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The topoisomerase I (Top 1) poison irinotecan is an important component of the modern treatment of colorectal cancer. By
stabilising Top 1-DNA complexes, irinotecan generates Top 1-linked DNA single-strand breaks that can evolve into double-strand
breaks and ultimately cause cell death. However, cancer cells may overcome cell killing by releasing the stalled topoisomerase from
DNA termini, thereby reducing the efficacy of Top 1 poisons in clinics. Thus, understanding the DNA repair mechanisms involved in
the repair of Top 1-mediated DNA damage provides a useful tool to identify potential biomarkers that predict response to this class
of chemotherapy. Furthermore, targeting these pathways could enhance the therapeutic benefits of Top 1 poisons. In this review, we
describe the cellular mechanisms and consequences of targeting Top 1 activity in cells. We summarise preclinical data and discuss the
potential clinical utility of small-molecule inhibitors of the key proteins.
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CLINICAL UTILITY OF TOPOISOMERASE I (TOP 1)
POISONS

Colorectal cancer remains a significant cause of morbidity and
mortality worldwide, with 39 000 new cases per year in the UK and
16 000 deaths. In North America, the figures are 177 000 and
58 000, respectively (http://globocan.iarc.fr/). Despite the develop-
ment of biological agents targeting EGFR and VEGF signalling,
defining subgroups of patients that derive maximal benefit
has proved difficult. Combination chemotherapy consisting of
5-fluorouracil paired with either the third-generation platinum
compound oxaliplatin or the Top 1 poison irinotecan remains the
mainstay of treatment for metastatic disease. The efficacy of
irinotecan in metastatic colorectal cancer was demonstrated in
clinical trials conducted over a decade ago (Douillard et al, 2000;
Saltz et al, 2000), with response rates to combination regimens of
30–50% and overall survival in some studies approaching 24
months (Fuchs et al, 2007). In the treatment-naive population,
there is broad equivalence in tumour response between irinotecan
and oxaliplatin when combined with 5-fluorouracil (Seymour et al,
2007). However, the observation that responses to both irinotecan
and oxaliplatin occur in the second line setting after progression
on the other drug indicates that individual tumours differ in their
sensitivity to these drugs. Biomarkers are therefore required to
optimise patient treatment.

Locally advanced rectal cancers are increasingly treated with
neoadjuvant chemo-radiotherapy strategies to optimise surgical
resection and reduce rates of local and distant relapse. Phase I/II

studies incorporating irinotecan, 5FU and radiotherapy in rectal
cancer have indicated improved efficacy over 5FU chemo-radio-
therapy alone, and have proved to be deliverable in terms of acute
toxicity (Glynne-Jones et al, 2007; Willeke et al, 2007; Gollins et al,
2011). Neoadjuvant strategies incorporating oxaliplatin are also
being developed, and thus robust predictive markers are required
to optimise patient selection and maximise clinical benefit. Beyond
its role in colorectal cancer, which will be the main focus of this
review, there is also growing interest in the use of irinotecan in
small-cell lung cancer, where there is evidence of increased efficacy
over etoposide regimens (Lima et al, 2010), and a range of other
tumour types including glioblastoma.

CELLULAR BIOCHEMISTRY OF TOP 1

The compact and supercoiled nature of the DNA double helix
requires topological modification during important cellular
processes such as transcription, replication and repair. This
modification is conducted by DNA topoisomerases and involves
transient cleavage and re-ligation of the double-stranded DNA
molecule. Topoisomerases are enzymes that cleave one or both of
the sugar-phosphate backbones of double-stranded DNA without
altering its chemical composition (hence the term ‘isomerase’).
Type I topoisomerases (Top I, Wang, 1971) cut a single strand of
DNA to allow relaxation of torsional stresses before re-annealing.
Type II topoisomerases (Top II, Gellert et al, 1976) incise double-
stranded DNA to facilitate the passage of an intact duplex through
the gap before rejoining the cut DNA. This mode of catalysis
involves an intermediate known as the cleavage complex, which
comprises the topoisomerase enzyme attached to the cleaved DNA
by a covalent phosphotyrosyl bond. Increased levels of Top I
mRNA and protein are seen across human tumours (Husain et al,
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1994), suggesting increased transcription or mRNA stability,
although genomic amplification of Top I in colorectal cancer has
been described and correlates with increased RNA and protein
expression (Yu et al, 2008).

