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Cervical cancer (CC) is the fourth leading cause of deaths in gy-
necological malignancies. Although the etiology of CC has been
extensively investigated, the exact pathogenesis of CC remains
incomplete. Recently, single-cell technologies demonstrated ad-
vantages in exploring intra-tumoral diversification among
various tumor cells. However, single-cell transcriptome analysis
(single-cell RNA sequencing [scRNA-seq]) of CC cells and
microenvironment has not been conducted. In this study, a total
of 20,938 cells from CC and adjacent normal tissues were exam-
ined by scRNA-seq. We identified four tumor cell subpopula-
tions in tumor cells, which had specific signature genes with
different biological functions andpresenteddifferent prognoses.
Among them, we identified a subset of cancer stem cells (CSCs)
that was related to the developmental hierarchy of tumor pro-
gression. Then, we compared the expressive differences between
tumor-derived endothelial cells (TECs) and normal ECs (NECs)
and revealed higher expression of several metabolism-related
genes in TECs. Then, we explored the potential biological func-
tion of ECs in vascularization and found several marker genes,
which played a prior role in connections between cancer cells
and ECs. Our findings provide valuable resources for decipher-
ing the intra-tumoral heterogeneity ofCCanduncover the devel-
opmental procedure of ECs, which paves theway forCC therapy.

INTRODUCTION
Cervical cancer (CC) remains the most common gynecological tumor
and the leading cause of cancer-related deaths in women worldwide.1

Although surgery and radiotherapy are the most effective treatment,
�30% of patients will still progress.2 Anti-angiogenesis and immuno-
therapy have provided survival benefits; however, response rates and
durability of response need to be improved.3,4 The greatest risk factor
for CC is infection with certain types of human papillomavirus
(HPV), but viral infection alone is not sufficient to explain its devel-
opment.5 It is generally believed that CC tumors exhibit high hetero-
geneity both inter-tumor and in the microenvironment, allowing
cancer to evolve continuously in the process of disease development,
leading to treatment failure.6

One of the important sources of tumor heterogeneity is molecular
variation within tumor subclones and even between individual
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cells.6,7 These variations drive tumor progression through the dysre-
gulation of key oncogenes or pathways and contributes to the evolu-
tionary adaptation of tumors.8 Previous gene expression studies from
bulk transcriptional data have largely revealed transcriptional varia-
tion that may affect prognosis.9 However, one of the major limitations
is that bulk sequencing of tumor samples is unable to identify small
subsets of tumor tissues. As a revolutionary method, single-cell
RNA sequencing (scRNA-seq) has been widely used in various fields
to dissect cellular compositions and characterize molecular properties
of complex tissues.10,11 To date, the full spectrum of differences from
the single-cell level in CC compared with its adjacent normal counter-
part has not been estimated.

Here, we present the first study of gene expression patterns for CC at a
previously unrealized transcriptomic resolution by utilizing scRNA-
seq technology. Through the analysis of single cells from CC, we un-
covered the characteristics of various cell populations and mined the
biological functions of endothelial cells (ECs) in CC progression and
drug resistance.
RESULTS
Single-cell transcriptional atlas and cell compositions in CC and

adjacent normal samples

Cervical tissue consists of various cell types, such as epithelial cells,
smooth muscle cells, fibroblasts, ECs, endometrial stromal cells,
and immune cells (Figure 1A; Figure S1A). Because of the abundant
blood supply, CC tends to be in large volume (Figure 1B). To explore
the diverse cell compositions in CC tissue, scRNA-seq was conducted
on all living cells isolated from CC and adjacent normal tissues with
the 10x Genomics Chromium platform. Among the cells sequenced, a
total of 11,289 cells from the tumor sample and 9,649 cells from the
uthors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Identification of CC cell populations

(A) An overview schematic of the cell populations with the CC and adjacent normal samples. (B) MRI showing the location and volume of CC. (C) The t-distributed stochastic

neighbor embedding (t-SNE) plot demonstrating main cell types in CC. (D) Heatmap shows expression levels of specific markers in each cell cluster. (E) Expression levels of

representative well-known markers across the cell types in CC. Color key from gray to red indicates relative expression levels from low to high. The expression level was

normalized by the LogNormalize method in Seurat.
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adjacent normal sample met our quality control (QC) metrics and
were further analyzed to identify various cell types (Table S1). By us-
ing a graph-based clustering method (see Materials and methods), we
identified 13 cell clusters (Figure 1C). Putative cell type identities were
then assigned by cross-referencing genes differentially expressed in
each cluster (Figures 1C and 1D; Figure S1B). Cells in cluster 0, 1,
3, and 8 cells expressed high levels of EPCAM, CDH1, and CDKN2A
and were classified as epithelial/cancer cells. We found that the num-
ber of epithelial/cancer cells in the tumor sample was much higher
than that in the normal sample. Cluster 4 had a high level of
EGFL7, EMCN, and PECAM1 and was identified as an EC cluster
(Figure 1E). Clusters 2 and 6 were assigned as smooth muscle cells,
as distinguished by selective expression of ACTG2. Cells in cluster
7 expressed high levels of COL1A2 and APOD and were identified
as fibroblasts. In view of the high expression level of SUSD2, cells
in clusters 5, 9, and 12 were assigned as endometrial stromal cells.
We also identified a small population of immune cells, includingmac-
rophages (cluster 10) and lymphocytes (cluster 11). Meanwhile, we
also acquired several significant genes for each cluster for further
analysis. In addition, we were able to identify marker genes that
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 683
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Figure 2. Heterogeneity of tumor cells in CC

