agreement
with our initial prediction that, in the Gene Network, nodes appear more distant than in
the GO Network, which has thereby larger biological meaning. Indeed, swapping genes by
their linked GO terms resulted in seven degrees of separation, meaning that a node in this
network can only be at a maximum path distance (the maximum number of nodes linked
between two nodes of interest) of seven nodes from another. Thus, this transition enhanced
a property of complex networks known as small-worlds [51–53], which in this particular
case, forecasts the existence of more communities (smaller groups of nodes strongly tied in
a larger networks) in the GO Network than in the Gene Network. The study of communities
has strong scientific value since it allows researchers to identify key biological mechanisms
disrupted in groups of participants; in turn, this can be used, for example, to partition in a
meaningful way the ASD heterogeneity derived from genetic factors.

Next we present the results of contrasting the networks’ degree distribution with the
Poisson distribution and the power-law distribution [54,55] (Figures 6 and 7). This allows
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us to understand if networks were closer to a Random Network model, which expects the
inexistence of nodes with much higher degree than the average network degree, or to a
Scale-Free Network model, which expects a higher number of nodes with lower degree and
the existence of fewer critical nodes with extremely high degree [43]. Here, we observed a
long-tail behavior in both networks which favors the proximity to a Scale-Free model; in
other words, in our networks there were nodes with larger degree in a such way that they
could be reliably labeled as hubs. These hubs are central parts in the network structure
and, therefore, their study is of particular interest to uncover the biologic meaning behind
the network.

Table 3. Networks’ maximum degree nodes (hubs): the node, their name, node degree (k), and the
average degree of their neighbors of the Gene Dosage and of the GO Networks.

Network Hub Name k Average Neighbors
Degree

Gene Dosage
ENSG00000102882 MAPK3 463 1.6

ENSG00000093010 COMT 450 1.2

ENSG00000050628 PTGER3 339 11.8

GO

GO:1903351 Cellular response
to dopamine 1029 6.3

GO:0042417 Dopamine
metabolic process 968 7.5

GO:0007200

Phospholipase
C-activating G

protein-coupled
receptor

signaling pathway

788 8.9
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Figure 6. Evidence for critical hubs within a scale-free network as revealed by the Degree Distribution
of the Gene Dosage Network (black dots), and the Poisson distribution (red curve) and the power-law
distribution (blue curve) using the same number of nodes and links as the Gene Dosage Network.
On this figure the probability threshold was set to 0.0001 (y axis) and the number of links set to a
maximum of 20 (x axis). The maximum number of links is reported on Table 3.
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Figure 7. Further evidence for critical hubs as revealed by the Degree Distribution of GO Network
(black dots), and the Poisson distribution (red curve) and the power-law distribution (blue curve)
using the same number of nodes and links as the GO Network. On this figure the probability
threshold was set to 0.0001 (y axis) and the number of links set to a maximum of 20 (x axis). The
maximum number of links is reported on Table 3.

3.2.1. Hubs and Neighborhood Analysis

In Table 3, for each network we report the nodes with the highest degree and the aver-
age degree of their neighbors. In the Gene Network, the major gene hub (ENSG00000102882,
MAPK3 gene) is linked to 463 participants and each one of these participants had on aver-
age 1.6 links, meaning that most of these participants are only linked to this hub. Thus, this
hub is extremely important to uphold the network as one big interconnecting component.
It represents a hub-and-spoke pattern, so removing it will disassemble the network, pro-
ducing several isolated participant nodes, resulting in loss of information. In other words,
the imbalances in the MAPK3 gene are a major aspect for ASD and DD participants. On the
other hand, when we look at the last hub (ENSG00000050628)—related to PTGER3—listed
for the Gene Network, we observe that the node is linked to 339 participants and has
an average neighbor degree of 11.8. In this case, each participant linked to this hub was
also linked to another 10 genes on average, and removing it from the network will not
break its connectivity [56,57]. However, this gene is also very important for ASD and DD
analysis since it identifies a subnetwork of disrupted genes that could be under the same
biological domain.

