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Ebola Virus Disease (EVD) is a viral hemorrhagic fever that affects humans and other primates. 
It is characterized by rapid virus spread in a short period of time. The disease has the potential 
to spread to many different regions of the world. In this paper, we have developed a modified 
mathematical model of the Ebola virus, adding the quarantine population as a control strategy. 
The quarantine population 𝐹 and parameters 𝜌3 represent the rate at which individuals enter 
the quarantine compartment, which is vital in controlling the virus spread within society. The 
conformable derivatives have been applied to the modified model to observe the behavior of 
individuals for fractional derivative values between 0.7 and 1. For a modified model, the threshold 
parameter (𝑅0) has been determined using the Next-Generation Matrix (NGM) method. We have 
checked local and global stability at a disease-free equilibrium point using Routh-Herwitz (RH) 
criteria and Castillo-Chavez, respectively. Numerical results obtained through the Fourth-Order 
Runge Kutta Method (RK4) demonstrate, a decrease in the virus transmission rate after following 
the implementation of the quarantine strategy.

1. Introduction

Ebola Virus Disease (EVD), commonly known as Ebola Hemorrhagic Fever (EHF) [1,2], is a viral hemorrhagic fever that affects 
humans and other primates. Researchers have created mathematical models to understand better the dynamics of the Ebola virus 
and the necessary intervention strategies that must be implemented to battle the disease effectively due to the current epidemic. 
Mathematical analysis and modeling are essential to infectious disease epidemiology. Many mathematicians developed new idea 
for creating mathematical models to solve complex biological problems [3–8]. A stochastic Susceptible-Exposed-Infected-Recovered 
(SEIR) model was suggested by Chowell et al. (2004) [9]. This model matched the Ebola epidemic data from the Congo in 1995 and 
Uganda in 2000. In the presence of intervention, the basic reproduction rate for Congo was projected to be 𝑅0 = 1.83, whereas it was 
𝑅0 = 1.34 for Uganda. The same data for the pandemic outbreak in the Congo were utilized in a similar model developed by Ndanguza 
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et al. (2004) in [10], which produced a lower estimate for the basic reproduction number 𝑅0 = 1.4. The stochastic model SEIR model 
proposed in [9] underwent an extension. Gomes et al. (2014) [11] developed a meta-population stochastic epidemic model for the 
2014 Ebola Virus Disease outbreak. This model evaluated the danger of the outbreak’s global spread. Their concept was created as an 
epidemic and mobility model for the entire world. The everyday airline passenger flow between more than 200 nations is integrated 
into the mobility model. It was applied to provide a stochastic, individual-based simulation of the global spread of the disease. 
In their study, community, hospital, and funeral services were utilized to depict transmission dynamics using the compartmental 
disease model. According to the findings, the basic reproduction number for the sick population’s rapid, short-term growth rate in 
impacted West African nations is estimated to be 1.5–2.0. They also discovered that, despite monitoring and containment efforts, 
hospital visits and burial rituals account for most of the disease’s total transmission. According to Meltzer et al. (2014) [12], the 
effectiveness of hospital-based therapies depends on the treatment facility’s capacity and admission rate. Following the pandemic 
from 2013 to 2016, numerous Ebola Virus Disease scenarios were examined in mathematical models. The Ebola virus disease (EVD) 
outbreak in West Africa was one of the most severe public health crises in recent history. Ajelli et al. [13] conducted a computational 
modeling analysis of the Ebola epidemic in Guinea, providing valuable insights into the potential impact of vaccination programs 
on controlling the spread of the disease. Estimating the reproduction number (R0) during the outbreak is another critical aspect of 
understanding epidemic dynamics. Chowell and Nishiura [14] provided a comprehensive overview of the Ebola virus’s transmission 
dynamics and control measures. Their work emphasizes the importance of timely intervention and robust public health strategies in 
managing such outbreaks. In addition to these perspectives, Nazir et al. [15] proposed an advanced conformable mathematical model 
for EVD, enhancing the understanding of the disease’s behavior and spread in Africa. Their model introduced new dimensions to the 
mathematical modeling of Ebola, contributing to the broader efforts to control and eventually eliminate the disease. Ahmad and Abbas 
(2021) [16] developed a nonlinear model, termed Susceptible–Exposed–Infected–Quarantined–Recovered (SEIQR), to investigate the 
transmission dynamics of Ebola virus disease. In their model, an additional class of quarantined individuals was incorporated to 
assess the impact of quarantine strategies on the exposed population. Tadmon and Kengne (2022) [17] developed a comprehensive 
mathematical model for Ebola virus transmission. It incorporates control measures like a ban on bush meat, social distancing, hygiene, 
vaccine dynamics, and strategies such as quarantine and screening to combat the disease’s spread effectively. Ismail, S. (2023) [18]
proposed a mathematical model for exploring the dynamics of Ebola Virus Disease infection, accompanied by sensitivity analysis. 
The model comprises five non-linear ordinary differential equations, and the basic reproduction number (R0) calculation is derived 
using the next-generation matrix method. Abah et al. (2024) [19] conducted a mathematical analysis and simulation of Ebola virus 
disease spread, incorporating mitigation measures. Their model integrates quarantine and public education campaigns as effective 
control measures to combat the spread of the disease. Our research builds upon the model proposed by Nazir et al. (2020) [15]
by addressing several gaps identified in the existing literature. While Nazir et al. focused on a SIR-type model to understand the 
transmission dynamics of Ebola Virus Disease and its pathogens, our enhancements introduce a quarantine population, denoted as 
𝐹 , along with additional parameters 𝜌3, 𝑤1, and 𝑤2. These modifications are strategically employed as control measures to provide 
a more comprehensive understanding of infection dynamics. By incorporating the quarantine compartment, our model aims to offer 
clearer insights into how quarantine affects infection rates, thus improving the effectiveness of intervention strategies and contributing 
to a more robust and actionable framework for managing the spread of Ebola Virus Disease. The model also considers Ebola virus 
pathogens (bacteria, viruses, or other microorganisms that cause disease) in the environment. This inclusion is significant as it can 
affect the spread of the disease, and any changes in the statistics will influence the final results. The hidden phenomenon of an 
infected individual recovering after a quarantine period has been uncovered. For greater accuracy, we apply conformable derivatives 
to the proposed model and observe behavior for values of derivatives between 0.7 and 1. Well-posedness has been confirmed in the 
developed model. The reproduction number 𝑅0 has been determined to understand the situation of Ebola Virus Disease. Local and 
global stability are also calculated at the disease-free equilibrium when 𝑅0 < 1. The graphical behavior of given individuals using 
the RK-4 method has also been discussed. Section 2: This section will cover the quarantine-based Ebola Virus Disease transmission 
model. The reproduction number will be determined using the next-generation method. Local and global stability at the disease-free 
equilibrium are also discussed in this section. Section 3: In this section, the Ebola Virus Disease model’s results and discussions will 
be discussed. Section 4: This section will cover the conclusion.