(A) t-SNE representation of 4 clusters generated from all tumor cells. (B) The cell number and percentage of assigned cell types. (C) Heatmap shows expression levels of

specific markers of cell type in 4 clusters. (D) Expression levels of representative well-known markers across the 4 clusters (0, 1, 3, and 8) in cancer cells. (E) Heatmap shows

the representative gene ontology and pathway terms enriched in each subgroup. Color key from blue to red indicates Z score of �log10(p value). (F) Heatmap shows the

expression patterns of representative cancer markers across the 216 CC samples in the TCGA CESC cohort. (G) Kaplan-Meier survival analysis of tumor samples grouped in

(F). Statistical significance was determined by log-rank test.
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were known to be affected by HPV infection, such as TP53 and RB1
(Figures S1C and S1D). We found that the target cells of HPV infec-
tion were among small portions of epithelial cells, ECs, and macro-
phages (Figures S1E and S1F). We speculated that these cells were
associated with the origin, progression, and metastasis of HPV-
related CC.

Single-cell transcriptomics reveal intra-tumoral heterogeneity in

CC cells

We next explored epithelial/cancer cells and mutual expression pat-
terns of their marker genes (EPCAM, TP63, CDH1, and CDKN2A).
We detected 10,457 epithelial/tumor cells, 10,395 from the tumor
sample and 62 from the adjacent normal sample (Figures 2A and
684 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
2B), which were classified into four clusters (clusters 0, 1, 3, and 8)
(Figures 2C and 2D; Figures S2A–S2D). They were divided into
four cell groups with different biological functions according to the
markers identified for each of these clusters. We found that prolifer-
ation-related genes, such as MKI67 (KI67 gene), CCNB1, and
TOP2A, were enriched in cluster 3 (Figures 2C and 2D). KI67 is a pro-
tein that primarily plays a role in cell proliferation by enhancing the
activity of cathepsin.12,13 According to previous studies, high KI67
expression in CC is related to the size of tumors, progression of tu-
mors, and lymph node metastases.14 Gene set enrichment analysis
(GSEA) analysis showed that biological pathways, such as cell cycle,
oocyte meiosis, RNA degradation, and fatty acid metabolism and
biosynthesis were enriched in cluster 3 (Figure 2E). Meanwhile,
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cluster 3 was found to have higher levels of G2/M signatures, suggest-
ing high proliferative activity. Cluster 1 showed a high level of CEA-
CAM6, CD55, and GJB6. CEACAM6 is a carcinoembryonic antigen
family and is widely expressed in epithelial cells, ECs, and hematopoi-
etic cells including neutrophils, T cells, and NK cells.15 It is reported
that CEACAMs are able to transmit signals that result in a variety of
effects, including tumor promotion, angiogenesis, neutrophil activa-
tion, and lymphocyte activation. Indeed, CEACAM1, CEACAM5,
and CEACAM6 are now considered valid clinical biomarkers and
promising therapeutic targets in melanoma, lung, colorectal, and
pancreatic cancers.16 Then, GSEA analysis according to the marker
gene sets implicated immune regulation signaling pathways, such as
Vibrio cholerae infection, shigellosis, and ErbB signaling pathway, en-
riched in cluster 1 (Figure 2E). We found that cells in cluster 0 pre-
sented high levels of DEFB1, KRT5, CXCL10, WARS, LY6D,
CRABP2, CXCL9, PHOV, C10orf99, and PYCARD and were en-
riched in a variety of features and metabolism-related signaling path-
ways, such as steroid biosynthesis, mismatch repair, and peroxisome
(Figure 2E). We presumed these cells in cluster 0 to be the terminal
stage during tumor progression. However, the cells in cluster 8 pre-
sented high expression of stem-related genes such as SOX2 and
ALDHA1, and we presumed them to be the origin of cancer cells dur-
ing tumor progression (Figure 2E).

Samples derived from the The Cancer Genome Atlas (TCGA) CESC
cohort were divided into four major groups, defined as clusters A–D,
by K-means clustering (k = 4 for samples, k = 5 for genes) with the
marker genes from scRNA-seq data (Figure 2F; Figure S2E). In partic-
ular, cluster A, rich inGeneclass3, showed cell development and differ-
entiation, corresponding to cluster 8 in scRNA-seq. Cluster B, rich in
Geneclass2 and 5, presented the response to oxygen levels, hypoxia,
and glucocorticoid, as well as extracellularmatrix (ECM) organization,
responding to cluster 0. ClusterC, enrichedwithGeneclass1, presented
mitotic nuclear division, organelle division, chromosome segregation,
and spindle organization, suggesting the proliferative status, corre-
sponding to cluster 3. Cluster D, enriched with Geneclass4, presented
the response to virus, tumor necrosis factor (TNF)-a signaling
pathway, and response to interferon (IFN)-g, suggesting an inflamma-
tory response status, corresponding to cluster 1. Then, we found that
cluster D (cluster 1 in scRNA-seq) was associated with a favorable sur-
vival outcome, while cluster B (cluster 0 in scRNA-seq) usually had a
worse prognosis (Figure 2G). These results indicated that discovery ob-
tained from single-cell transcriptomics suggested relevant clinical
consequence. These findings further warrant the practical use of sin-
gle-cell transcriptomics to understand CC tumor biology.

