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Abstract

The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a

major public health problem. Several Brazilian populations of Ae. aegypti have developed

resistance to temephos, the most used organophosphate larvicide. New tools which are

less harmful to the environment and safer for humans are becoming increasingly important

to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobac-

teria, has a favorable environmental profile. It presents selective insecticide properties, a

mechanism of action that differs from those of many synthetic chemical insecticides. The

toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were pre-

viously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to

temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field

derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefel-

ler up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was per-

formed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four

field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad

was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded

each 24 hours after exposition and tanks were further recolonized once per week with mor-

tality being recorded daily for eight weeks. Spinosad provided a level equal or superior to

80% mortality during a seven to eight week evaluation period. The assessed populations did

not present cross-resistance between spinosad and temephos in laboratory conditions. It

demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti,

especially for populations in which resistance to temephos has been detected.

Introduction

The Aedes aegypti (Linnaeus, 1762) mosquito, widely distributed in the tropical and subtropi-

cal regions of the planet, is highly adapted to the urban environment and is often found within

and around households [1–3]. It is the main vector of dengue viruses and can play a role as

vector of yellow fever virus in the urban cycle [4], which are considered two of the most
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important viral diseases transmitted by arthropods [5]. Additionally, this insect is a potential

vector transmitter of Chikungunya virus and Zika virus [6–8]. Efficient vaccines against den-

gue, chikungunya and zika are not currently available. Because of that, public health measures

focus mainly on the vector control [9,10].

Control programs aim to reduce the populations of insects that transmit ethiological agents

by eliminating potential breeding sites or by using insecticides [11–13]. In Brazil, the control

of dengue vector larvae has been carried out for decades with the use of temephos, an organo-

phosphate larvicide. Resistance to this compound has been reported since 1998 [14–16]. Now-

adays the majority of the evaluated Brazilian populations is resistant to temephos [14,17–20].

Insecticide resistance is the heritable ability of the insect to survive to insecticide concentra-

tions that are lethal to individuals of the same species (susceptible ones) [21]. The major mech-

anisms recorded for Ae. aegypti resistance to temephos has been associated with changes at its

target site in the acetylcholinesterase. It has also been associated with metabolic mechanisms

related with enzymes involved in the detoxification of xenobiotic compounds, named meta-

bolic resistance [22–24]. The insecticide metabolic resistance can involve three major enzyme

groups: esterases (ESTs), glutathione-S-transferases (GSTs) and mixed function oxidases

(MFOs) [25]. Detoxifying enzymes can confer resistance to many chemicals belonging to the

same group or to different groups, characterizing the cross resistance [26].

In this sense, alternatives to organophosphates for the control of Ae. aegypti and other

insects of medical importance are essential [27,28]. Also, there are reports of Ae. aegypti resis-

tance to the main insecticides in use [18]. Alternatives to organophosphates, such as, the insect

growth regulators (IGRs), Bacillus thuringiensis serovar israelensis (Bti) and spinosad, which

are environmental safe and innocuous for humans, have attracted growing interest. Spinosad

is composed of two natural metabolites, spinosyns A and D [29], which are products of the aer-

obic fermentation of Sacharopolyspora spinosa, a soil actinobacteria [30,31]. Spinosad acts on

both the nicotinic acetylcholine receptors and the γ-aminobutyric acid (GABA) receptors,

causing excitation of the insect’s nervous system, paralysis and death [32–34]. Therefore,

although also neurotoxic, spinosad has a distinct molecular target when compared to organo-

phosphates and pyrethroids, which target the enzyme acetilcholynesterase and the voltage

gated sodium channel, respectively [23].

Tests of chronical toxicity demonstrate that spinosad does not present carcinogenic, terato-

genic or neurotoxic effects in mammals [35], and has a favorable profile with low environmen-

tal persistence. It displays low toxicity for non-targeted insects and it is innocuous for fish and

other aquatic vertebrates, when used in the recommended dosages [36–38]. Marcombe et al.

[39] noticed that spinosad is a promising larvicide against Ae. aegypti on water reservoirs,

where its residual efficacy lasted for up to 16 weeks. Moreover spinosad also showed high

toxicity against other mosquitoes species as Anopheles stephensi, Anopheles albimanus and

Culex quinquefasciatus [40–43]. Recently the World Health Organization Pesticide Scheme

(WHOPES) approved spinosad for usage in drinking water [43]. However, possible cross-

resistance selected by other compounds needs to be investigated before its wide utilization.