2. Model formulation

To look at how the Ebola Virus Disease spread, persisted, and recurred in Africa. There could be assumptions;

i) Deceased human beings are one of the sources of Ebola Virus Disease virus distribution. Because they departed, dead people 
might spread the disease during burial ceremonies.

ii) The disease can enter the environment through the urine and faeces of infected or deceased individuals.
iii) Infection can be transmitted via direct touch and indirect interactions, such as contaminated environments and surfaces.
iv) The presence of Ebola Virus Disease in the environment due to consuming infected bush meat.
v) Permanent disease-induced immunity exists.

A mathematical model depicted in Fig. 1 has been developed based on the aforementioned assumptions. Parameter descriptions are 
2

provided in Table 1, and the system equations are as follows:
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Fig. 1. Flowchart of EVD Model.

Table 1

Physical Significant of Parameters.

Parameter Description

𝐴 Susceptible People
𝑃 Infectious People
𝐹 Quarantine People
𝐾 Recovered Disease
𝑈 Ebola virus Pathogens (a bacterium, virus or other microorganism, that causes disease) in the Environment
𝑆 Deceased People
𝛼1 The proportion at which Susceptible people are recruitment
𝛼2 The proportion at which infected people are recruitment
𝜓1 The rate of contact (effective) of infected human
𝜓2 The rate contact of Ebola virus pathogens in the environment
𝜓3 Rate of contact (effective) of deceased (human)
𝜖 Natural death rate of humans
𝜌1 Rate of deaths of human individuals due to infection
𝜌2 Rate at which shedding of infected humans
𝜌3 The rate at which infected people quarantined
𝑤1 The rate at which quarantined people are recovered
𝑤2 The rate at which quarantine people are in deceased
ℎ proportion of shedding of deceased people
𝑐 The proportion rate of burial deceased people
𝑏 The rate at which EVD in the environment