Reconstruction of progressive trajectory of CC from CSCs

The theory of CC stem cells (CSCs) assumes that not all tumor cells
present equally with regard to self-renewal, tumorigenesis, and main-
tenance potential.17,18 CSCs are a small subpopulation of tumor cells
that play a decisive role in tumorigenesis, while the majority of tumor
cells die after transient differentiation.19 Cell surface markers and
transcription factors, including SOX220 and aldehyde dehydrogenase
1 (ALDH1),21 have been used to isolate and identify CSC populations
from different tumors including CC.22 The CSC marker genes
ALDH1A1 and SOX2 were significantly higher in cluster 8 (Figures
3A and 3B). To further investigate the developmental procedure
from stem-like tumor cells expressing SOX2 and ALDH1A1 to differ-
entiated cancer cells, we performed subcluster identification in cluster
8 (Figures S3A and S3C). The analysis uncovered six subclusters, each
of which was enriched for a specific functional category. We found
that SOX2 and ALDH1A1 presented a higher expression level in sub-
cluster 1 than in other subclusters (Figure 3C; Figure S3B). GSEA
analysis revealed that subcluster 1 showed high levels of stem-related
signaling pathways, such as transforming growth factor (TGF)-b
signaling pathway, Hedgehog signaling pathway, and Notch signaling
pathway (Figure 3D). These findings shed light on the hierarchical
structure and heterogeneity of cervical CSCs.

To identify transcriptional adaptability in cancer cells at different
stages of tumor development, we performed a pseudo-time analysis
to reveal gene expression trajectories related to functional changes.
Based on the changes in transcriptional activities of cells in cluster
8, we defined four gene co-expression modules. Module 1 (referring
to cells in states 4 and 6) displayed prominent ontology terms, such
as cell differentiation (Figure S3E). Notably, most of the cells in sub-
cluster 1 were located at the root of trajectory, which is consistent with
the functional annotation and state characterization of module 1.
Module 2 (referring to cells in state 5) acquired DNA/RNA cata-
bolic-related genes, with high expression of V4GALT4, B3GNT5,
FUT2, ST3GAL6, and GCNT2 (Figure S3E). Cells in subcluster 2
were at one end of the pseudotemporal trajectory (Figures 3E and
3F; Figure S3E). We found that most of the cells in subclusters 3, 4,
and 5 were located at other ends of the pseudotemporal trajectory
and correspond to module 3 and module 4, respectively (Figures 3E
and 3F). The functional annotation of module 3 (referring to cells
in state 1) presented biological functions, such as T and B cell receptor
signaling pathway and immune network for IgA production (Figures
3E and 3F; Figure S3E). Module 4 (referring to cells in state 5) showed
glutathione metabolism, RNA transport, and beta-alanine meta-
bolism, including JUN, SKP1, PSMB9, ACTB, and PSMA5. In addi-
tion, cells in subcluster 0 were distributed in the trajectory of a
pseudo-timescale with ECM-receptor interaction, aldosterone-regu-
lated sodium reabsorption, and mRNA surveillance pathway (Figures
3E and 3F; Figure S3E). The expression of stem-related marker SOX2
descended gradually during the transition, while genes previously re-
ported to be involved in tumor progression, such as PSMA5 and JUN,
gradually increased along tumor progression (Figure S3D). Our anal-
ysis revealed that the cancer cells in early phase showed relatively high
differentiation potential and then the cells proliferated rapidly. As ex-
pected, in late stages of tumor growth, tumor cells showed a series of
functions, such as immune response, cell metabolism, and signal
transduction. These results reflected the complexity and heterogene-
ity of tumor progression.

ECs exert different functions in cancer and normal tissues

Angiogenesis is important in both normal and disease tissues and rep-
resents a key target in cancer treatment.23 A total of 1,803 ECs derived
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 685
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Figure 3. Expression patterns of cervical cancer stem cells with tumor progression

(A) Violin plots display the expression of representative stem-related markers across four cancer cell clusters identified in CC. (B) ALDH1A1 and SOX2 expression stained in

CC normal and cancer samples derived from THPA database. (C) Violin plots display the expression of representative stem-related markers in six subclusters of cancer cells

in cluster 8. (D) Heatmap shows representative stem-related signaling pathways in six subclusters of cancer cells in cluster 8. (E) Pseudo-time trajectory of cancer cells in

cluster 8 with gene expression profiles inferred by Monocle 2. Each point corresponds to a single cell. (F) The differentially expressed genes (rows) along the pseudo-time