Comparing the hubs of the two networks, we verify that the GO Network hubs were,
as expected, linked to more participants and that these participants share several links with
other GO terms. For example, the major hub of the GO Network had more than twice the
links of the major hub of the Gene Network, and all of its participants were also linked on
average to another six GO terms. Again, Table 3 supports the prior analysis that, in the
GO Network, the GO nodes seemed to be more connected and closer to the center due to
the existence of more links between participants and GO terms than participants and gene
nodes in the Gene Dosage Network.

Additionally, we observed that the GO term hubs were related with the biological
processes of the gene hubs: (1) Cellular response to dopamine is a biological process of
MAPK3, (2) Dopamine metabolic processes are related to COMT and (3) The last GO term
hub is a synonym of the phospholipase C-activating dopamine-receptor-signaling pathway
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which, in turn, is a term attributed to the PTGER3 gene. Thus, the information in the Gene
Network remains across the GO Network.

Moreover, since GO hubs had more links than gene hubs, it allowed us to aggregate
other participants with the same disrupted biological mechanism but stemming from other
genetic sources of lower degree. The average neighbor degree suggests the existence of
several subnetworks of biological mechanisms shared between groups of participants
which could be related to distinct dopaminergic domains. Consequently, these resulted
in GO hubs with higher degrees, and in higher neighbor degree, increasing the network’s
information value. It is also a more-robust and less-vulnerable network; in other words, its
risk of being disassembled due to a node deletion decreased due to the increase of links
between nodes and node neighbors [58].

3.2.2. Generalized Similarity within ASD and DD

Here we analyzed similar participants by grouping their shared genes and GO terms
in a network. The analysis was performed individually for each type of diagnosis not
only to spot biological differences between diagnostic categories but also to investigate
differences within participants under the same diagnosis. Figures 8 and 9 depict groups
of genes shared by similar participants with ASD or DD, respectively. Each cluster of
genes represents a set of participants sharing similar genetic alterations, and the colors
represent the individual gene’s strength of ASD risk according to the SFARI Gene Score
Module assessment.

In the ASD Gene Network we identified 163 genes distributed across 21 communities
(subnetworks within a network). These groups are characterized by distinct genetic sig-
natures of different groups of participants with ASD. Moreover, the network is relatively
disassembled; it is composed of 17 connected components isolated from each other, i.e.,
without links between them. These components represent 17 unique groups of participants
each with their own unique subset of genes. Within the network were identified 3 genes
with high evidence of ASD risk, 2 strong candidate genes and 16 suggestive candidates.
However, 142 genes had no information about the respective individual risk. The DD
Gene Network structure is analogous to the ASD Gene Network. It counts 64 different
genes distributed in 11 communities. Again, the network is disassembled in 10 connected
components, showing genetic variability within the DD diagnostic category. One difference
is the absence of genes classified as high confidence of ASD risk.

Regarding the similarities between participants and their GO terms, we present Fig-
ures 10 and 11 for ASD and DD types of diagnosis, respectively. The network nodes were
colored according to the modularity, which allowed for the detection of communities within
a network by evaluating the way nodes are linked between each other. This helped to spot
imbalanced clusters of biological mechanisms that characterize different participant subsets.
The ASD GO Network is formed by 41 nodes and nine communities. Here exists only one
connected component, and this has two important implications. The first is related to the
genetic variability observed in Figure 8 for ASD genes. These results show that different
imbalanced genes are indeed disrupting the same biological mechanisms. The second is
related to the heterogeneity of ASD. The connected component and its nine communities
suggest that some ASD participants could share signatures from different communities.
In four of these communities, we identified a principal biologic mechanism: (1) orange
nodes are related to the binding in dopamine receptors, (2) pink nodes are related to
dopamine-metabolic processes, (3) green represent mechanisms that regulate the differenti-
ation of dopaminergic neurons and (4) red nodes represent dopaminergic synapse biology.
Moreover, there is a proximity between communities of similar domains. For example,
the orange community (dopamine-receptor binding) is neighbor to the pink community
(dopamine-metabolic process), whereas the green community (regulation of dopaminergic
neuron differentiation) is close to the red community (dopaminergic synapse). Thus, the
results show that different combinations and levels of these factors may explain different
subsets of ASD participants.
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Figure 8. ASD Gene Network. A network of imbalanced genes shared across similar ASD partici-
pants. The network is composed of 163 different genes spread in 21 communities. It is a relatively 
disconnected network of 17 connected components where each component represents a different 
group of ASD participants. Number of links: 832, density: 0.063 and modularity: 0.923. The colors 