Top I is the target of the camptothecin derivatives irinotecan
and topotecan, whereas Top II is targeted by etoposide
and anthracyclins. Camptothecin is a naturally occurring cytotoxic
quinolone alkaloid (derived from the bark of Camptotheca
acuminata) that binds to and stalls Top 1 on DNA. Irinotecan
is a semisynthetic analogue of camptothecin that is activated
by hydrolysis to the active metabolite SN38, which is subsequently
metabolised through glucoronidation by uridine diphosphate
glucoronosyltransferase 1A1 (UGT1A1) and excreted in the
bile. Patients with specific polymorphisms in UGT1A1
(UGT1A1*28) have impaired metabolism of SN38 and are
predisposed to the major toxicities of irinotecan, which
are diarrhoea and myelosuppression, particularly neutropenia
(Innocenti et al, 2004; O’Dwyer and Catalano, 2006).
More recently, it has been suggested that different polymorphisms
in UGT1A might also modulate tumour response rates (Cecchin
et al, 2009).

Irinotecan (predominantly in the form of SN38) binds to the
Top I-DNA complex, stabilizing it and preventing re-ligation
(Hsiang et al, 1985; Hsiang and Liu, 1988). Collision with
advancing replication forks results in the formation of double-
stranded DNA breaks. These breaks activate cell cycle arrest in G2
phase and, if unrepaired, can cause cell death (Figure 1). The
requirement for DNA replication in this cytotoxic mechanism
confers a degree of tumour specificity, with the major toxic effects
arising in rapidly proliferating normal tissues. However, cell cycle-
independent cytotoxicity may also occur through apoptosis, which
is thought to be triggered by inhibition of Top I activity during
DNA transcription (Morris and Geller, 1996). There is also recent
evidence that activation of p38 MAPK may protect cells from
irinotecan cytotoxicity (Paillas et al, 2011).

Repair of irinotecan-associated DNA damage requires removal
of the stalled Top 1 peptide and resolution of the associated DNA
break (Figure 1). A number of repair proteins are involved in this
process, some of which have clinical potential either as predictive

biomarkers or as therapeutic targets. The most important factors
will be briefly described in this section of the review.

Excision of the covalently linked topoisomerase is mandatory if
subsequent repair steps are to be initiated; this can be achieved
either by nonspecific nucleolytic cleavage of DNA, releasing the
topoisomerase and a fragment of DNA, or by hydrolytic cleavage of
the covalent phosphotyrosyl bond that links the topoisomerase to
the DNA termini (reviewed in El-Khamisy, 2011). The prototype
enzyme for the latter process was first identified in yeast and named
tyrosyl DNA phosphodiesterase 1 (Yang et al, 1996). Tyrosyl
DNA phosphodiesterase 1 (TDP1) catalyses hydrolysis of the
phosphodiester bond between Top 1 and the 30-phosphate of
DNA, allowing resolution of the stalled Top I-DNA complexes
(El-Khamisy et al, 2005; Interthal et al, 2005). In a similar manner, a
second protein (TDP2) functions to remove Top II covalently bound
to DNA double-strand breaks (Cortes Ledesma et al, 2009). Lack of
TDP1 is associated with defects in the repair of Top 1-associated
DNA strand breaks, and cells deficient in TDP1 accumulate DNA
strand breaks when incubated with camptothecin.

In vitro, TDP1 can process a variety of 30-oxidative termini,
including 30-phosphoglycolate moieties that are a common feature
of DNA breaks induced by ionising radiation (IR; Zhou et al, 2005,
2009; El-Khamisy et al, 2007; Chiang et al, 2010). This observation
points to a requirement for TDP1 for effective resolution of DNA
damage associated with both Top 1 inhibition and IR, and
indicates a potentially critical role for TDP1 in the cellular
response to irinotecan-based chemoradiation. The clinical im-
plications of this will be discussed later.