(columns) were clustered hierarchically into six profiles.
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from tumor or adjacent normal tissues were detected by scRNA-seq.
The analysis of hallmark pathway gene signatures emphasized that
metabolic regulation was the most abundant signature in tumor-
derived ECs (TECs). In particular, the top 10 different expression
genes (DEGs), either upregulated or downregulated, were mainly
related to metabolic processes (Figure 4A). Hence, we conducted
ontological enrichment analysis of the upregulated or downregulated
DEGs. TECs were found to be enriched in the regulation of peptidase
activity, the regulation of proteolysis, and the extracellular structure
organization, while normal ECs (NECs) had basic biological func-
tions, such as vascular system development, angiogenesis, EC migra-
tion, and endothelial development (Figures 4B and 4C). Meanwhile,
686 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
GSEA analysis also showed that TECs were enriched in xenobiotics
metabolism, PPAR signaling pathway, amino acid biosynthesis, car-
bon metabolism, and glycolysis/gluconeogenesis, which are essential
for tumor cell metabolism. In addition, other enriched pathways
included DNA replication, citrate cycle (TCA cycle), and cell cycle,
which are important for cell proliferation.

The most significantly downregulated pathways involved in immune
regulation are allograft rejection and intestinal immunity. Other
important signaling pathways related to signal transduction include
AGE-RAGE, PI3K-Akt, cGMP-PKG, cytokine-cytokine receptor
interaction, and TNF signaling pathway (Figure 4E). As we all



Figure 4. The difference between NECs and TECs in CC

(A) Volcano plot of differentially expressed genes (DEGs) of NECs between tumor and normal samples. Symbols of top 10 upregulated and downregulated genes were

annotated, respectively. (B) Gene Ontology analysis of upregulated DEGs. (C) Gene Ontology analysis of downregulated DEGs. (D) Violin plots show the smoothened

expression distribution of selected genes involved in angiogenesis between NECs and TECs. (E) Violin plots show the smoothened expression distribution of selected genes

involved in immune activation between NECs and TECs. (F) GSEA shows the differences in pathway activities between NECs and TECs.
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know, endothelium is the main interface between circulating immune
cells, inflammatory mediators, small molecules, and tumor cells and
plays an important role in transferring signals and presenting epi-
topes from tissues to the immune system.24 Gene categories include
those genes related to chemotaxis (CCL2, CCL14, CXCL2, HLA-
DQA1, HLA-DQB1, HLA-DRA, CD34, CD74, and IL1R) and im-
mune cell homing (ICAM1, ICAM2, and ICAM4) (Figures 4D and
E). In addition, based on public datasets from the Gene Expression
Omnibus (GEO) database and EC marker genes, we identified 6
downregulated genes (CXCL8, STMN1, CKS2, WARS, ISG15, and
IFI6) and 4 upregulated genes (GPX3, KLF4, IGFBP5, and SH3BGRL)
(Figure S4A). Surprisingly, upregulated genes were associated with
metabolic regulation, while downregulated genes were related with
the immune activation. Together, these results indicate that TECs
are transcriptionally reprogrammed to upregulate their metabolic
function, which is related to the development of tumor, and downre-
gulate their antigen presentation and immune cell homing activities,
thus contributing to tumor immune tolerance. These results
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 687
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Figure 5. Heterogeneity of ECs and its developmental trajectory

(A) t-SNE plot shows seven subgroups of the EC cluster (cluster 4). (B) Violin plots show the expression of representative arterial and venous markers across seven sub-

groups. (C) Violin plots show the expression of representative capillary markers across seven subgroups of ECs. (D) Pseudo-time trajectory of ECs with gene expression

profiles inferred by Monocle 2. Each point corresponds to a single cell. (E) The DEGs (rows) along the pseudo-time (columns) were clustered hierarchically into six profiles. (F–

H) Gene Ontology analysis of each EC gene set.
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implicated the potential synergy of anti-angiogenesis therapy and
checkpoint immunotherapy for treating patients with CC.

Finally, to assess which transcription factors made major contribu-
tions to the difference in expression between TECs and NECs, we
applied single-cell regulatory network inference and clustering (SCE-
NIC) to scan differentially expressed genes for overrepresented
transcription factor binding sites and analyzed co-expression of tran-
scription factors and their putative target genes (Figures S4B and
S4C). Our analysis found the downregulation of Fos/Jun and ELK3
and upregulation of STAT1, KLF5, and TAGLN2 in TECs. Interest-
ingly, Fos/Jun is related to the expression of ICAM1 in ECs, and other
genes involved in immune activation also showed putative Fos/Jun
binding sites, indicating that the loss of Fos/Jun is the basis for the
reduced immunostimulatory phenotype of TECs. TAGLN2 is a pro-
tein related to actin stress fiber, which could stabilize actin fila-
ments.25 The overexpression of TAGLN2 in tumor samples is related
to lymph node metastasis and distant metastasis, late stage, and poor
688 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
survival in CC. Jin et al. reported that the expression of TAGLN2 in
micro-vascular ECs was significantly higher than that in matched
normal individuals in lung cancer and it played an important role
in tumor angiogenesis.26 KLF5 is a basic transcription factor that reg-
ulates a variety of physiological and pathological processes. A large
amount of evidence indicates that KLF5 has a key role in regulating
cell proliferation in various cancers.27 Interestingly, KLF5 also pro-
motes angiogenesis by directly regulating VEGFA transcription.28