Figure 8. ASD Gene Network. A network of imbalanced genes shared across similar ASD partici-
pants. The network is composed of 163 different genes spread in 21 communities. It is a relatively
disconnected network of 17 connected components where each component represents a different
group of ASD participants. Number of links: 832, density: 0.063 and modularity: 0.923. The colors
represent the individual gene’s strength of ASD risk: blue represent genes of high evidence (3 genes,
1.84%), orange are strong candidate genes (2 genes, 1.23%), green represent suggestive candidate
genes (16 genes, 9.82%) and light red marks genes without information of individual risk (142,
87.12%). This risk is calculated by SFARI Gene in its Gene Score Module. The links between gene
nodes were obtained using the generalized similarity algorithm (version 0.9.2, created by Mathieu
Bastian, Sebastien Heymann and Mathieu Jacomy, Paris, France) [45] and the image was produced
with Gephi software, using the Fruchterman–Reingold layout (parameters: Area = 10,000, Gravity = 5,
and Speed = 5).
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Figure 9. DD Gene Network. A network of imbalanced genes shared across similar DD participants. 
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Figure 9. DD Gene Network. A network of imbalanced genes shared across similar DD participants.
The network is composed of 64 different genes spread in 11 communities. It is a disconnected network
of 10 connected components where each component represents a different group of DD participants.
Number of links: 383, density: 0.19 and modularity: 0.604. The colors represent the individual gene’s
strength of ASD risk: an absence of genes of high evidence (0 genes, 0.0%), blue is the only strong
candidate gene (1 gene, 1.56%), green represent suggestive candidate genes (9 genes, 14.06%) and
light red marks genes without information of individual risk (142, 87.12%). This risk is calculated
by SFARI Gene in its Gene Score Module. The links between gene nodes were obtained using the
generalized similarity algorithm [45] and the image was produced with Gephi software (version
0.9.2, created by Mathieu Bastian, Sebastien Heymann and Mathieu Jacomy, Paris, France), using the
Fruchterman–Reingold layout (parameters: Area = 10,000, Gravity = 5, and Speed = 5).
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dysregulated per subset of ASD participants. The interconnected communities are related to ASD 
participant subsets that share traits of more than one community. Number of links: 100, density: 
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Figure 10. ASD GO Network. A network of disrupted GO terms shared across similar ASD partici-
pants. The network is composed by 41 different GO terms spread in 9 differently colored communities.
It is a connected network where each community represents a different set of GO terms dysregulated
per subset of ASD participants. The interconnected communities are related to ASD participant
subsets that share traits of more than one community. Number of links: 100, density: 0.122 and
modularity: 0.71. The links between nodes were obtained using the generalized similarity algo-
rithm [45] and the image was produced with Gephi software (version 0.9.2, created by Mathieu
Bastian, Sebastien Heymann and Mathieu Jacomy, Paris, France), using the Fruchterman–Reingold
layout (parameters: Area = 10,000, Gravity = 5, and Speed = 5).