𝑑𝐴

𝑑𝜁
= 𝛼1 −

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴− 𝜖 𝐴,

𝑑𝑃

𝑑𝜁
= 𝛼2 +

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴−

(
𝜌1 + 𝜌2 + 𝜌3 + 𝜖

)
𝑃 ,

𝑑𝐹

𝑑𝜁
= 𝜌3𝑃 −

(
𝑤1 +𝑤2 + 𝜖

)
𝐹 ,

𝑑𝐾

𝑑𝜁
= −𝜖 𝐾 +𝑤1𝐹 ,

𝑑𝑈

𝑑𝜁
= −𝑏𝑈 + 𝜌2𝑃 + ℎ𝑆 + 𝑑,

𝑑𝑆

𝑑𝜁
=
(
𝜖 + 𝜌1

)
𝑃 + (𝑤2 + 𝜖)𝐹 − (ℎ+ 𝑐)𝑆,

(1)

with initial conditions,

𝐴(0) ≥ 0, 𝑃 (0) ≥ 0, 𝐹 (0) ≥ 0,𝐾(0) ≥ 0,𝑈 (0) ≥ 0, 𝑆(0) ≥ 0.

Let 𝑤 ∶ (0, ∞) →ℜ the conformable fractional derivative of 𝑔 (of order 𝜍) can be defined as,

𝑤(𝜁 + 𝜏𝑡1−𝜍 )
3

𝐺𝜍 (𝑔)(𝜁) = lim
𝜏→0 𝜏

. (2)
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The new definition, Eq. (2), also satisfies a few properties (mentioned in [20]). One of those properties is as follows, if 𝑤 is differen-
tiable, then,

𝐺𝜍 (𝑤)(𝜁) = 𝑡1−𝜍
𝑑𝑤

𝑑𝜁
.

The non-linear model (1), as Khalilzadeh’s conformable derivative [20], is as follows,

𝑑𝐴

𝑑𝜁
= 𝑡𝜍−1(𝛼1 −

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴− 𝜖 𝐴),

𝑑𝑃

𝑑𝜁
= 𝑡𝜍−1(𝛼2 +

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴−

(
𝜌1 + 𝜌2 + 𝜌3 + 𝜖

)
𝑃 ),

𝑑𝐹

𝑑𝜁
= 𝑡𝜍−1(𝜌3𝑃 −

(
𝑤1 +𝑤2 + 𝜖

)
𝐹 ),

𝑑𝐾

𝑑𝜁
= 𝑡𝜍−1(−𝜖𝐾 + (𝑤1 + 𝜖)𝐹 ),

𝑑𝑈

𝑑𝜁
= 𝑡𝜍−1(−𝑏𝑈 + 𝜌2𝑃 + ℎ𝑆 + 𝑑),

𝑑𝑆

𝑑𝜁
= 𝑡𝜍−1(

(
𝜖 + 𝜌1

)
𝑃 + (𝑤2 + 𝜖)𝐹 − (ℎ+ 𝑐)𝑆).

(3)

Initial condition of non-linear system of equations,

𝐴(0) =𝐴0, 𝑃 (0) = 𝑃0,𝐾(0) =𝐾0, 𝑆(0) = 𝑆0,𝑈 (0) =𝑈0, 𝐹 (0) = 𝐹0. (4)

The conservation law is obtained by adding the first four equations of the above non-linear system of equations (3),

𝑑𝐻(𝜁)
𝑑𝜁

= 𝑡1−𝜍
(
𝛼1 + 𝛼2 − 𝜖(𝐻) − (𝜌2 + 𝜌3)𝑃 − (𝑤2 + 𝑐)𝐹

)
.

Let

𝐻 =𝐴+ 𝑃 + 𝐹 +𝐾,

be the sum of the total alive /active population.

Well-Posedness and Equilibria

Theorem 2.1. Now suppose the non-linear system of equations (3) has a global solution for the initial condition (4), then the solution of the 
model remains non-negative for all time.

0 ≤𝐴(0),0 ≤ 𝑃 (0),0 ≤ 𝐹 (0),0 ≤𝐾(0),0 ≤ 𝑆(0),0 ≤𝑈 (0).