Heterogeneity analysis unveils transitional trajectory of ECs in

CC

To characterize various EC phenotypes, we identified 7 subclusters in
the EC cluster (Figure 5A). Next, we attempted to identify marker
genes for each subcluster and assign them to knownEC types.29,30 Sub-
clusters 0 and 6 shared the majority of genes with similar expression,
while subclusters 1, 4, and 5 showed the most similar genes. However,
subclusters 2 and 3were found to share no specific genes. Further anal-
ysis revealed that arterial markers ELN and EGR1 were the most
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abundant in subclusters 0 and 6, while venousmarker genes LRG1 and
ICAM1were identified in subclusters 1, 4, and 5 (Figure 5B). Arteriolar
ECs expressed both arterial and capillary markers (IGFBP3 and
ARL15), which was consistent with their topographical location across
the vascular tree (in between arteries and capillaries). We therefore
named arteriolar ECs “capillary-arterial” ECs. Similarly, because ven-
ular ECs express venous and capillary markers (EMCN and FOS), we
defined venular ECs as “capillary-venous” ECs (Figure 5C).

Compared with traditional bulk RNA-seq, scRNA-seq was able to
eliminate the differences caused by the tumor microenvironment
(TME). Such pseudotemporal analysis is a measure of progression
through biological processes based on transcriptional similarity. We
defined three gene co-expressionmodules based on the transcriptional
changes (Figure 5D and 5E). Module 1 (referring to cells in state 5)
showed such ontology terms as RNA catabolic process, ribosome
biogenesis, and translational initiation, which represented the trig-
gering of metabolism (Figure 5F). We found that the majority of
ECs derived from small venous and capillary tissue were located at
the root of the trajectory (Figure S5B). Along the trajectory, the expres-
sion of EMCN and FOS descended gradually during the transition,
while the larger venous and arterial markers ELN and PODXL gradu-
ally increased (Figure S5C). Module 2 (referring to cells in state 6)
exhibited ontology terms such as ATPmetabolic process and triphos-
phate metabolic process. The procedures proposed more arterial EC
assemblies with prominent metabolic energy signaling pathways.
Since it is closely related to cell migration and blood vessel formation,
it is very important for ECs with high expression of arterial markers
(ELN).Module 3 (referring to cells in state 2) displayed ontology terms
such as Wnt signaling pathway and antigen processing and presenta-
tion. The majority of TECs aggregated at the end of the trajectory.
These cells presented high levels of arterial, venous, and capillary
markers, such as IGFBP3, FABP5, NKFB1, and VEGFA, which are
inconsistent with the markers of ECs from the normal sample.

Crosstalks between ECs and cancer/immune cells potentially

facilitate tumor angiogenesis

Drug resistance is a major problem in anticancer therapy. Since Folk-
man31 proposed the concept that tumor growth depends on angio-
genesis, tumor blood vessels have been regarded as important targets
for cancer treatment. Targeting ECs may be more effective than tar-
geting tumor cells. ABC transporters are one of the largest families of
transmembrane protein family and play a role in multidrug resis-
tance.32 Recent studies have revealed that ABC transporter is highly
expressed in tumor endothelium and may be resistant to chemo-
therapy.33,34 The most extensively characterized transporters are
ABCB1 and ABCG2. Our data provided an opportunity to discover
new cell regulators as potential prognostic markers and/or drug tar-
gets. As shown in Figures 6A–6C, ABCB1 and ABCG2were especially
expressed in cluster 4, with higher level in TECs than in NECs (Fig-
ure 6B), indicating that ABC transporters might affect chemoresist-
ance by medicating the function of ECs. Akiyama et al. reported
that tumor-secreted factors induced the expression of ABC trans-
porters in ECs. They demonstrated that VEGF secreted by tumor
might induce upregulation of ABC transporters.35 To verify this
concept, we explored the connection between tumor cells and ECs
and found that VEGFA was highly expressed in TECs and low in
NECs (Figure S6A). The protein-protein interaction (PPI) modules
were established to explore the interactions among these genes. In tu-
mor, the significant module involving VEGFA also included other
genes such as BMP, MIF, CSF1, TNFSF10, CEACAM5, AXL, and
EGFR (Figure S6B). Then, we performed functional enrichment anal-
ysis on genes in the module and found that they were mainly enriched
in cell-cell adhesion and signal transduction. Then, we found that sig-
nificant genes in the normal sample were enriched in sprouting angio-
genesis and cell proliferation (Figure S6C). Recently, Lambrechts et al.
analyzed the ECs in lung cancer through scRNA-seq and reached a
similar conclusion.36 These results indicate that the origin of tumor
angiogenesis was derived from normal ECs. The procedure was regu-
lated by several cytokines secreted by cancer cells.

