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A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering
these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently
identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The
prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and
its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico
prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted
these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research.
In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene
causing alkaptonuria.

1. Introduction

Understanding the genomic variation in the human popu-
lation is one of the primary challenges of current genomics
research. Identifying genenomic variations that underlie the
etiology of human diseases is of primary interest in current
molecular epidemiology, medicine, and pharmarcogenomics
[1]. Nevertheless, our understanding of the genetic etiology
of human disease is still limited due to the enormous number
of genetic variations on the human genome. Genetic varia-
tion in the human genome takes many forms, ranging from
large, microscopically visible chromosome anomalies to
single-nucleotide changes. The simplest form of these varia-
tions is the substitution of one single nucleotide for another,
termed as “Single Nucleotide Polymorphism” (SNP). They
are more common than other types of polymorphisms and
the number of SNPs in each individual is said to be in the
range of 3–5 million [2]. Analysis of Human Gene Mutation
Database (HGMD) [3] has revealed that the vast majority

of known monogenic disease cases act through changes to
the coding sequence, with missense mutations (a single base
change resulting in change of a single amino acid) accounting
for greater than 60% of all monogenic disease mutations.
SNPs can contribute directly to disease predisposition by
modifying the function of a gene, or they can be used as
a marker to find nearby disease causing mutations through
association or family-based studies. SNPs that change the
encoded amino acids are called nonsynonymous single nu-
cleotide polymorphisms (nsSNPs); SNPs do not change the
amino acids and are called synonymous SNPs. However,
most SNPs occur in the intronic regions. Study of intronic
SNPs is also important because of their influence on gene
expression which can be occurred through different molec-
ular pathways such as changing regulatory elements, splicing
patterns, up-and downregulation of exonic splice enhancers
(ESE), and intronic splice enhancers (ISE) [4]. Half of all
genetic changes related to human diseases are attributed to
nsSNP variants [3]. Therefore, these nsSNPs with dramatic
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phenotypic consequences are usually considered as “deleteri-
ous nsSNPs,” in contrast to “tolerant nsSNPs” without phe-
notypic changes. To differentiate deleterious nsSNPs from
tolerant nsSNPs is of great importance for understanding
the genetic basis of alkaptonuria, especially for clarifying
individual variability to HGD deficiency in human.

Because most sequence variants are SNPs, a massive ef-
fort has been undertaken by several private and public orga-
nizations [5, 6] and opens the way for the development of a
detailed understanding of the mechanisms by which genetic
variation results in phenotype variation. Currently, most of
the diseases represented by the genes in the databases like
OMIM [7], HGMD [3], and Swiss-Prot [8] segregate in a
Mendelian manner, which suggests that they are caused by
single deleterious lesions. Computational tools like SIFT [9]
and PolyPhen [10] are able to predict 90% of damaging
SNPs. Over the past few years, there have been many com-
putational methods developed to predict whether a missense
mutation is deleterious to the structure or the function of
the gene and will therefore lead to disease based on sequence-
and/or structure-based methods [9–14]. These methods clas-
sify the mutations into whether they have negative, neutral,
or positive effects on the structure or function of the proteins.
Predictions regarding missense mutations can be supported
by comparative evolutionary analysis to establish whether
mutations are situated in conserved genomic regions. These
prediction methods can help us to narrow down candidate
nsSNPs to identify the causative lesion within a large genomic
region implicated in disease by linkage studies [15]. In this
inquest, we employed two diverse approaches in compu-
tational analysis of deleterious nsSNPs, namely, empirical
rule-based method and support vector method. SIFT and
PolyPhen are based on empirical rules while I-Mutant 2.0
[16] is based on support vector method. Knowledge of the
three-dimensional structure of a gene product is of major
assistance in predicting and understanding its function, its
role within the cell, and its role in disease. Proteins with
mutations do not always have 3D structures that are solved
and deposited in PDB. Therefore, it is necessary to construct
3D models by locating the mutation in 3D. This is a simple
way of detecting what kind of adverse effects that a mutation
can have on a protein. To analyze the correlation between
structure and mutation, we have analysed the mutant 3D
structures by solvent accessibility, secondary structure analy-
sis, and the change of stability affected by mutation. Delete-
rious missense mutations analyses for the HGD gene causing
alkaptonuria have not been estimated computationally till
now by modelling approach, although they have received
great focus from experimental researchers. To answer this
question, in the absence of further experimental investiga-
tions, we tested different models of programs, to discriminate
deleterious missense mutations from neutral ones in alkap-
tonuria.