There is a high level of resistance to organophosphates and pyrethroids in worldwide Ae.

aegypti populations. Moreover, spinosad and temephos have action on different target sites,

which supports the lack of cross-resistance, considering this mechanism. However, we can not

discard the hypothesis that cross-resistance could be found due to metabolic detoxification

mechanism selected by temephos. Because of that it is important to evaluate the efficacy of

spinosad over populations with distinct profiles of resistance to temephos. In this study, we

assessed and compared the toxicity of spinosad and temephos insecticide in Brazilian Ae.

aegypti populations with putative different genetic backgrounds, under laboratory and field

(simulation) conditions.

Spinosad toxicity in Aedes aegypti from Brazil
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Materials and methods

1) Mosquitoes–Seven Ae. aegypti populations were collected in six different Brazilian states,

representing four geopolitical regions of the country: Santarém and Marabá (State of Pará,

Northern Brazil), Goiânia (State of Goiás, Midwestern Brazil), Cachoeiro de Itapemirim and

Marı́lia (State of Espı́rito Santo and State of São Paulo, respectively; Southeastern Brazil), Sal-

vador and Santana do Ipanema (State of Bahia and State of Alagoas, respectively; Northeastern

Brazil) (Fig 1). The eggs were collected in the field with the help of ovitraps containing hay

infusion [44], which was distributed in a way to represent the whole geographical extension of

the localities mentioned above [15]. These materials were collected by the municipalities’

health secretaries and sent to the Laboratório de Fisiologia e Controle de Artrópodes Vetores

(Fiocruz, Rio de Janeiro) by the Brazilian Health Ministry.The females were reared as follow:

eggs collected in the field were hatched in the laboratory in order to obtain 1st instar larvae

that developed to the adults of the parental generation of these strains. Approximately 1000

larvae were reared in plastic bowls containing 1L of dechlorinated water plus one gram of cat

food (Friskies, Purina). The food was provided every three days until the larvae reached the

pupae phase. The pupae were separated in plastic cups of 50ml and put inside cardboard cages

until adults emergence. Adults were kept in a controlled environment with temperature of

26˚C ± 1 and 70% humidity, and fed ad libitum with a solution of 10% sucrose. Guinea pigs

Cavia porcellus (Linnaeus, 1758; Rodentia, Caviidae) were used for blood feeding, with

approval of the Ethics Committee for Animal Use from Fundação Oswaldo Cruz (CEUA—

Fiocruz) n˚ L -011/09.

2) Insecticides–Temephos (PESTANAL1 - 95,6% temephos a.i., Sigma–Aldrich) and liquid

spinosad (NatularTM 20EC– 20.6% Spinosad a.i., Clarke Mosquito Control Products, Inc.)

were used for laboratory assays. The insecticides were diluted so that a final concentration of

3000mg/L was achieved for both. After normalizing the concentration, we prepared the solu-

tions for the bioassays. For the field simulations, one effervescent tablet of spinosad (NatularTM

DT– 7.48% Spinosad a.i., Clarke Mosquito Control Products, Inc.) was used per 200 L tank,

Fig 1. Brazilian political map showing the states where collections were performed.

https://doi.org/10.1371/journal.pone.0173689.g001
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which provided a final concentration of 0.5 mg active ingredient/L, as recommended by WHO

[45].

3) Laboratory tests–Assays were performed in the Laboratório de Fisiologia e Controle de

Artrópodes Vetores, Instituto Oswaldo Cruz–Fiocruz, located at the Instituto de Biologia do

Exército (IBEx), Rio de Janeiro, Brazil. The F1 and F2 generations descending from the seven

field populations were used. The Rockefeller lineage, which is a reference of susceptibility to

insecticides [46], was used as control for each experiment. This lineage was reared in the same

conditions as described for the field colonies. The larvae used in the laboratory bioassays were

reared as follow: 1,000 larvae from each population were kept in plastic bowls containing 1L of

water and one gram of cat food (Friskies, Purina) until they reached L3 instar for bioassay

performances.