To systematically study interactions between tumor or immune cells
and ECs, we conducted a cell-cell communication network based on
CellPhoneDB. This approach emphasized interactions between
different cell types that might be involved in angiogenesis, immune
cell recruitment, and immunomodulation (Figure 6D). Through
comparing the top 50 significant legend-receptor pairs of tumor cells
and ECs in tumor or normal samples, we identified 16 specific legend-
receptor pairs, respectively. We found that legend-receptor pairs were
related to immune regulation in tumor, such as CD74-COPA, CD74-
MIF, CD74-APP, TNFRS10-TNFSF10, TNFSF10-RIPK1, HLA-
DPA1, and HLA-C-FAM3C (Figure 6E). However, in the normal
sample, signal transduction-related pairs such as DSG2-DSC3,
DSC2-DSG2, EGFR-TGFB1, TGFB1-aVb6 complex, and CEA-
CAM5-CEACAM6 showed high expression levels (Figure 6F). Mean-
while, according to the receptor genes in ECs, we performed Gene
Ontology (GO) analysis. The results indicated that TECs were related
to the ephrin receptor, axon guidance, cell-cell adhesion, establish-
ment of endothelium, and EC differentiation and development, which
reflected the tumor angiogenesis and progression (Figure S6D). How-
ever, in NECs, this analysis could ensure the organization of the ECM,
the regulation of phosphatidylinositol 3-kinase signaling and protein
kinase B signaling, which represented the normal biological function
of ECs (Figure S6E). Then, we also compared the significant legend-
receptor pairs of immune cells and ECs in the tumor or normal sam-
ple. Surprisingly, the majority of legend-receptor pairs between
cancer cells and ECs were also expressed between immune cells and
ECs (Figures 6G and 6H; Figures S6G and S6H). GO analysis of EC
receptor genes showed that T cell activation played a key role in the
regulation process between immune cells and TECs (Figure S6F).
In the normal sample, peptidyl-tyrosine phosphorylation and cell
chemotaxis were enriched between immune cells and ECs (Fig-
ure S6G). These results indicated the synergistic effect of tumor cells
and immune cells that led to tumor angiogenesis.

DISCUSSION
In recent years, the heterogeneity of tumor and microenvironment in
various solid tumors had been well mapped. However, it remains
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 689

http://www.moleculartherapy.org


Figure 6. The expression levels of ABC transport proteins and cell-cell communications between cancer/immune cells and ECs

(A) t-SNE plot shows the expression levels of ABC transport proteins in all cell clusters. (B) Boxplots show the expression levels of ABC transport proteins between tumor and

normal samples. (C) Violin plots show higher expression levels of ABC transport proteins in EC cluster. (D) The connections between tumor cells and ECs. (E) Cell-cell

connections show the specific legend-receptor pairs between tumor cells and ECs in tumor. (F) Cell-cell connections show the specific legend-receptor pairs between

epithelial cells and ECs in the adjacent normal sample. (G) Cell-cell connections show the specific legend-receptor pairs between immune cells and ECs in the tumor sample.

(H) Cell-cell connections show the specific legend-receptor pairs between immune cells and ECs in the normal sample.
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unclear how this heterogeneity contributes to treatment failure and
tumor progression of CC. The present study is the first to prove the
presence of biological and transcriptomic heterogeneity of CC at
the single-cell level. We found evidence of tumor cell heterogeneity
identified by different CC cell markers and the presence of CSCs in
the tumor sample associated with the tumor progression, suggesting
that the diverse transcriptome of a single cell might reflect its tumor
biology. Meanwhile, our data also provided evidence of the heteroge-
neity of TECs and revealed the state transition of ECs. These out-
comes reflect the true biological nature of the tumor and should be
performed at the single-cell level, rather than tumor bulks. Therefore,
our study established a feasible approach to investigate intra-tumoral
heterogeneity and angiogenesis in CC.
690 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
By using the scRNA-seq technique, all cell types in CCwere identified,
including epithelial cells, cancer cells, ECs, fibroblasts, smooth muscle
cells, endometrial stromal cells, lymphocytes, and macrophages. As
we captured all expected cell populations in the cervix, it seems that
we have captured all tumor cells in CC, including several rare popu-
lations. Human cervix is barrel shaped with an �2-cm-long central
canal. The proximal end of cervix is called the internal os and opens
into the uterus without any obvious features to mark the borders of
the two tissues, whereas the distal end is called the external os and
opens into the vagina. The cervical tissue has two dominant cell types
in both endo- and ectocervix, that is, stromal and epithelial cells.
These two cell types are separated by a basement membrane. The
stromal tissue is predominantly made up of fibroblasts, smooth
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muscle, and scattered immune cells, embedded in a collagen-rich
ECM containing hyaluronan and proteoglycans. A previous study
developed a uniform method suitable for quantitative comparison
of the leukocytes from all these tissues in the human female reproduc-
tive tract (Fallopian tube, uterus, cervix, and vagina) by flow cytomet-
ric analysis. They found that reproductive tract tissues contain�6%–

20% of leukocytes, with Fallopian tubes and uterus containing higher
proportions of leukocytes than cervix and vagina. The proportion of
leukocytes decreased from the top of the reproductive tract to the bot-
tom, with Fallopian tube tissue most heavily infiltrated with immune
cells. According to our single-cell sequencing, the proportion of leu-
kocytes in normal tissue is 2% and the proportion of leukocytes in CC
is 5%. The small proportion of immune cells in cervix is due to the
property of cervix tissue.37

By performing GSEA analysis on the marker genes of each cancer cell
cluster, we uncovered some interesting patterns that further
confirmed the identity of the cells and revealed previously unde-
scribed biological pathways. Many studies have attempted to identify
cervical CSCs, but the molecular markers that irrefutably identify cer-
vical CSCs have not been clearly defined. The consensus is that the
CSC population is rare (<2%).38 Through scRNA-seq analysis, we
identified a cluster of cervical CSCs, which had outstanding levels
of stem-related markers SOX2 and ALDH1A1. Although the number
of cervical CSCs is small, our data provide sufficient evidence to
explain important biological functions in tumor formation and
growth. Our further analysis confirmed that subcluster 1 was rich
in stem-related signal transduction pathways compared with other
subclusters. Our further pseudo-time analysis determined that the
trajectory has a branched structure. One branch represented the
root of the trajectory, indicating high expression of stem-related
genes. The other three branches were enriched in cell proliferative
and high invasive potential. These results further provided important
clues for targeting and eradicating cervical CSCs.