Alkaptonuria (MIM # 203500) is a rare autosomal reces-
sive disorder of the phenylalanine and tyrosine catabolic
pathway caused by the deficiency of homogentisate dioxyge-
nase (HGO, EC 1.13.11.5). AKU was the first disease to be
interpreted as a single gene trait and the mode of inheritance
was reported by 2002 Garrod and Oxon [17]. This enzyme

deficiency results in the accumulation of homogentisic acid
(HGA), an intermediary metabolite in phenylalanine and
tyrosine catabolism. Biochemical evidence of the defect in
AKU was provided by La Du et al. in 1958, exactly fifty
years later. He demonstrated the absence of HGO activity
in a liver homogenate prepared from an AKU patient and
established that the defect was limited to HGO, suggesting
that in affected individuals there is a failure to synthesize
active enzyme [18]. The clinical manifestation of this disease
is urine that turns dark on standing and alkalinization,
black ochronotic pigmentation of cartilage and collagenous
tissues, and arthritis, especially characteristic in the spine.
The gene responsible for AKU was located in human to
3q21–q23 [19]. HGD contains 14 exons and covers 60 kb of
genomic DNA [19]. It encodes a 49,973 dalton, 445 amino
acid protein that forms a dimer of two trimers giving rise to
a functional hexamer. The crystalline structure of the HGD
protein has been resolved [20]. AKU presents a remarkable
allelic heterogeneity. More than 40 different AKU mutations
have been reported till date [21].

2. Materials and Methods

2.1. Evaluation of Dataset. The SNPs information (Protein
accession number (NP), mRNA accession number (NM) and
SNP ID) of HGD gene was retrieved from the NCBI (http://
www.ncbi.nlm.nih.gov/projects/SNP/) [6], and SWISS-Prot
database (http://ca.expasy.org/sprot/) [8] for our analysis.
We examined three different annotation categories: (a) syn-
onymous/nonsynonymous (b) splicing, and (c) regulatory
SNPs. Nonsynonymous SNPs occur in the coding region of
the genome and affect whether or not the amino acid is
changed. Splicing SNPs occur at the intron/exon boundary
when proteins are being made; an SNP at this location can
affect how the intron is spliced out. Regulatory SNPs occur
in the promoter of the sequence and are thought to affect
gene expression. The data on human HGD gene was collected
from Online Mendelian Inheritance in Man (OMIM) http://
www.ncbi.nlm.nih.gov/omim [7] and Entrez Gene on NCBI
Web site http://www.ncbi.nlm.nih.gov/Genbank/ [6]. The
information on the correlation between the nsSNPs and
alkaptonuria disease was compiled from in vivo and in vitro
experiments according to PubMed (http://www.ncbi.nlm
.nih.gov/PubMed/), OMIM (http://www.ncbi.nlm.nih.gov/
omim/), and UniProtKB/Swiss-Prot databases (http://ca.ex-
pasy.org/sprot/).