On the other hand, the DD Network is constituted by 13 GO term nodes spread
by two communities. As in the previous network, all its nodes are connected into one
single component; however, the modularity level is very low (0.097), which results in
one larger community. This community is formed by several key dopaminergic concepts,
such as dopaminergic synapse, regulation of dopamine-metabolic process, dopaminergic
differentiation and regulation of dopamine secretion. Thus, this result suggests that the
genetic imbalances of most DD participants share dysregulations in all these biologic
mechanisms simultaneously. It differentiates from the ASD diagnosis because the genetic
variability was higher, and within subsets of ASD participants, only some of these aspects
were dysregulated. Thus, this indicator has potential for tasks addressing the differentiation
of ASD from DD diagnoses and also in differentiating within ASD.
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features for a classification problem (differential diagnosis between ASD and DD). The 
results of the ML approach are presented in Table 4 and revealed an average accuracy at 
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Figure 11. DD GO Network. A network of disrupted GO terms shared across similar DD participants.
The network is composed by 13 different GO terms spread in two differently colored communities. It
is a connected network where each community represents a different set of GO terms dysregulated
per subset of ASD participants. Number of links: 45, density: 0.572 and modularity: 0.097. Since
its modularity is very low it is possible to assume only one community which represents most of
the disruptions found in the DD participants. The links between nodes were obtained using the
generalized similarity algorithm [45] and the image was produced with Gephi software (version
0.9.2, created by Mathieu Bastian, Sebastien Heymann and Mathieu Jacomy, Paris, France), using the
Fruchterman–Reingold layout (parameters: Area = 10,000, Gravity = 5, and Speed = 5).

3.3. Statistical Classification between ASD and DD

In the previous analyses, we observed that some nodes had more links than others had,
and assumed that they had different importance. Therefore, we used this to build features
for a classification problem (differential diagnosis between ASD and DD). The results of the
ML approach are presented in Table 4 and revealed an average accuracy at predicting the
differential diagnosis of the participants in the test sets of 85.18% (±1.11%), 83.22% (±1.09%)
and 85.13% (±1.06%) for Gene Dosage, GO and Gene Dosage–GO datasets, respectively.

To understand the types of errors in the decisions that lead to the test accuracy results,
we verified the confusion matrix and analyzed both the false positive and false negative
predictions. For example, we found that in the Gene Dosage test sets (which contained
395 participants diagnosed with ASD and 395 diagnosed with DD) on average 25 (sd 5)
ASD participants were misclassified with DD diagnosis and 92 (sd 8) DD participants
were misclassified with ASD. This pattern is present in the other datasets used in the ML
approach, and influenced the recall, precision and ultimately the F1 score obtained.
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Table 4. Machine Learning Results of differential diagnosis classification between ASD and DD.

Dataset Tn Fp Fn Tp N
Features

Acc Train
(%)

Acc
Test(%) AUC

DD
Precision

(%)

DD
Recall

(%)

ASD
Precision

(%)

ASD
Recall

(%)

DD f1
Score
(%)

ASD f1
Score(%)

Gene Dosage
mean 369.6 25.4 91.7 303.3 117.4 88.59 85.18 0.85 80.15 93.57 92.30 76.79 86.33 83.82

sd 5.3 5.3 7.7 7.7 3.9 0.41 1.11 0.01 1.35 1.35 1.47 1.96 0.98 1.31

GO
mean 368.0 27.0 105.5 289.5 62.0 86.25 83.22 0.83 77.73 93.15 91.50 73.28 84.73 81.36

sd 6.6 6.6 7.4 7.4 1.5 0.41 1.09 0.01 1.18 1.68 1.81 1.87 0.99 1.28

Gene
Dosage–GO

mean 371.8 23.2 94.3 300.7 58.6 88.59 85.13 0.85 79.79 94.13 92.87 76.13 86.36 83.66

sd 5.0 5.0 7.2 7.2 1.6 0.37 1.06 0.01 1.24 1.27 1.42 1.83 0.94 1.25

The mean and the standard deviation of the measures obtained from 100 repetitions in the training and the testing of a Random Forest classifier for each dataset. (tn: true negative, fp:
false positive, fn: false negative, tp: true positive, N features: the total number of features used to train the classifier, Acc train: accuracy of the classifier in the train set, Acc test: accuracy
of the classifier in the test set, AUC: area under the roc curve, DD precision: precision measured for DD class, DD recall: recall of DD class, ASD precision: precision of ASD class, ASD
recall: recall of ASD class, DD f1 score: F1 score of DD class, ASD f1 score: F1 score of ASD class. Positive class: ASD; Negative class: DD; Train size: 1846 participants (923 ASD/923 DD);
Test Size: 790 participants (395 ASD/395 DD)).
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Overall, the classifiers’ ability to identify participants with ASD diagnosis was higher
than the ability to identify DD participants; in other words, the precision was higher in
ASD diagnosis compared to DD diagnosis independently of the dataset used. However,
the confidence when the classifier marked a participant with DD was higher than the
confidence when the classifier marked a participant with ASD; to put this in another way,
recall was higher in DD diagnosis compared to ASD diagnosis for each dataset used. This
resulted in higher F1 scores for DD diagnosis compared to ASD diagnosis.