Recently, the critical role of the microenvironment in the growth and
progression of CC has been established.39 The putative genetic stabil-
ity of TME components (such as ECs) makes them attractive thera-
peutic targets. In fact, biological therapies aiming at vascularization
(such as bevacizumab) have shown promise in clinical trials and pre-
clinical models of various cancers.40 However, other targets will be
required to achieve further therapeutic benefits. ECs from tumors
are different from ECs in normal tissues. Some studies have shown
that TECs display altered phenotypic and functional characteristics,
which reflect alterations in transcriptional levels.41 However, so far,
the genetic and molecular pathways that govern the organ-specific ef-
fects of ECs have not been clearly demonstrated, mainly because of
insufficient method to investigate individual cell types from various
tissues in parallel. Genomic analysis of ECs by scRNA-seq is a power-
ful method to understand the development procedure of ECs and
identify new genes that may be potential targets or biomarkers.29,42

In this study, our data revealed the important role of metabolism-
related signaling pathway in TECs, while NECs showed significant
enrichment in immune response and signal transduction. In addition,
several transcription factors, including TAGLN2, KLF5, STAT1, and
STAT2, may be efficient markers for CC ECs, which have important
diagnostic value and clinical significance for CC patients. Future
research on CC metabolism should focus on not only cancer cells
but also other stromal cell types.

Our pseudo-time analysis explained that although adjacent normal
tissues act as a source of TECs, once at the tumor ECs would rapidly
transform from their naive state through the clonal expansion and
activation phases. As expected, in the early stage normal ECs pre-
sented enrichment of activation signals. Then, these cells showed
both high metabolism populations, indicating an intermediate
dysfunctional state, and its programs can be reversed before it differ-
entiates into the terminal state. Finally, ECs required antigen process-
ing and presentation function and activated the Wnt signaling
pathway, indicating the appearance of tumor-like ECs. The cell-cell
communication showed that ECs in normal tissue were regulated
by IGFR, FGF, TGFBR, ACKR1, and JAG2, so that cells showed spe-
cific biological functions, such as signaling transduction. However, in
tumor ECs were regulated by tumor cells through CD74, TNFRS
superfamily, and HLA complex. These cells showed immune regula-
tion-related signaling pathway. These findings will help us further un-
derstand the pathological process of tumor angiogenesis and cancer
progression and help identify potential targets. Blocking these path-
ways may interrupt EC dysfunction. This represents a new strategy
for anti-angiogenesis treatment against CC.

Although recent anti-tumor drug research has seen the development
of a large variety of anti-angiogenesis therapies, drug resistance re-
mains an obstacle to the success of cancer therapy.43,44 It is reported
that the key mechanism of cell resistance involves the ABC (ATP-
binding cassette) transporters, which pump drug molecules out of
the cells, thereby reducing the effective concentration within
them.45 Consistent with several published studies that reported
high-level expression of ABCB1 and ABCG2 in TECs, our scRNA-
seq data showed that expression levels of ABCB1 and ABCG2 in
the tumor sample were higher than those in the adjacent normal sam-
ple. It is worth noting that the expression of ABCB1 and ABCG2 has
been suggested to be a useful biomarker of drug resistance in many
cancers, and its upregulation might contribute to chemoresistance
and anti-apoptosis. This feature is a novel finding for CC and suggests
that drug extrusion from tumor endothelium is mediated by ABC
protein transporters.

Since scRNA-seq is inherently limited to the measurement of tran-
script levels, the functional implication of each of these populations
needs further study. However, the robust markers and larger cell
numbers that we have provided for each of these subpopulations
will form the basis for applying the scRNA-seq method to CC,
allowing us understand how these populations and their transcrip-
tomes are involved in various pathological settings. More impor-
tantly, the power of single-cell transcriptomics makes it possible
to identify rare cell subpopulations and explain the connection be-
tween tumor cells and ECs. Therefore, we anticipate that these
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 691
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findings will provide important clues to complement this chal-
lenging exploitation.

MATERIALS AND METHODS
Clinical specimens

Human CC and adjacent normal tissues were obtained from a patient
who had undergone resection in our hospital. The patient was 53
years old with HPV18-positive cervical squamous cell carcinoma.
This study was approved by the ethics committee of the Obstetrics
and Gynecology Hospital of Fudan University. Informed consent
was acquired from enrolled patients.