Proof. To demonstrate the non-negativity of the solution, we followed these steps: Let the first equation of the model be

𝑑𝐴

𝑑𝜁
= 𝑡𝜍−1(𝛼1 −

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴− 𝜖 𝐴),

now let, 𝑇 (𝜁) =
(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
− 𝜖, then,

𝑑𝐴

𝑑𝜁
= 𝑡𝜍−1(𝛼1 −𝐴(𝜁)𝑇 (𝜁)). (5)

The solution to equation (5) is a first-order linear equation in 𝐴.

𝐴(𝜁) =𝐴(0)𝑒∫ 𝜁

0 𝑇 (𝑐)−𝑐𝜍−1 d𝑐 + 𝑒
∫ 𝜁

0 𝑇 (𝑐)−𝑐𝜍−1 d𝑐 +
⎛⎜⎜⎝

𝜁

∫
0

𝛼1𝑢
𝜍−1𝑒(∫ 𝜁

0 𝑤𝜍−1𝑄(𝑤)𝑑𝑤)
𝑑𝑢

⎞⎟⎟⎠ ≥ 0.

Which implies 𝐴(𝜁) ≥ 0 for all 𝜁 ≥ 0. Similarly, other remaining equations have been proved. Then, the entire system is non-
negative. □

Theorem 2.2. Given a positive set of solutions, (𝐴(𝜁), 𝑃 (𝜁), 𝐹 (𝜁), 𝐹 (𝜁)), there exists a domain in which the solution set is contained and 
bounded.

Proof. The total population of individuals are given,
4

𝐻(𝜁) =𝐴(𝜉) + 𝑃 (𝜁) + 𝐹 (𝜁) +𝐾(𝜁),
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𝑑𝐻

𝑑𝜁
= 𝑑𝐴

𝑑𝜁
+ 𝑑𝑃

𝑑𝜁
+ 𝑑𝐹

𝑑𝜁
+ 𝑑𝐾

𝑑𝜁
,

by simplification, we have,

𝑑𝐻

𝑑𝜁
= 𝛼1 + 𝛼2 − 𝜖(𝐻) − (𝜌1𝑃 + 𝜌2𝑃 +𝜔2𝐹 ),

𝜖𝐻(𝜁⋆) ≤ (𝛼1 + 𝛼2 − 𝜖𝐻(0))𝑒−𝜖𝜁⋆ ,

𝐻(𝜁⋆) ≤ 𝛼1 + 𝛼2
𝜖

−
(𝛼1 + 𝛼2 − 𝜖𝐻(0))

𝜖
𝑒−𝜖𝜁

⋆
, (6)

by taking the limit inequality (6) as 𝜁⋆ →∞ then we have,

𝐻(𝜁⋆) ≤ 𝛼1 + 𝛼2
𝜖

.

Thus, we have 𝐻(𝜁⋆) ≤ 𝛼1+𝛼2
𝜖

, which shows that 𝐻 ∈
[
0, 𝛼1+𝛼2

𝜖

]
. In other words,

lim
𝑡→∞

sup𝐻(𝜁) =
𝛼1 + 𝛼2

𝜖
,

and if 𝐻(𝜁) ≤ 𝛼1+𝛼2
𝜖

, then 𝐻(𝜁) is bounded. □

The system of equations (3) is a dynamic system on the following compact set,

Δ=𝐴(𝜁), 𝑃 (𝜁),𝑈 (𝜁), 𝑆(𝜁),𝐾(𝜁), 𝐹 (𝜁) ∈ℝ+
6 ;

𝐻𝑛 ≤ 𝛼1 + 𝛼2
𝜖

,

𝑆𝑛 ≤ (𝛼1 + 𝛼2)(𝜖 + 𝜌2)𝑤1
𝑐𝜖

,

𝑈𝑛 ≤ 𝑐𝜖𝑏+ 𝑐𝜌3(𝛼1 + 𝛼2) + ℎ(𝜖 + 𝜌2)(𝛼1 + 𝛼2)
𝑐𝜖𝑤1𝑑

.

Disease-Free Equilibrium Point

In a mathematical model of disease transmission, a disease-free equilibrium point exists when no individuals in the population are 
infected with the disease. It represents a moment in time or a scenario where the disease has been effectively controlled or has not yet 
initiated its spread within the population. The disease-free equilibrium point is commonly utilized as a baseline for studying disease 
dynamics in various epidemiological models [21]. The disease-free equilibrium point of model is (3),

Γ0 = (𝐴,𝑃 ,𝐹 ,𝐾,𝑈,𝑆) =
(𝛼1
𝜖
,0,0,0,0,0

)
.