Impact of Feature-Type in Classifier’s Performance

Finally, we will focus on the number of features used to train and test the classifiers
recorded in Table 4. On average, 117 (sd 4) genes were needed to train a classifier with
gene dosage data, whereas 62 (sd 2) GO terms were used for the same purpose with
a drop in the test accuracy of approximately ~2%; in other words, with nearly half of
the features it was possible to train a classifier with almost the same performance by
swapping the genes with its corresponding GO terms. This fact may impact the classifier’s
ability of generalization [59,60] in ML approaches applied to ASD due to the low effective
contribution of individual genes and high genetic variability. However, we were aware
that relying only on one type of data was not an optimal solution. As demonstrated earlier,
either genes or GO terms had different importance. In order to express the GO term’s
importance as a function of the gene’s importance we built the Gene Dosage–GO dataset.
Surprisingly, by combining gene and GO features, we were able to decrease the required
number of features to train the classifier to a minimum of 59 (sd 2) features and maintain
the classifier-performance metrics as similar to the other two individual approaches (Gene
dataset and GO dataset).

4. Discussion

The present study provides novel insights on the underlying neurobiology of ASD
and DD which concerns the nature of dopamine gene-dosage effects. We highlighted
key biological mechanisms underlying observed phenotypes by mapping relations with
several dosage-imbalanced dopamine-related genes. Furthermore, we showed that they
may consistently be used when applied to a clinical diagnosis problem of classification
based on polygenetic profiles. Our approach is novel and allowed for addressing issues,
such as genetic variability, which has been largely pointed out by previous studies.

One of the main issues when studying complex and heterogeneous diseases, namely
ASD, is related to the need for a large sample size. In this work we used a sample size of
2636 participants (Table 1), whereas in other studies aiming for diagnostic classification in
ASD the maximum number of samples used was around 1000 participants [21,61–66]. This
large number of participants allowed us to frame our problem and test our methodology
around the genetic variability associated with such complex diseases. However, with our
methodology it was not possible to apply a sex analysis, given the number of participants
with unspecified sex would have reduced our sample to 981 participants. The imbalance of
the number of participants with specified sex between ASD (699) and DD (148) was another
motive to not proceed with sex analysis with this sample. For example, a cut in the number
of participants will have resulted in a drop of genes and gene ontology terms studied. This
action would probably impact the ML results since the number of samples and the number
of features available will differ between ML analyses. Consequently, it would be difficult to
specify if the difference observed was a result of splitting between sex or a result from a cut
in the sample size and number of features. Thus, we made the choice to make the analysis
with the largest sample we could find without a split between sex.

We used a polygenic approach to map the participant relations with multiple genes
which encode several aspects of dopaminergic biology and function (Figure 3). We followed
the systems biology tenet that it is important to go beyond simple gene dosage concepts
such as gene duplication or deletion. Using GO terms, we explored and mapped the
relations between participants and their genetic signatures, linking participants with similar
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disrupted biological processes and molecular functions occurring in the dopaminergic
synapse (cellular component) (Figure 4). The Gene and GO Network description rendered
quite obvious the need to use appropriate tools for the analysis of complex diseases. This
was achieved using complex network analysis where we demonstrated some unique
biological characteristics underlying ADS and DD categories.

Firstly, we observed the presence of critical hubs in both the Gene and the GO Network
(Figures 6 and 7). It is a unique feature of scale-free networks and, in this case, indicates
that some genes and biological mechanisms appear to be most frequently disrupted among
the participants. In the top of this hub’s ranks we found MAPK3, COMT and PTGER3
genes (Table 3). A distinct aspect between them is the number of links in their vicinity.
Participants linked to MAPK3 and COMT genetic alterations do not share links with any
other genes, whereas participants linked to PTGER3 were part of a subnetwork of genetic
alterations. Thus, there were participants in whom the disruptions in dopamine pathways
were encoded only in one gene and others where it was encoded across a subset of genes.