Bioassay with temephos was conducted based on the World Health Organization (WHO)

protocol [47]. For each dosage, 80 L3 larvae (four replicas containing 20 larvae each in white

plastic cups containing 100ml of solution) were exposed to a minimum of 10 to 12 different

doses of insecticide (between 1.05 and 720μg/L). The assays were conducted four times, on dif-

ferent days, for each of the seven populations and the Rockefeller lineage. The temephos solu-

tion was prepared with ethanol and dechlorinated water. For the control group, only ethanol

(0.6%) was used. Mortality reading was performed after 24h of exposure.

Before the spinosad dose-response bioassays, we first evaluated the time of exposure to the

product (24h, 48h or 72h). Third instar Rockefeller larvae were exposed to 10 spinosad con-

centrations, ranging from 10 to 70μg/L. For each concentration, four replicas were tested

using 10 L3 larvae each, in transparent plastic cups containing 150mL of solution. The spino-

sad solution was prepared with ethanol and dechlorinated water. For the control group, only

ethanol (0.4%) was used. Mortality was recorded at 24, 48 and 72 hours of exposure. The same

experimental set was analyzed at different periods. 14mg of triturated cat meal (Friskies; Pur-

ina) per plastic cup was provided in the first day of the bioassays. The assays were conducted

three times, on different days. Dose-response bioassays with natural populations were per-

formed with 10 to 12 spinosad concentrations (between 10 and 300μg/L), as described above,

with 24 hours of exposure.

4) Semi-field simulation assays–The experiments were conducted at the external area of

SUCEN—Superintendência de Controle de Endemias—Laboratório de Entomologia Aplicada

in Marı́lia city, São Paulo State. The city climate is rainy tropical with a dry winter. The tem-

perature ranges from 17 to 29˚C [48].

Once the laboratory experiments were concluded, four natural populations were still avail-

able for carrying out field tests simulations. Those samples were sent to SUCEN, in Marilia

city, by the Laboratório de Fisiologia e Controle de Artrópodes Vetores (Fiocruz, Rio de

Janeiro). The populations were divided in two groups, the first comprised Marı́lia (F1 genera-

tion) and Salvador (F1 generation) populations which were tested from July 2011 to February

2012. The second group comprised Goiânia (F2 generation) and Santarém (F1 generation)

populations, which were tested from May to November 2012. In both cases, Rockefeller refer-

ence population was used as a control.

Tests were performed outside the laboratory in a covered area to protect the tanks from

environmental factors such as rain. Eighteen polyethylene water tanks filled with 200L of tap

water were used to conduct the tests. In order to simulate residential usage situation, a third of

the water volume of the tank was replaced three times a week.

For each test, 12 tanks were treated (E) and six remained untreated (C) as control. In order

to avoid bias in the results related to tank position, larvae from a single population were tested

in all tanks, placed in alternated positions, passing for each tank at least once. The day of the

treatment was considered the "day zero", and 30 3rd instar larvae were used to colonize each

Spinosad toxicity in Aedes aegypti from Brazil
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tank. The larvae were previously reared in plastic bowls containing 1L of water and one gram

of cat food (Friskies, Purina). The larvae were placed into each water tanks. Soon after, one

tablet of the Natular DT was added at the center of the ‘E’ tanks, as recommended by the man-

ufacturer. Every week, surviving larvae were removed and a new batch of 30 3rd instar larvae

was added to each tank. Food (Friskies; Purina) was provided for larvae in the first day and

each three days of the experiment, if necessary.

The mortality was recorded 24 h after the exposure and then daily, at the same time. The

water temperature and water pH of the tanks were monitored daily with the assistance of a

thermo-hygrometer (Fisher Scientific1) and a Ph Meter (Orion Research Inc., Cambridge,

MA).

The larvicide effect was evaluated for an eight-weeks period, which equals to the residences

visiting cycle intervals of the National Dengue Control Program. Each test was repeated three

times on different periods, thus completing one evaluation. The two first tests of one evalua-

tion were conducted with covered water tanks, while in the third test the tanks were covered

with nylon mesh to prevent entry of insects and eventual detritus. By using different covers,

we wanted to evaluate eventual environmental influences over the residual effect of the prod-

uct, such as the influence of indirect solar radiation in the tanks.