Poly(ADP-ribose) polymerase (PARP) also influences repair of
Top I-mediated DNA damage. Inhibition of PARP sensitises cells
to camptothecin, primarily by delaying DNA repair (Smith et al,
2005). As PARP inhibition does not confer additional sensitivity to
camptothecin in TDP1 knockout cells (Zhang et al, 2011), it has
been suggested that PARP and TDP1 are components of a single
repair pathway for Top I–DNA complexes. In the same study,
XPF and ERCC1 were also shown to be involved in repair of
camptothecin-induced DNA damage; however, unlike TDP1,
knockdown of XPF was synergistic with PARP inhibition in terms
of camptothecin cytotoxicity (Zhang et al, 2011). PARP/TDP1 and
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Figure 1 (A) Top 1 cleavage complexes are ordinarily removed through TDP1- and PARP-dependent mechanisms, with the ssDNA breaks repaired
through XRCC1 and DNA through polymerases/ligases. (B) Camptothecin (and irinotecan via SN38) stabilises the cleavage complexes, with the persistent
ssDNA breaks converting to dsDNA lesions causing cell death, and expected synergy with TDP1/PARP inhibition.
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XPF-ERCC1 may therefore comprise alternative pathways for
repairing Top 1-mediated DNA damage.

Another candidate that has a role during the repair of Top 1
breaks is Aprataxin (APTX). APTX is the gene mutated in ataxia-
ocular apraxia 1 (Moreira et al, 2001) and encodes a protein
involved in the repair of single- (SSB) and double-stranded (DSB)
DNA breaks. There is evidence that APTX participates in the repair
of CPT-induced DNA damage (Mosesso et al, 2005), and a synergy
between the actions of TDP1 and APTX has also been reported
during the repair of specific types of DNA breaks (El-Khamisy
et al, 2009).

Approximately 5% of colorectal cancers are associated with
hereditary non-polyposis colon cancer, an inherited cancer
predisposition syndrome caused by germ-line alteration of
mismatch repair genes (MMR). Moreover, around 15% of sporadic
cases demonstrate somatic loss of function of one or more MMR
genes (most commonly MSH2 or MLH1). The MMR proteins
recognise errors in the base sequence of DNA that occur during
DNA replication (insertions, deletions or substitutions) and
facilitate excision of the mismatched strand and restoration of
base fidelity. Loss of function of one or more of these proteins
results in microsatellite instability (MSI) – abnormally long or
short microsatellites (repeated sequences of DNA) – which serves
as a genetic signature for this phenotype. MMR-defective color-
ectal cancer lines exhibit increased sensitivity to CPT in vitro,
which is reversed when wild-type gene expression is restored
(Jacob et al, 2001). MMR proteins may also have additional roles in
DSB repair and induction of apoptosis in response to DNA
damage, and it is hypothesised that these actions may contribute to
modulating the response to Top 1 response to topoisomerase
poisons detailed below.

THERAPEUTIC TARGETS IN THE CONTEXT OF TOP 1
INHIBITION

Much of our understanding of the proteins involved in repairing
Top I cleavage complexes is derived from experimental strategies
in which inhibition of those proteins potentiates the DNA damage
sustained. Such proteins therefore constitute targets for thera-
peutic interventions aimed at improving the clinical efficacy of
irinotecan.

Cell line and xenograft data demonstrate the potentiating effect
of PARP inhibition on the cytotoxicity of irinotecan (Miknyoczki
et al, 2003; Calabrese et al, 2004; Smith et al, 2005). Phase I
studies of a number of PARP inhibitors, for example, veliparib
(Abbott Laboratories, Abbott Park, IL, USA), iniparib
(Sanofi-Aventis, Surrey, UK) and olaparib (AstraZeneca, London,
UK), in combination with irinotecan are underway. The radio-
sensitising effects of PARP inhibition are also well documented
(Calabrese et al, 2004; Chalmers et al, 2010; Efimova et al, 2010),
and clinical trials in various tumour sites are in development
(Verheij et al, 2010). Locally advanced rectal cancer may therefore
provide an ideal opportunity to test combinations of irinotecan,
radiotherapy and PARP inhibitors. Of critical importance will be
whether meaningful improvements in tumour response can be
achieved without unacceptable exacerbation of normal tissue
toxicities, particularly bone marrow suppression and diarrhoea.

The rationale for developing inhibitors of TDP1 for subsequent
combination with Top 1 poisons is similarly robust. In vitro, cells
deficient in TDP1 accumulate an excess of DNA strand breaks
when incubated with camptothecin (El-Khamisy et al, 2005;
Interthal et al, 2005) or exposed to IR (El-Khamisy et al, 2007).
This dual activity makes inhibition of TDP1 a compelling target for
clinical studies in combination with Top I inhibitors and radio-
therapy, especially when viewed in the context of the early success
of PARP inhibition in clinical practice. Beyond its use in the
management of colorectal cancer, the recently demonstrated

activity of irinotecan in small-cell lung cancer and glioblastoma
may give TDP1 a broader utility. Combining TDP1 inhibitors with
topotecan in ovarian cancer may also prove synergistic. However,
given similarities in function and pathways at a cellular level, it
remains to be seen how similar or different PARP and TDP1
inhibition will prove and whether inhibiting both together would
prove synergistic or mutually redundant.