Isolation of single cells

After surgical resection, fresh samples were collected and washed with
PBS three times. Tissue was cut into�1 mm3 pieces and incubated in
the same dispase solution at 37�C for 30 min. Then, the tissue was
gently dissociated with a pipette and incubated in trypsin 0.05% solu-
tion diluted with PBS for 10 min. After the trypsin was deactivated
with 5% PBS, the samples were filtered out with a 70 mm filter. Single
cells were counted with a hemocytometer. Live cells were preferen-
tially sorted for single-cell sequencing.

Single-cell sequencing

The cellular suspension was loaded on a Chromium Single Cell in-
strument (10x Genomics) to generate single-cell Gel Beads-in-emul-
sion (GEMs). Then, single-cell RNA sequence library was estimated
by using version 1 Chromium Single-Cell 30 Library, Gel Bead &Mu-
tiplex Kit (10x Genomics). Sequencing was performed on the Illu-
mina NextSeq500, containing a length of 59 bp. The raw sequencing
data were submitted to the GEO database under GEO: GSE168652.
Cell Ranger (version 3.0.1) was used with default parameters to
perform sample demultiplexing, barcode processing, and single-cell
gene unique molecular index counting (https://software.10xgen
omics.com/single-cell/overview/welcome).46

QC and cell type identification

Seurat (version 3.0.1) was used for the procession QC. Cells with <200
unique molecular identifiers (UMIs) in a single cell or >10% of mito-
chondrion-derived UMI counts were considered low-quality cells and
removed. The top 30 principal components, along with the first 2,000
variable genes, were used in this process. Then, the influence of the
UMI count and the percentage of mitochondrion-derived UMI
counts were regressed out with the ScaleData function. Subsequently,
the main cell clusters were identified with the FindClusters function
of Seurat. The Louvain clustering algorithm embedded in Seurat soft-
ware was adapted to perform clustering, and results were visualized
by the t-distributed stochastic neighbor embedding (t-SNE) method.
For any cell cluster, it was mainly identified because of the differences
of cell cycle and did not participate in the downstream analysis. To
precisely annotate the cell types, we manually curated gene markers
for each cell type. In particular, most of the markers to distinguish
different cell types were retrieved from the Cell Markers database
(https://www.labome.com/method/Cell-Markers.html). The other
marker genes were from published papers, such as the marker gene
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of endometrial stromal cells, SUSD2,47 and stem-related genes
SOX2 and ALDH1A1.18

Pseudo-time trajectory analysis

The Monocle 2 package (v.2.8.0)48 was used to analyze single-cell tra-
jectories in order to discover the cell state transitions with the
following parameters: average expression R0.125, num_cells_ex-
pressed R10, qval < 0.01 (differentialGeneTest function). The trajec-
tory is visualized as a 2D tSNE graph, and the dynamical expression
heatmaps are constructed by using the plot_pseudotime_heatmap
function.

Functional enrichment analysis

DEGs were identified by using the FindMarkers function embedded
in Seurat with the following cutoff thresholds: Benjamini-Hochberg
adjusted p value <0.01 and fold change (FC) >1.5. Then, these
DEGs were loaded into the clusterProfiler package for the GO
enrichment analysis. Pathways with adjusted p values <0.05 were
considered significantly enriched. GSEA analysis was performed
by using the gsea function embedded in the clusterProfiler package
to detect which gene set was significantly enriched in each specific
cell cluster.

Cell-cell communication analysis

CellPhoneDB is a Python-based computational analysis tool; it can be
used to analyze the cell-cell communications between cells at the mo-
lecular level. A website version was also provided for analyzing the
relatively small datasets (https://www.cellphonedb.org/). As
described above, 20,938 single cells were first clustered into 7 cell
types. In order to investigate the molecular interaction networks
among the cell types or clusters, CellphoneDB was used to analyze
the 7 major cell types and cell subclusters. Ligand-receptor pairs
with p values >0.05, as determined by CellPhoneDB, were then
filtered, while the others were retained for evaluating the relationships
between the different cell clusters.

Protein-protein interaction network analysis

A PPI network was constructed by using the STRING online database
(https://string-db.org/). The PPI pairs with selected larger scores were
used to construct the PPI network.

Correlations to public datasets

For the TCGA cohort, clinical and RNA-seq data related to 253 CC
samples with available survival data were collected from the Genomic
Data Commons data portal (GDC, https://portal.gdc.cancer.gov/).
For other public datasets, raw data related to CC from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/) were downloaded and
analyzed, including GEO: GSE63514 (28 tumor and 24 normal sam-
ples), GSE67522 (20 tumor and 22 normal samples), GSE9750 (33 tu-
mor and 24 normal samples), and GSE7803 (21 tumor and 13 normal
samples). The immunohistochemical (IHC) staining data from The
Human Protein Atlas (THPA, https://www.proteinatlas.org/) data-
base was applied to verify protein expression in tumor and normal
samples.

https://software.10xgenomics.com/single-cell/overview/welcome
https://software.10xgenomics.com/single-cell/overview/welcome
https://www.labome.com/method/Cell-Markers.html
https://www.cellphonedb.org/
https://string-db.org/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
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Statistical analysis

SPSS 20.0 (Chicago, IL, USA) was used for statistical analysis, and sta-
tistical significance was determined with a t test. The p values were
calculated. Unless specifically stated, p <0.05 was considered statisti-
cally significant.
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