5) Statistical analysis—To estimate the lethal concentrations (LCs) for each type of treat-

ment and their respective confidence interval, probit analysis was conducted using the Polo-

PC software [49]. The resistance ratios (RR) were obtained through the division of LCs 50 and

95 of the field populations by the respective LCs of the Rockefeller lineage. The comparison of

lethal concentration (LC95) between the different times of exposure to spinosad was conducted

through the overlap of its 95% confidence intervals. A linear regression analysis was performed

to check if there was a correlation between the RR95 of the analysed populations to temephos

and spinosad. The above mentioned analysis were all performed with the help of the Graph-

Pad Prism software version 5.0 for Windows (GraphPad Software, San Diego, California,

USA). A test t followed by Mann-Whitney test was performed to compare the effectiveness of

spinosad in water tanks covered with a lid or with nylon mesh, with the help of the Graph-Pad

Prism software version 5.0 for Windows (GraphPad Software, San Diego, California, USA).

Ethics statements

No specific permissions were required as the mosquito collections were performed by the

municipalities’ health secretaries as requested by the Brazilian Health Ministry. The species

used in this study (Aedes aegypti) is not an endangered or protected species. Mosquito blood-

feeding on anesthetized guinea pigs (Cavia porcellus) was authorized by Fiocruz Ethical Com-

mittee (CEUA 011/09).

Results

Larval susceptibility

The comparisons of the LCs95 averages were performed by superimposing the 95% confidence

intervals of lethal concentrations at each evaluated exposure time (S1 Table). An overlap

occurred between 24, 48 and 72h exposure indicating no significant difference. Therefore, it

was determined that the mortality reading could be done after 24 hours exposure of Ae. aegypti
to spinosad.

The comparative analysis of the spinosad and temephos LCs toward the reference Rockefel-

ler colony has shown that the latter product required a smaller dose to kill 50% of the larvae

(Table 1). The lethal concentration (LC50) of the larvae bioassays for spinosad ranged from

23μg/L for the susceptilble Rockefeller reference lineage up to 82μg/L for the field populations.

Spinosad toxicity in Aedes aegypti from Brazil
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For themephos the lethal concentration of the bioassays with larvae ranged from 3μg/L for

Rockefeller up to 260μg/L for field populations. Although the LC50 for temephos was lower

for the Rockefeller lineage, there was great variation in the LC50 for the field populations

exposed to the product. For spinosad the LC50 in the Rockefeller lineage was higher but the

variation in LC50 among the field populations was narrower. The field populations used in

this study were tested to verify the susceptibility/resistance status to the larvicide organophos-

phate temephos and eventual cross-resistance to the spinosad. The amplitude of the dose-

response effect to both insecticides can be observed in Fig 2. For organophosphates a classifica-

tion of populations resistance can be build using the criteria proposed by Mazzarri and Geor-

ghiou [50]. In this criteria a RR (resistance ratio) lower than 5 indicates low resistance, RR

between 5 and 10 indicates intermediate resistance and over 10 indicates a high resistance.The

levels of spinosad toxicity were similar for all evaluated populations. RR50 ranged from 2.5

(Santarem) to 4.1 (Marilia) and RR95 ranged from 2.8 (Santarém) to 5.4 (Goiânia). Different

levels of resistance were observed to temephos, with RR50 ranging from 2.3 (Marı́lia) to 89.8

(Santana do Ipanema) and RR95 ranging from 3.6 (Marı́lia) to 119.1 (Santana do Ipanema), as

seen in Table 1. No significant correlation between the RR95 for temephos and spinosad was

observed (R2 = 0.0368; p = 0.6803).

Evaluation of spinosad persistence under semi-field conditions

The data related to the residual effect of spinosad (Natular DT) in simulated field are shown in

Fig 3. Spinosad treatment showed persistence during a seven to eight-week period providing

at least 80% of larvae mortality for two populations, Marilia (Fig 3A) and Goiânia (Fig 3B). For

the remaining populations there was no decrease up to the eighth week. There was a small loss

Table 1. Toxicity of temephos and spinosad against 3rd instar Aedes aegypti larvae after a 24h exposure.