2.1. Reproduction number

The basic reproductive number 𝑅0 is a crucial epidemiological parameter used to measure the transmission potential of infectious 
diseases within a population. It indicates the average number of secondary infections generated by a single infected individual in a 
fully susceptible population. To compute the basic reproduction number, we employ the next-generation matrix approach outlined 
in [22], utilizing the disease equations derived from the system of equations (3). Our focus is specifically on the infectious stages 
represented by 𝐴. We construct the transmission vector 𝑇 to represent new infections, and the transition vector 𝑉 to denote the 
outflow from the infectious compartments in (3), given by:

𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣

(
𝜓1𝑝+𝜓3𝑠+𝜓2𝑢

)
𝑎

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎣

(
𝜌1 + 𝜌2 + 𝜌3 + 𝜖

)
𝑝

−𝜌3𝑝+
(
𝑤1 +𝑤2 + 𝜖 + 𝑐

)
𝑓

𝜖 𝑘−𝑤1𝑓

𝑏𝑢− ℎ𝑠− 𝜌2𝑝− 𝑑

−
(
𝜖 + 𝜌1

)
𝑝−𝑤2𝑓 + (ℎ+ 𝑐) 𝑠

⎤⎥⎥⎥⎥⎥⎥⎦
.

By substituting the values of Γ0 = (𝐴, 𝑃 , 𝐹 , 𝐾, 𝑈, 𝑆) =
(
𝛼1
𝜖
,0,0,0,0,0

)
, we calculate the Jacobian 𝑇 from 𝑅, as follows:

𝑅 =

⎡⎢⎢⎢⎢⎢

𝜓1𝛼1
𝜖

0 0 𝜓2𝛼1
𝜖

𝜓3𝛼1
𝜖

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥
,

5

⎢⎣ 0 0 0 0 0
⎥⎦



Heliyon 10 (2024) e35818N. Abbas, S.A. Zanib, S. Ramzan et al.

and the Jacobian 𝑉 from 𝑌 given by,

𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜌1 + 𝜌2 + 𝜌3 + 𝜖 0 0 0 0
−𝜌3 𝑤1 +𝑤2 + 𝜖 + 𝑐 0 0 0
0 −𝑤1 𝜖 0 0

−𝜖 − 𝜌1 −𝑤2 0 ℎ+ 𝑐 0
−𝜌3 0 0 −ℎ 𝑏

⎤⎥⎥⎥⎥⎥⎥⎦
.

From this, the next-generation matrix can be calculated as 𝑅0 = 𝜌(𝑅𝑌 −1). Finally, we obtain the basic reproduction number as follows:

𝑅0 =
𝛼1𝜓2

((
𝑀2𝑢1 − 𝜌2

)
ℎ+ 𝑐𝜌2

)
𝑀1𝜖 (ℎ+ 𝑐)𝑏

+
(
(ℎ+ 𝑐)𝜓1 +𝜓3

(
𝜖 + 𝜌1

))
𝛼1

𝑀1𝜖 (ℎ+ 𝑐)
+

𝑤2𝜌3
(
𝑏𝜓3 + ℎ𝜓2

)
𝛼1

𝑀1𝑀2𝜖 (ℎ+ 𝑐)𝑏
,

where 𝑀1 = 𝜌1 + 𝜌2 + 𝜌3 + 𝜖, and 𝑀2 =𝑤1 +𝑤2 + 𝜖 + 𝑐. We observe that 𝜓1, 𝜓2, and 𝜓3 exhibit a direct proportionality with 𝑅0 . 
That is, an increase in 𝜓1, 𝜓2, or 𝜓3 leads to a corresponding increase in 𝑅0. Conversely, the sum 𝑤1 +𝑤2 demonstrates an inverse 
proportionality to 𝑅0. Hence, an increase in 𝑤1 +𝑤2 results in a decrease in 𝑅0. This shows that when 𝑅0 > 1 the rate of the Ebola 
virus is unstable when 𝑅0 < 1 the Ebola virus is unstable.

2.2. Stability analysis at disease-free equilibrium

Local Stability

Theorem 2.3. The system of equations (3), is locally asymptotically stable around Γ0 for 𝑅0 < 1.