POTENTIAL AS PREDICTIVE BIOMARKERS

As described previously, there are a number of therapeutic options
available for patients with colorectal cancer, and patient selection
is a critical process that is currently sub-optimal. Our increasing
knowledge of the mechanisms determining sensitivity to Top 1
inhibitors raises the possibility that some of the key molecules
described above will have utility as biomarkers that predict
response of tumours to treatment.

Top 1

As the cytotoxic effects of topoisomerase poisons are dependent on
stabilisation of the topoisomerase –DNA complex, it is reasonable
to predict that cellular sensitivity to these agents will be modulated
by absolute Top I levels, although cell lines containing Top I
mutations that alter Top I DNA or camptothecin interaction have
been described that confer resistance to camptothecin (Li et al,
1996; Gongora et al, 2011). Repeated exposure of colorectal cancer
xenografts to camptothecin resulted in downregulation of Top I
levels (Giovanella et al, 1989) and the same effect has been
observed in peripheral blood mononuclear cells after treatment
with topotecan (Hochster et al, 1997). Clinically, tumour expres-
sion of Top I decreased (between pretreatment biopsy and
subsequent surgical specimen) following neoadjuvant treatment
of rectal cancer with chemoradiation comprising irinotecan and
5FU (Horisberger et al, 2009).

Top I is highly expressed in around half of the colorectal
cancers, with one study demonstrating higher levels in rectal
cancers (Boonsong et al, 2002). The observed broad range of
expression supports the hypothesis that Top I expression will
predict response to irinotecan. It has been suggested that higher
levels of Top I expression may predict response to irinotecan-
containing neoadjuvant chemoradiation in rectal cancer
(Horisberger et al, 2009). In addition, the results of the MRC
FOCUS study of 1313 patients with metastatic colorectal cancer
indicated that tumours with moderate or high levels of Top I
expression as determined by immunohistochemistry showed the
greatest benefit from adding irinotecan or oxaliplatin to 5FU in the
first-line metastatic setting (Braun et al, 2008). However,
subsequent data from the similar ‘CAIRO’ study from the Dutch
Colorectal Cancer Group (Koopman et al, 2007) failed to replicate
these findings, with no association seen between Top 1 expression
(by immunohistochemistry) and response to irinotecan and
capecitabine in 545 patients (Koopman et al, 2009). These
apparently contradictory findings suggest that although absolute
Top I expression levels may play a part, it is likely that additional
molecules contribute to irinotecan sensitivity in the clinic.

TDP1

The critical role of TDP1 in determining cellular responses to
irinotecan makes it a promising biomarker. A number of studies
have investigated polymorphisms in genes involved in irinotecan/
Top 1-related DNA repair and response to treatment, and some of
these have included TDP1. In one such study, 107 patients treated
with irinotecan were screened for host polymorphisms in PARP,
TDP1, Top 1 and XRCC1 (Hoskins et al, 2008). Univariate analysis
suggested that specific polymorphisms in TDP1 and XRCC1 were
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linked with response to irinotecan, but on multivariate analysis
only XRCC1 remained significant.

The available data indicate that TDP1 expression is increased in
colorectal tumour samples compared with paired normal tissue
(Yu et al, 2005). In the most relevant study to date, 52 metastatic
colorectal cancer specimens were analysed by RT–PCR for
expression of 24 genes hypothesised to be associated with response
to irinotecan. TDP1 was one of eight genes (including ERCC1 – see
above) that showed significantly higher levels of expression in
tumours than in normal tissue. Expression of TDP1 grouped with
other genes involved in DNA repair. Interrogation of oncomine
(www.oncomine.org) supports this finding, with TDP1 expression
levels appearing to be broadly increased in colorectal cancer
specimens. Several microarray expression profiles for rectal
adenocarcinomas have been published (NCBI GEO, EBI), but only
one of these used a platform that included a probe for TDP1
(Snipstad et al, 2010). Our analysis of these data demonstrates
increased levels of TDP1 in rectal cancers compared with normal
tissues.