Temephos

Population Number of larvae Slope LC50 (er of CI 95% RR50 LC95 (5% of CI 95% RR95

Rockefeller 2400 6.2 3 2.80–2.98 1 4.7 4.54–4.78 1

Santarém / PA 2640 4.3 19 18.24–19.37 6.5 45 42.93–48.49 8.5

Marabá / PA 2640 3.8 29 25.62–31.39 9.9 78 66.28–91.31 14.6

Goiânia / GO 2640 4.5 28 25.83–30.90 9.8 65 55.5–75.73 12.2

Cachoeiro de Itapemirim / ES 2640 5.6 65 61.86–69.33 22.7 129 118.68–140.97 24.3

Marı́lia / SP 2400 4.5 6.9 6.60–7.30 2.3 17 15.00–18.00 3.6

Salvador / BA 2640 4.5 33 25.00–58.00 11.0 78.5 71.00–92.00 16.7

Santana do Ipanema / AL 2880 4.2 260 251.25–267.74 89.8 635 602.09–673.82 119.1

Spinosad

Population Number of larvae Slope LC50 (er of CI 95% RR50 LC95 (5% of CI 95% RR95

Rockefeller 1200 4.3 23 21.63–23.80 1 55 50.96–60.01 1

Santarém / PA 1440 3.9 57 53.89–60.66 2.5 152 139.62–168.65 2.8

Marabá / PA 1320 3.5 66 61.71–69.92 2.9 193 174.06–219.96 3.5

Goiânia / GO 1440 5.3 89 83.61–94.46 3.9 299 267.67–340.33 5.4

Cachoeiro Itapemirim / ES 1440 5.2 80 76.72–83.20 3.5 198 182.94–218.66 3.6

Marı́lia / SP 1200 5.1 93 89.02–96.82 4.1 214 196.98–235.63 3.9

Salvador / BA 1440 4.2 80 76.15–83.96 3.5 195 181.42–213.27 3.6

Santana do Ipanema / AL 1440 4.6 82 78.63–85.17 3.6 187 173.58–203.52 3.4

RR = Resistance ratio LC = Lethal concentration, CI 95% = confidence interval 95% Resistance Ratio (RR) RR<5 = low resistance, RR between 5 and

10 = intermediate resistance, RR>10 = high resistance.

https://doi.org/10.1371/journal.pone.0173689.t001
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of the control population in one of the triplicates (S1C Fig) probably due to the high tempera-

tures that occur in Marilia city in February.

The tanks were covered either with a lid (1st and 2nd replicates) or with a nylon mesh (3rd

replicate). Regardless how the water tanks were covered, the mortality rate was not signifi-

cantly different for each population, as revealed by the Mann Whitney tests (P>0.05 for

all comparisons). The average water temperature was 23.5˚C ± 3.1 and pH of the test was

7.4 ± 0.6 (Fig 3C and 3D). The details of the tests for each population are shown in S1 Fig and

S2 Fig.

Fig 2. Mortality of Ae. aegypti larvae exposed for 24h to temephos (A) and spinosad (B) insecticides.

https://doi.org/10.1371/journal.pone.0173689.g002
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The mortality effect of spinosad tended to be constant over the weeks, with reduction in

mortality starting in the seventh week for the majority of populations. When the experiments

were analyzed individually, small variations were observed. For example, there was as decline

in mortality percentage (<80%) in the population of Salvador after the sixth week, increasing

to rates above 80% in the following week (S1A Fig). In the third test (S2C Fig), Goiania mortal-

ity rate was 72% in the seventh week.

Discussion

The Ae. aegypti resistance to chemical products has been reported around the globe [50–56].

In Brazil, the detection of populations resistant to the temephos larvicide started in 1998 [14–

16]. Because of this, additional to elimination or correct treatment of larvae breeding sites,

there was a need to search for alternative compounds for Ae. aegypti control. Spinosad, with a

low toxicity for mammals and the environment, and being neurotoxic for Ae. aegypti,seems

to be a good option. However, there is a possibility it can be detoxified by cross-resistance.

Fig 3. Field evaluation of Spinosad (NatularTM DT) against Aedes aegypti 3rd instar larvae. The average mortality percentage is represented

for three independent bioassays conducted in a row, A- Rockefeller, Marilia and Salvador (tested between July 2011 and February 2012). B-

Rockefeller, Goiânia and Santarém (tested between September 2011 and November 2012). C- pH and temperature of the solution in the tanks

during the three assays for the Rockefeller, Marilia and Salvador group. D- pH and temperature of the solution in the tanks during the three assays

for the Rockefeller, Goiânia and Santarém group. The dose tested was 0.5mg/L. Every week the tanks were recolonized by removing the dead and

the remaining living larvae and introducing 30 new 3rd instar larvae.

https://doi.org/10.1371/journal.pone.0173689.g003
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Despite of this, it may yet be an important tool to combat vectors already resistant to other

products.