Additionally, each of the GO terms identified as hubs were related to distinct biolog-
ical functions encoded by each of the hub genes: (1) The cellular (synaptic) response to
dopamine depends on information coded in MAPK3 which plays a critical role in diverse
biological functions involving the MAPK/ERK cascade, particularly during neurodevelop-
mental stages [67]. (2) The dopamine-metabolization processes are partly dependent on
COMT genetic coding since its expression is essential to the catalyzation of neurotransmit-
ters of the catecholamine family, including dopamine, epinephrine and norepinephrine.
The modulation of this pathway is relevant in neurodegenerative disorders [68], and in ASD
its regulation is associated with abnormal dopamine levels, abnormal brain activity and
increased severity of autistic behaviors, although some evidence remains controversial [69].
(3) The phospholipase C-activating dopamine-receptor-signaling pathway is related to the
PTGER3 gene, as the protein encoded by this gene is a member of the G-protein-coupled
receptor family which is relevant across pivotal metabolic domains [70] relevant to many
human diseases, including ASD [71].

Moreover, we note a distinct pattern in the GO hubs; it always had more participant
links and always had several interactions in their vicinity. This suggests that these are more
informative and that genetic imbalances from various gene sources are also targeting these
biologic concepts. However, they are not spotted under the gene network. In sum, definable
subnetworks of biological mechanisms where frequently disrupted in ASD and DD.

Secondly, we proceed to detect subnetworks of genes and GO terms shared by joint sets
of similar participants. In the ASD Gene Network and DD Gene Network (Figures 8 and 9)
we found several clusters of genes exclusive within subgroups of ASD and DD participants,
respectively. Thus, there were no connections between clusters, which is in accordance
with the distinct genetic variability present in these complex diseases. Additionally, we
found some genes that had a different individual strength of ASD individual risk according
to SFARI Gene Score Module assessment, but their coupling in complex gene subnetworks
renders a direct link to such scores difficult. An interesting observation was the absence of
genes with high confidence of ASD risk in the DD network. This provides further support
for the validity of our framework. Most genes had no information on their individual
relevance to ASD risk, which emphasizes the relevance of exploring polygenic risk to
differentiate complex diseases. Accordingly, we found clearly distinct patterns in both ASD
and DD categories. The number of genes and links found in these networks represent a
challenge in terms of biological interpretation, which led to the ontology-based approach.

The ASD GO Network and DD GO Network (Figures 10 and 11, respectively) were
found to be better suited for biological interpretation due to their network structure and the
conceptual meanings that could be associated to nodes. These networks appear connected
in one single component, which is a big difference from their diagnosis gene network coun-
terparts. Importantly, this fact strongly suggests that behind the genetically variable nature
of these complex disease exists a meaningful connectivity between the affected biologic
mechanisms. This allowed us to identify key dopaminergic concepts which were differ-
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entially disrupted in each diagnosis. For example, in the diagnosis of ASD we identified
the disruption of four key biological mechanisms related to dopamine-receptor binding,
dopamine-metabolic processing, the regulation of dopaminergic neuron differentiation
and the dopaminergic synapse. Moreover, these concepts appear strongly tied in network
communities formed by specific domain disruptions related to these key concepts. This
highly suggests that different subsets of ASD participants only had disruptions within one
of these domains, i.e., only belong to one community trait.

However, given the network’s single-component pattern and the existence of such
communities, it is also likely that different subsets of participants could share traits from
more than one community, and in particular from those in the close neighborhood. For
example, the dopaminergic-synapse community and the regulation of dopaminergic neuron
differentiation were close neighbors. It is therefore likely that different combinations of
disruptions in these communities may be behind some groups of ASD participants. Thus,
this feature could be a major factor to understand the ASD heterogeneity derived from
genetic alterations.

Additionally, we found that DD only had one community where several key dopamin-
ergic concepts of different domains were disrupted. This is another clue about the neurobi-
ological distinctions between ASD and DD, and could explain the different characteristics
between these diagnostic categories.