Proof. Determining the local stability according to the sign of the real parts of the eigenvalues, we have used the Routh-Hurwitz 
Stability Criteria. Firstly, consider Ω1, Ω2, Ω3, Ω4, derived from equations (3).

Ω1 = 𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈,

Ω2 = 𝜌1 + 𝜌2 + 𝜌3 + 𝜖,

Ω3 =𝑤1 +𝑤2 + 𝜖,

Ω4 = ℎ+ 𝑐.

Taking Jacobian 𝐽0 of system of non-linear system of equations (3) at disease-free equilibrium point,

𝐽0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜖 −Ω1 0 0 0 0 0
Ω1 −Ω2 0 0 0 0
0 𝜌3 −Ω3 0 0 0
0 0 𝑤1 −𝜖 0 0
0 𝜌2 0 0 ℎ −𝑏
0 𝜖 + 𝜌1 𝑤2 0 −Ω4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

From the last expression, which is Δ2 + 𝐶1Δ + 𝐶2 = 0 where 𝐶1 = −ℎ and 𝐶2 = Ω4𝑏, we apply the Routh-Hurwitz criteria [23]. The 
eigenvalue of the Jacobian matrix (7) consists of the negative fundamental part if and only if 𝐶𝑘 > 0, for 𝑘 = (1,2). Hence, the system 
of equations (3) is locally asymptotically stable at disease-free equilibrium points,

=
(
−Ω1 − 𝜖 −Δ

)(
−Ω2 −Δ

)(
−Ω3 −Δ

)
(−𝜖 −Δ)

(
Δ2 −Δℎ−Ω4 𝑏

)
. (8)

By solving Eq. (8), for the value of Δ, the first four roots are, Δ1 = − 
(
Ω1 + 𝜖

)
, Δ2 = −Ω2, Δ3 = −Ω3, Δ4 = −𝜖, all the values are 

negative.
From the last expression, which is Δ2 + 𝐶1Δ + 𝐶2 = 0 where 𝐶1 = −ℎ and 𝐶2 = Ω4𝑏, we apply the Routh-Hurwitz criteria [23]. 

The eigenvalue of the Jacobian matrix (7) consists of the negative fundamental part if and only if 𝐶𝑘 > 0, for 𝑘 = (1,2). Hence, the 
system of equations (3) is locally asymptotically stable at disease-free equilibrium points. □

Global Stability

By using the theorem by Castillo-Chavez et al. [24], we can express it as follows.

𝑑𝑀𝐻

𝑑𝑡
= 𝐹 (𝑀𝐻,𝑁𝐻 ),

𝑑𝑁𝐻

𝑑𝑡
=𝐻(𝑀𝐻,𝑁𝐻 ),
6

where,
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𝐻(𝑀𝐻,𝑁𝐻 ) = 0,

when 𝑀𝐻 ∈ 𝑅 and 𝑁𝐻 ∈ 𝑅5 represent the system’s DFEP, the uninfected and infected population, respectively. Γ0 =
(
𝑋0,0

)
=

(𝐴,0,0,0,0,0), where 𝑋0 = 𝛼1
𝜖

. The epidemiological model’s prerequisite for global stability at the disease-free equilibrium point 
(DFEP) is provided by,

𝑑𝑀𝐻

𝑑𝑡
= 𝐹 (𝑀𝐻,0) = 0, (9)

𝐻(𝑀𝐻,𝑁𝐻 ) = 𝑃𝐻𝑁𝑁∗ − �̂�(𝑀𝐻,𝑁𝐻 ). (10)

Theorem 2.4. The DEF point Γ0 of the system of equations (3) are globally asymptotically stable if 𝑅0 is less than unity.

Proof. To prove condition (9), the model (3) can be set by, the disease-free equilibrium point is given,

Γ0 =
(
𝑋0,0

)
=
(𝛼1
𝜖
,0,0,0,0,0

)
,

and the system,

𝑑𝑀𝐻

𝑑𝑡
= 𝐹 (𝑀𝐻,0),

𝑑𝐴∗

𝑑𝑡
= 𝛼1 − (𝜖)𝐴. (11)

By solving equation (11), we find that the equation has a unique equilibrium point.

(
𝐴∗ =

𝛼1
𝜖

)
,

hence, 𝑋0 is globally asymptotically stable for the condition (9) is satisfied.
Now, to verify the second condition (10).