2.2. I-Mutant 2.0. Over the past few years, there have been
many computational methods utilizing machine-learning
techniques (support vector machines, neural networks,
and decision trees) that have been applied successfully in
sequence-structure relationships predictions. Support vector
machines (SVMs) are universal classifiers that learn a variety
of data distributions from training samples and, as such,
are applicable to classification and regression tasks [22]. We
applied I-Mutant 2.0, a support vector machine- (SVM-)
based tool for the automatic prediction of protein stability.
I-Mutant 2.0 predictions are performed starting either from
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the protein structure or, more importantly, from the protein
sequence [16]. This program was trained and tested on a
data set derived from ProTherm [23], which is presently the
most comprehensive available database of thermodynamic
experimental data of free energy changes of protein stability
upon mutation under different conditions. The output file
shows the predicted free energy change value or sign (DDG)
which is calculated from the unfolding Gibbs free energy
value of the mutated protein minus the unfolding Gibbs free
energy value of the native type (kcal/mol). If the DDG value
is positive, then the mutated protein will have high stability
and vice versa for less stability [16].

2.3. SIFT. Sorting intolerant from tolerant (SIFT) software
developed by Kumar et al. [9] predicts whether an amino
acid substitution affects protein function based on sequence
homology and the physical properties of amino acids. SIFT
uses sequence homology among related genes and domains
across species to predict the impact of all 20 possible amino
acids at a given position, allowing users to determine which
nsSNPs would be of most interest to study by sorting variants
by this prediction score. It takes a query sequence and uses
multiple alignment information to predict tolerated and
deleterious substitutions for every position of the query
sequence. The underlying principle of this program is that
it generates alignments with a large number of homologous
sequences and assigns scores to each residue, ranging from
zero to one. Scores close to zero indicate evolutionary conser-
vation and intolerance to substitution, while scores close to
one indicate tolerance to substitution. The SIFT prediction
is given as a tolerance index (TI) score ranging from 0.0
to 1.0, which is the normalized probability that the amino
acid change is tolerated. SIFT scores less than or equal 0.05
are predicted by the algorithm to be intolerant or deleteri-
ous amino acid substitutions, whereas scores greater than
0.05 are considered tolerant. SIFT scores were classified as
intolerant (0.00–0.05), potentially intolerant (0.051–0.10),
borderline (0.101–0.20), or tolerant (0.201–1.00) [24]. The
higher the tolerance index of a particular amino acid substi-
tution is, the lesser is its likely impact.

2.4. PANTHER. PANTHER version 7 (Protein Analysis
Through Evolutionary Relationships) estimates the likeli-
hood of a particular nsSNP to cause a functional impact on
the protein [25]. It calculates the subPSEC (substitution
position-specific evolutionary conservation) score based on
an alignment of evolutionarily related proteins. The algo-
rithm takes the absolute value in order to make the scores
symmetric and then multiplies by −1 to adhere to the sub-
stitution matrix convention that more negative scores corre-
spond to more severe substitutions. When subPSEC = 0, the
substitution is interpreted as functionally neutral, whereas
more negative values of subPSEC predict more deleterious
substitutions. The cutoff subPSEC −3 indicates a deleterious
substitution [26].

2.5. PolyPhen. PolyPhen differs from SIFT in that it predicts
how damaging a particular variant may be by using a set of

empirical rules based on sequence, evolutionary conserva-
tion, and structural information characterizing a particular
variant. PolyPhen is a multiple sequence alignment server
that aligns sequences using structural information. Input for
the PolyPhen server is either a protein sequence or a SWALL
database ID or accession number together with sequence
position with two amino acid variants. We submitted the
query in the form of sequence with mutational positions each
with two amino acid variants. In addition to using sequence
alignments, PolyPhen utilizes protein structure databases,
such as PDB (Protein Data Bank) or PQS (Protein Quar-
ternary Structure), DSSP (Dictionary of Secondary Structure
in Proteins), and three-dimensional structure databases to
determine if a variant may have an effect on the protein’s
secondary structure, interchain contacts, functional sites,
and binding sites [10]. Then, it calculates position-specific
independent counts (PSICs) scores for each of two variants
and computes the difference of the PSIC scores of the two
variants. The higher a PSIC score difference is, the higher is
the functional impact a particular amino acid substitution
is likely to have. A PSIC score difference of 1.5 and above is
considered to be damaging. PolyPhen scores were designated
probably damaging (≥2.00), possibly damaging (1.50–1.99),
potentially damaging (1.25–1.49), borderline (1.00–1.24), or
benign (0.00–0.99) according to the classification proposed
by Xi et al. [27].