Lastly, we transformed the information derived from network analysis to address a
differential diagnosis classification problem (Table 4). Our best accuracy (85.18%) was only
2.02% behind the best classifier found in the studies mentioned earlier, which used EEG
brain features [61]. Indeed, our study surpasses in accuracy the study using microarray
data by about 11.51% [21].

Additionally, it used a larger sample size than the previous studies and showed
consistency over the several ML models and metrics obtained. Here, we highlight the
importance of the nature of the features used to train a classifier. For example, a classifier
that relies only on gene-dosage information to decide may not be able to give an accurate
response in the presence of a gene that the classifier was not trained on beforehand. On the
other hand, if the classifier uses GO information it may be able to infer a correct response
based on the previous examples, because it is not tied to a set of genes but instead to a set of
biological processes, molecular functions and cellular components relevant to the problem.

Indeed, as we demonstrated throughout the study, GO information gives a less-
variable and more-compact set of domain-oriented features. Thus, we consider this
framework a solid option when developing knowledge-based systems addressing sup-
port decisions in ASD. One approach for developing support-decision tools in this field
should be to consider collecting and weighting the response of an ensemble of classi-
fiers [72] working with different types of data (ex.: genes, GO, brain data) to deliver a
diagnostic-output response.

Furthermore, to extend this approach beyond the functions of the dopaminergic system
in ASD, it could be interesting to address several ML classifiers to each system or pathway
shown to be disrupted in ASD. It is likely that the performance of this approach depends
on the type of differential diagnosis and classification being performed. Combining the
response of distinct classifiers will probably increase the diagnostic accuracy of the response
while, at the same time, analyzing the individual output of each classifier may provide
insights about the systems disrupted in a given ASD case.

Importantly, ASD is a neurodevelopmental disorder strongly tied to behavioral as-
pects. This is an opportunity to improve our knowledge about gene–brain-behavioral
relationships. In future studies we will explore this by building ML approaches to attempt
predicting neurobehavioral features in ASD.

The clinical potential of the approach present here can be useful in two clinical domains,
namely, diagnosis and intervention. The methodology used to generate vectors containing
genetic information from multiple genes and several biologic mechanisms that describe the
network of interactions between these and the disease and a machine learning algorithm
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could be integrated in a clinical setting in order to provide support to clinical decisions and
streamline the clinical diagnosis process. For intervention, it could be a valuable tool used
as a recommendation support system. For example, a network of interactions between
diseases, genes and interventions could allow it to recommend an intervention based on
genetic and disease similarities between participants. These solutions will benefit most
approaches aiming to deliver personalized medicine services.

To conclude, we would like to discuss some study limitations. The type of CNV data
used here are usually gathered from blood or saliva samples and reflect genetic variations
of more than 50 k base pairs. This excludes potential interactions of genetic mutations
from the analysis as well as any attempt to study DNA extracted from the local of interest,
for example.

Additionally, the context (quantitative behavioral genetic studies) and the aim (to
estimate the relative contribution of genetic variation in defining the variation in the trait
of study across a population) in and for which these data are used output only CNVs
of statistical evidence for genetic influence. Therefore, the interplay with CNVs with
insignificant statistical evidence could not be studied as well as the interplay with common
variants, which could potentially impact the study outcomes. This is a trade-off when
addressing this issue with data from epidemiologic studies.

Furthermore, Gene x Environment interactions could not be included here. This is
a major issue and a very challenging one to address. The expression of a gene and its
rate is dependent of several factors: state of the nucleotide sequence, epigenetic marks,
intracellular conditions, cellular signaling and time are all varying factors which together
contribute to the final phenotypic expression at the biological level.

Yet, we uphold the methodology and the results obtained here, which were successful
at: (1) identifying potentially major imbalanced genetic and biologic mechanics of dopamin-
ergic synapses and their potential interactions in a large sample of participants with ASD
or DD; and (2) extracting relevant biological meaning and diagnostic differences from a
complex problem; which could be used to perform successful classification using biologic
features extracted from complex networks and machine learning algorithms.
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