𝐻(𝑀𝐻,𝑁𝐻 ) = 𝑃𝐻𝑁𝑁∗ − �̂�(𝑀𝐻,𝑁𝐻 ),

and

�̂�(𝑀𝐻,𝑁𝐻 ) ≥ 0,

𝐻(𝑀𝐻,𝑁𝐻 ) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛼2 +
(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
𝐴−

(
𝜌1 + 𝜌2 + 𝜌3 + 𝜖

)
𝑃

𝜌3𝑃 −
(
𝑤1 +𝑤2 + 𝜖

)
𝐹

−𝜖𝐾 + 𝐹𝑤1

−𝑏𝑈 + 𝜌3𝑃 + ℎ𝑆 + 𝑑(
𝜖 + 𝜌1

)
𝑃 + (𝑤2 + 𝜖)𝐹 − (ℎ+ 𝑐)𝑆

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝑁∗
𝑁
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝐴∗𝜓1 − 𝜖 − 𝜌1 − 𝜌2 − 𝜌3 0 0 𝜓2𝐴
∗ 𝜓3𝐴

∗

𝜌3 −𝑤1 −𝑤2 − 𝜖 0 0 0
0 𝑤1 −𝜖 0 0
𝜌2 0 0 −𝑏 ℎ

𝜖 + 𝜌1 𝑤2 + 𝜖 0 0 −ℎ− 𝑐

⎤⎥⎥⎥⎥⎥⎥⎦
,

�̂�(𝑀𝐻,𝑁𝐻 ) =

⎡⎢⎢⎢⎢⎢⎢⎣

(
𝜓1𝑃 +𝜓3𝑆 +𝜓2𝑈

)
(𝐴∗ −𝐴)

0
0(

𝜌2 − 𝜌3
)
𝑃 − 𝑑

0

⎤⎥⎥⎥⎥⎥⎥⎦
,

this shows that,

�̂�(𝑀𝐻,𝑁𝐻 ) ≥ 0.

As a result, if criteria (9)-(10) are met, the disease-free equilibrium point (DFEP) Γ0 is globally asymptotically stable when 𝑅0 < 1. 
This is shown by Theorem 2.4.
7

Then, this proof is completed. □
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3. Numerical result

The system of non-linear differential equation (3), has been solved using RK4 method [25]. We employ the Fourth-Order Runge 
Kutta Method (RK4) for fractional-order problems by employing Grunwald-Letnikov [26] for fractional derivatives. The fundamental 
concept is that using fractional order (represented by the parameter ‘𝜍 ’) in these equations exposes memory effects not seen in 
mathematical models with ‘𝜍 = 1’ (corresponding to integer order models). In other words, fractional order models [15] contain hidden 
phenomena associated with memory effects that are not visible when ordinary differential equations with integer orders are used. 
To validate the theoretical findings presented in this study, numerical simulations were conducted using Maple 2019 computational 
software. The initial conditions for the variables 𝐴, 𝑃 , 𝐹 , 𝐾, 𝑈 , and 𝑆 were set as follows: 𝐴(0) = 0.9, 𝑃 (0) = 0.8, 𝐾(0) = 0.2, 𝑆(0) =
0.5, 𝐹 (0) = 0.1, 𝑈 (0) = 0. These values represent the starting states of each variable at the onset of the model simulation. Table 2
provides a comprehensive overview of the parameter values used in the model, essential for accurately simulating and analyzing the 
dynamic interactions within the system. These initial conditions reflect the starting values of the variables in our system. Additionally, 
the simulations were carried out over 300 days, allowing us to observe the dynamic behavior of the system over an appropriate 
duration shown in Figs. 2-7.

Fig. 2. Susceptible Dynamics A(𝜁 ).

Fig. 2 shows the behavior of susceptible class for of 𝜍=0.7, 0.8, 0.9, 1. This Plot shows that, when we apply quarantine strictly, 
the rate of susceptible individuals are going to increase.

Fig. 3. Infectious Dynamics P(𝜁 ).

Fig. 3 shows the behavior of infectious individuals for different values of 𝜍. This plot shows that the rate of infectious is going to 
8

decrease when we apply quarantine strictly.
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Fig. 4. Quarantine Dynamics F(𝜁 ).

Fig. 4 shows the behavior of quarantine class for different values of 𝜍. This plot shows that as the rate of infection decreases, the 
rate of quarantine people also decreases after the passage of time.