As detailed above, it has also been shown that TDP1 has a role in
the repair of SSBs induced by IR (El-Khamisy et al, 2007).
Specifically, cells deficient in TDP1 exhibit delayed repair of SSBs
induced by IR (Katyal et al, 2007; Chiang et al, 2010). Although the
cytotoxic effects of IR are predominately mediated through
double-strand breaks, unrepaired SSBs can be converted to DSBs
during DNA replication. This raises the intriguing possibility that
TDP1 could be a dual biomarker for sensitivity to both irinotecan
and radiotherapy. Although there is no published data to
substantiate this claim, high quality tissue is available from several
clinical trials that have tested irinotecan-based chemoradiation
regimes, and these samples are currently being analysed for
expression of TDP1 and other relevant DNA repair genes and
proteins.

Finally, in vitro experiments using the PARP inhibitor ABT-888
(Zhang et al, 2011) show no further enhancement of camptothecin
cytotoxicity in cell lines lacking TDP1, suggesting that PARP and
TDP1 comprise a common repair pathway. Although this supports
the rationale for either (but not both together) as therapeutic
targets in potentiating topoisomerase poisons, it is possible that
increased TDP1 expression levels might prove a biomarker in
predicting benefit from the addition of PARP inhibitors to
irinotecan or radiotherapy.

APTX

In vitro studies of colon cancer cell lines have shown an
association between APTX expression levels and sensitivity to
camptothecin (Mariadason et al, 2003), and there is also evidence
to suggest that APTX modulates response to irinotecan in
metastatic colorectal cancer, with higher protein expression
associated with a lower likelihood of response. Tumour blocks
from 135 patients with metastatic disease treated with a variety of
irinotecan/5FU combination regimens were probed for APTX
using immunohistochemistry (Dopeso et al, 2010). With a median
follow-up of 4.6 years, patients with low levels of APTX had
improved progression-free and overall survival (PFS 9.2 vs 5.5
months P¼ 0.03, OS 36.7 vs 19 months P¼ 0.008). These
promising data require validation, but demonstrates the potential
value of this class of biomarker.

MMR

Mismatch repair-deficient colorectal cancers have been reported to
be resistant to 5FU (Ribic et al, 2003), but more recent evidence
indicates that they may be sensitive to irinotecan. In the adjuvant
setting, CALGB 89803 randomised 1264 patients with stage III
colon cancer to weekly 5FU/leucovorin±irinotecan. Of all, 723
cases were retrospectively genotyped for MSI, and MMR protein

expression was analysed by immunohistochemistry (Bertagnolli
et al, 2009). Tumours with evidence of MMR deficiency showed
improved 5-year disease-free survival when treated with irinotecan
(0.76 vs 0.59, P¼ 0.03), a difference that was not observed in the
5FU-treated arm. This effect has also been documented in the
metastatic setting (Fallik et al, 2003). Here, 72 patients treated with
irinotecan-containing regimens were analysed for loss of expres-
sion of hMLH1 and hMSH2 and genotyped for microsatellite
instability. Four out of seven tumours with high levels of MSI
responded to irinotecan as opposed to seven out of sixty-five
patients with low-level MSI (P¼ 0.009). However, unlike Top I,
MLH1/MSH2 immunohistochemical analysis was not able to
predict response to irinotecan (or oxaliplatin) within the FOCUS
study (Braun et al, 2008), although with only 4.4% samples
showing evidence of impaired mismatch repair the statistical
power was low. As molecular subtyping of colorectal cancer
improves, it is likely that MMR-deficient tumours will acquire
specific treatment protocols. Current understanding of DNA repair
mechanisms would place irinotecan at the centre of these, but
more clinical data are required before such protocols are adopted.

Biomarkers of toxicity

Given the equivalent first-line efficacy of oxaliplatin and irinotecan
regimens, the ability to predict toxicity would be of value in
individualising treatment decisions. Here, germ-line polymor-
phisms in the genes discussed in this review may be more relevant
than variations in tumour expression. The previously described
study (Hoskins et al, 2008) genotyped 107 metastatic CRC patients
treated with irinotecan regimens for single-nucleotide polymorph-
isms (SNP) in Top 1, CDC45L, NFKB1, PARP1, TDP1 and XRCC1.
These SNPs were tested for association with the most frequent and
significant side effects of irinotecan, namely grade three out of four
diarrhoea and neutropenia. In univariate analysis, SNPs in both
Top 1 and TDP1 were associated with grade three out of four
neutropenia. However, multivariate analysis failed to demonstrate
significant association, and the same authors failed to replicate
these findings in a separate sample set (Hoskins et al, 2009).
However, neither study was powered to detect relatively small
effects, and consideration of the overlapping pathways involved in
determining irinotecan response suggests that any modulation of
toxicity is likely to be multifactorial.