According to WHO, studies to estimate the lethal concentration for Ae. aegypti larvae in the

laboratory must be conducted using reference lineages. In addition, the larvae must remain

exposed for over 24 hours to the larvicide [57]. Many authors have conducted studies of spino-

sad effect on Ae. aegypti larvae from laboratory colonies, however, the protocol and the time of

exposure varied in each work [29,41,58–60]. In this study, procedures for experiment stan-

dardization using spinosad dose response curve were conducted with the Rockefeller lineage

(L3 larvae) and mortality was scored after 24, 48 and 72 hours of exposure to the insecticide.

This was performed as a preliminary step to confirm the correct period for mortality record-

ing. Comparing the LC95 for each period, we noticed that there was an overlap in their interval

of confidence indicating that the differences found were not significant, therefore leading us to

keep 24 hours of exposure as ideal for dose-dependent bioassays with spinosad.

Studies performed with spinosad showed great variation on the lethal concentrations

obtained using laboratory populations of Ae. aegypti: Darriet et al [29], Romi et al [58] and

Paul et al [59] found a LC50 of 35μg/L, 10μg/L and 160μg/L respectively. However, Bond et al

[41] and Pérez et al [60] used the same protocol and obtained similar LC50, 25μg/L and 26μg/

L, respectively. These results are similar to the results we obtained in dose-response curve of

spinosad over the susceptible Rockefeller lineage (LC50 = 23μg/L). It indicates that spinosad

displayed high toxicity to Ae. aegypti reference colony tested and its lethal concentration is

very low. However, the lethal concentration for the reference colony was not as low as that

found for temephos (LC50 = 3.0μg/L). Here it is worth remembering that the temephos and

spinosad used to determine toxicity in the biossays have differences in their active ingredient

contents, which are 95.6 and 20.6%, respectively. The discrepancy found by other authors may

be attributed to differences in protocols used in each laboratory, which highlights the need to

maintain a standard protocol that facilitates the comparison of results from different groups.

The field populations assessed in this study were characterized as resistant to the temephos

organophosphate based on the criteria proposed by Mazzarri and Georghiou [50]. However,

the RRs for spinosad in all populations were extremely low when compared to the RRs

obtained for temephos. Only the population of Goiânia presented RR>5 (RR at LC95 = 5.4)

for spinosad. Since none of these populations have been treated with spinosad before, all the

RRs observed seem to be variations of the populations susceptibility rather than resistance

to spinosad. Interestingly, Goiânia population was not the one with the highest RR95 to the

organophosphate temephos. The population of Santana do Ipanema showed the highest

RR95 for temephos and a very low RR95 for spinosad. As expected, no significant correlation

was noted between the RR95 of the populations to temephos and spinosad (R2 = 0.0368;

p = 0.6803), suggesting that the resistance mechanisms selected to temephos are not influenc-

ing the toxicity levels of spinosad. Some studies suggested that once spinosad has different tar-

gets in the insect’s nervous system, there is a lower possibility of cross-resistance with other

products used in the control of disease vectors [31,33,34], corroborating our results.

During the assessment of spinosad residual effect on semi-field simulation, the average tem-

perature recorded in the recipients was 23.5 ± 3.1˚C, and the average of the pH was 7.4 ± 0.6.

Other semi-field simulation study has shown that Bti larvicides efficiency had an inverse rela-

tionship between temperature (which ranged from 18.7 to 34.6˚C during the simulation) and

the persistence of the Bti on Ae. aegypti larvae [61]. This may be a problem, since the dengue

vector proliferates in tropical and subtropical areas [62]. Fontoura et al [16], verified that the

climatic variation, even in the period when elevated temperatures were not recorded on a field

simulation, influenced negatively on the persistence of IGR Novaluron, with an increase in

emergency of adults a week earlier if compared to simulations conducted in the periods when
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the temperature remained stable. In our results, it was not possible to verify this influence,

probably due to the low temperature variation. In addition, we also did not observe the inter-

ference of changes in the water pH, maybe because the variation during the assessments was