Fig. 5. Recovered Dynamics K(𝜁 ).

Fig. 5 shows the behavior of recovered class for different values of 𝜍. This plot shows that as the rate of quarantine people 
decreases, the rate of recovered people also decreases.
9

Fig. 6. Ebola Virus Pathogens in the Environment U(𝜁 ).



Heliyon 10 (2024) e35818N. Abbas, S.A. Zanib, S. Ramzan et al.

Fig. 6 shows the behavior of Ebola virus pathogens in the environment for different values of 𝜍. This plot shows that the rate of 
Ebola virus pathogens and the infection rate will also decrease.

Fig. 7. Deceased Dynamics S(𝜁 ).

Fig. 7 shows the behavior of deceased class for different values of 𝜍. This plot shows that as Ebola virus pathogen decrease and 
infectious decrease, there’s a corresponding decrease in deceased dynamics.

Table 2

Estimated Values of Parameters.

Parameters Values Sources

𝛼1 10 [15]
𝑑 0.0015 [15]
𝛼2 3 [15]
𝜓1 0.006 [15]
𝜓2 0.0012 [15]
𝑏 0 [15]
𝜓3 0.006 [15]
𝑐 0.8 [15]
𝜖 0.5 [15]
ℎ 0.04 [15]
𝜌1 0.123 Assumed
𝑤1 0.04 Assumed
𝜌2 0.04 [15]
𝑤2 0.22 Assumed
𝜌3 0.12 Assumed

3.1. Discussion

Nazir et al. (2020) [15] utilized conformable derivatives to develop a susceptible-infected-recovered (SIR)-type model for exploring 
the transmission dynamics of Ebola Virus Disease (EVD) and Ebola virus pathogens in the environment. Our investigation highlighted 
the pivotal role of introducing a quarantine population (𝐹 ) in controlling the Ebola virus. Recognizing its significance, we extended 
their work by incorporating a modified model with additional parameters (𝜌3 , 𝑤1, and 𝑤2) that govern the rates at which individuals 
enter the quarantined compartment. Using conformable derivatives made the model more realistic, especially by showing that infected 
individuals could recover after quarantine, as shown in Figs. 2 to 7. We observed that as the number of infections, shown in Fig. 3, 
increased, so did the rate of quarantine, illustrated in Fig. 4, leading to a corresponding rise in recovered individuals shown in Fig. 5. 
Increasing rates like 𝜌3 and 𝜔2 accelerated the quarantining process, thereby augmenting the recovery rate. Numerical simulations 
conducted using Maple 2019 underscored our model’s applicability. By integrating quarantine measures, our study offers a more 
practical approach to managing Ebola Virus Disease outbreaks. Importantly, our model aligns existing literature [15,16] when the 
modification factor is excluded, ensuring credibility and making it easier to compare Ebola Virus Disease transmission dynamics.

4. Conclusion

In this paper, we examined how Ebola Virus Disease spreads using a modified mathematical model with a quarantined class 𝐹 (𝜍). 
10

As, the quarantined class plays an important role in the control of the Ebola virus because it isolates affected persons and prevents 
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disease spread. A system of nonlinear conformable differential equations has been used to determine the problem, and a well-known 
theorem has been applied to ensure its well-posedness. We also have calculated the basic reproduction number using the next-
generation matrix method. Local and global stability analysis have observed at a disease-free equilibrium point using Routh-Hurwitz 
(RH) criteria and Castillo-Chavez, respectively. Numerical results obtained via the Fourth-Order Runge Kutta Method (RK4) provided 
information into the behavior of individuals for fractional derivative values between 0.7 to 1. As the number of infected people 
increases, the rate of quarantine also increases, leading to an increase in the number of recovered individuals. Numerical simulations 
indicate a decrease in the virus transmission rate after implementing quarantine measures. Additionally, we have concluded that, to 
control the spread of Ebola Virus Disease, infected persons should be kept quarantined, and dead bodies should be buried carefully. 
The absence of Ebola Virus Disease transmission from the environment can significantly contribute to a population free of disease. 
Future research should explore the impact of varying quarantine durations and adherence levels on disease control effectiveness 
using optimal control strategies. Alternatively, applying other fractional derivatives could enhance the results. These areas represent 
potential shortcomings of the present work that require further investigation.
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