CLINICAL APPLICATION OF POTENTIAL
BIOMARKERS

There is increasing awareness of the potential value of molecular
pathology in clinical decision making, and colorectal cancer is at
the forefront of this vogue. The MRC FOCUS 3 trial is currently
testing the feasibility of such a strategy in a study that stratifies
patients with metastatic colorectal cancer into treatment groups
based on Top 1 I levels in their tumour specimens (http://
www.ctu.mrc.ac.uk/). Drawing on molecular data from the FOCUS
study described above (Braun et al, 2008), and using combination
irinotecan and 5FU as a control regimen, patients with low Top
I-expressing tumours will be randomised to omit the irinotecan
(i.e., receive 5FU alone), whereas tumours with high Top I will be
randomised to add oxaliplatin to irinotecan/5FU. A further
randomisation will be determined by the mutation status of
KRAS and BRAF, with the addition of cetuximab being tested if
KRAS/BRAF are both wild type and bevacizumab if either are
mutated. If successful, this ambitious study will be extremely
informative both from a clinical perspective and as an indicator of
the feasibility of individualising treatment by virtue of molecular
testing.

Increasing application of irinotecan in the neoadjuvant treat-
ment of rectal cancer (Gollins et al, 2011) may provide opportunities
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for testing a range of the potential biomarkers discussed in this
review. MRI and pathological response at definitive surgery provide
robust and quantitative early-outcome measures, and the avail-
ability of pre- and post-treatment tissue samples makes this an ideal
setting in which to investigate new drug combinations and
associated biomarkers.

POTENTIAL UTILITY BEYOND TOPOISOMERASE
INHIBITORS

There is increasing interest in the use of small-molecule inhibitors
of DNA repair enzymes to overcome resistance to conventional
cytotoxic agents that kill cells predominantly by damaging DNA.
PARP inhibitors are at the forefront of this field, and several
clinical trials combining PARP inhibitors with radiotherapy and/or
cytotoxic drugs are either underway or in development. As
previously highlighted, there are functional parallels between
TDP1 and PARP, with TDP1 having a role in the resolution of
SSBs induced by Top 1 poisons and by ionising radiation. Hence,
there is a biological rationale for combining TDP1 inhibitors with
radiotherapy (El-Khamisy et al, 2007), either alone or in the
context of chemoradiation schedules. Although relatively little
cancer-specific research has been conducted, TDP1 is known to
be expressed in a variety of tumour types (Liu et al, 2007). In
addition to the compelling evidence for TDP1 as a therapeutic
target in the treatment of rectal cancer, it is reasonable to predict
that ongoing research will identify whether additional therapeutic
applications exist for combination treatments comprising TDP1
inhibitors.

CONCLUSIONS

Although decades of basic scientific research has yielded a number of
anti-cancer drugs that target signal transduction pathways, only
recently has there been a resurgence of interest in understanding
and exploiting the cellular mechanisms of DNA repair. This new
knowledge promises to better explain clinical responses to conven-
tional cytotoxic agents including radiotherapy, and to reveal
biomarkers predictive of response and resistance (Table 1). Speci-
fically, the mechanisms for repairing topoisomerase-associated DNA
breaks that accumulate following treatment with Top I poisons, such
as irinotecan, comprise proteins that can be targeted to modulate
sensitivity to these agents. TDP1 has well-characterised roles in the
repair of DNA-Top I intermediates and radiation-induced DNA
breaks and shows significant promise as a biomarker. Furthermore,
the clinical development of PARP inhibitors has demonstrated that
this understanding can identify therapeutic targets, inhibitors of
which might realistically be combined with irinotecan to yield
clinically significant improvements in tumour response rates.

The promise of the biomarkers described in this review should
be comprehensively assessed by translational work on the plethora
of clinical studies that have used irinotecan in colorectal cancer
(and beyond). Retrospective work, however, will require the
cooperation of treating departments in collecting meaningful
sample sets. The development of trials that begin to match
treatment arms to underlying molecular characteristics (e.g.,
FOCUS3) should be widely supported and further developed.
Combining an improved molecular understanding of individual
tumours with specific adjunctive therapies, Top 1 will remain a key
target in the treatment of colorectal cancer.
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