very small. These alterations were not relevant, even in the recipients of the third assessment,

which instead of a solid cover had a nylon mesh attached with a rubber band to seal the water

tank. As observed in the mortality graphs, our results suggest that a higher exposure of the

tank’s content to the environmental variations, and a faster evaporation than that observed on

the sealed recipients did not influence, in a significant manner, the residual effect of the prod-

uct. A possible influence of the indirect insolation could potentially be detected since spinosad

is vulnerable to photolysis [63]. Pérez et al. [60] verified that the half life of aqueous solutions

of spinosad on Ae. aegypti larvae in plastic containers containing 1L of solution (10mg/L) dif-

fered according to the exposition of direct sun light or not. When exposed to sunlight condi-

tions the half-life was 2.1 days. When allocated in the shadow the half life was 24.5 days.

However, in our studies, since no statistic difference was observed between the two forms of

treatment, the indirect insolation, if it occurred, did not have any critical effect.

A similar experiment conducted by Thavara et al. [64], showed that Spinosad DT, at 0.5mg/

L in clay jugs, with 200L of tap water and weekly colonized with 25 third instar Ae. aegypti lar-

vae, achieved a persistence period of 27 days. In our assessments with the same spinosad con-

centration, there was a minimum persistence of eight weeks (56 days) in every population

(mortality higher than 80%). In other semi-field evaluation using plastic bowls also containing

1L of of spinosad aqueous solution (1mg/L) the persistence was kept for eight weeks on Ae.

aegypti larvae [41]. Differences in the nature of the recipients used on the field simulations

may justify divergences on results.

In Brazil, the visit of health agents on households to check and treat possible foci happens

every eight weeks [65]. Spinosad appeared to be efficient against Brazilian Ae. aegypti populations,

presenting larvae mortality over 80% for seven to eight weeks. Therefore, schedule of mosquito

control measures carried out by the health agents can be maintained. New assessments on a field

simulation with reservoirs of different natures, expositions to different light and temperature con-

ditions will be important to measure the product’s effect on various environments.

Conclusion

The data presented here suggests that there is no cross-resistance of the spinosad with the teme-

phos, regardless the resistance level to the organophosphate. Spinosad is a less aggressive product

towards the environment and presents low toxicity for non-targeted insects and low risk for

humans and fauna. Also, it has long residual effect on field populations with different levels of

resistance. Therefore, spinosad is showing to be a promising product for public health usage, espe-

cially if used carefully. However, deeper studies that better evaluate the action mechanisms of spi-

nosad in Brazilian Ae. aegypti populations are necessary to foresee possible events of tolerance and

resistance to the product and to avoid troubles arising from the inadequate use of this tool.
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S1 Table. Lethal concentration average and Confidence Interval (CI) according to expo-

sure time of Rockefeller larvae to spinosad.

(DOCX)

S1 Fig. Field simulation for evaluation of the spinosad effect over the mortality of Ae.

aegypti larvae. The average of mortality percentage for Rockefeller, Marilia and Salvador is

represented for bioassays conducted in three distinct moments:
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A–July to September 2011, B–September to November 2011 and C- December 2011 to Febru-

ary 2012. The red dotted line indicates the mortality level at 80%. The physicochemical varia-

tions, pH and temperature of the solution in the deposits during the three assays are

represented in D. The dose tested was 0.5mg/L. Every week the tanks were recolonized by

removing the dead and the remaining living larvae and introducing 30 new 3rd instar larvae.

The tanks were covered either with a lid (1st and 2nd replicates) or with a nylon mesh (3rd repli-

cate).

(TIF)

S2 Fig. Field simulation for evaluation of the spinosad effect over the mortality of Ae.

aegypti larvae. The average mortality percentage for Rockefeller, Goiânia and Santarém is rep-

resented for bioassays conducted in three distinct moments: A- May to June 2012, B–July to

September 2012 and C–September to November 2012. The dotted red line indicates the mor-

tality level at 80%. The physicochemical variations, pH and temperature of the solution in the

deposits during the three assays are represented in D. The dose tested was 0.5mg/L. Every

week the tanks were recolonized by removing the dead and the remaining living larvae and

introducing 30 new 3rd instar larvae. The tanks were covered either with a lid (1st and 2nd rep-

licates) or with a nylon mesh (3rd replicate).

(TIF)
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