2.6. FASTSNP. In order to efficiently identify nsSNPs with a
high possibility of having a functional effect, FASTSNP tool
was applied for the detection of nsSNP influence on cellular
and molecular biological function, for example, transcrip-
tional and splicing regulation. The online tool FASTSNP
[28] (http://fastsnp.ibms.sinica.edu.tw/pages/input Candi-
dateGeneSearch.jsp) was used for predicting the functional
significance of the nsSNPs, 3′ and 5′ UTR SNPs and also
to identify the polymorphism involving intron which may
lead to defects in mRNA processing. The FASTSNP follows
the decision tree principle with external web service access
to TFSearch, which predicts whether a noncoding SNP alters
the transcription factor binding site of a gene. The score is
given on the basis of levels of risk with a ranking of 0, 1, 2, 3,
4, or 5. This signifies the levels of no, very low, low, medium,
high, and very high effect, respectively.

2.7. Structural Analysis. Structural analyses were performed
based on the crystal structure of the protein for evaluating
the structural stability of native and mutant protein. We used
the SAAPdb [29] and dbSNP to identify the protein coded
by HGD gene in chain “A” of PDB ID 1EY2 [30]. We also
confirmed the mutation residues and their position from
this server. These mutation residues and their corresponding
positions were in complete agreement with the results
obtained with SIFT and PolyPhen programs. The mutation
analysis was performed in the “A” chain of the 1EY2 using
SWISSPDB viewer [31], and energy minimization for three-
dimensional structures was performed using NOMAD-Ref
server [32]. This server use Gromacs as default force field
for energy minimization based on the methods of steepest
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descent, conjugate gradient and L-BFGS methods [33]. We
used the conjugate gradient method for optimizing the three-
dimensional structures. Computing the energy gives the
information about the protein structure stability. Deviation
between the two structures was evaluated by their RMSD
values.

2.8. Analyzing the Effects of Mutations on Protein Stability.
The structure and function of proteins are determined by
various factors. To check the stability of the native and
mutant modeled structures, identification of the stabilizing
residues is useful. We used the server SRide [34] for iden-
tifying the stabilizing residues in native protein and in the
mutant model. Stabilizing amino acids can be predicted
based on long-range interactions in protein structures and
hydrophobicity and conservation of amino acid residues.
Mutations found at stability centers were considered by us to
be destabilizing and thus deleterious. SRide combines several
methods to identify residues expected to play key roles
in stabilization. It analyzes tertiary structures, rather than
primary structures, and the evolutionary conserved residues
contained within. A residue is predicted to be stabilizing if it
is surrounded by hydrophobic residues, exhibits long-range
order, has a high conservation score, and is part of a stability
center.

3. Results and Discussion

3.1. Predictions of Deleterious nsSNPs in the Coding Region
of HGD Gene. The functional impact of nsSNPs can be
assessed by evaluating the importance of the amino acids
they affect. We employed four widely used computational
tools for determining the functional significance of nsSNPs.
In this analysis, we applied two different approaches in com-
putational analysis of deleterious nsSNPs, namely, empirical
rule-based method and Support Vector Method (SVM).
These approaches use alternative classification methods to
decide which of the nsSNPs may have deleterious or neutral
phenotypes. SVM approaches, a set of trained data, and
trained attributes are required to forecast precisely the effects
of amino acid substitutions on various protein properties
such as protein stability, protein secondary structures, sol-
vent accessibility of residues, residue-residue interactions,
and protein 3D structures [38]. Both these different methods
use sequence information, structural information, or both.
Sequence- (SIFT, PANTHER) and structure-based methods
(PolyPhen, I-Mutant 2.0) are the most common approaches
used in SNP prediction tools. Structure-based approach is
not feasible to implement for the proteins with unknown
3D structures. Hence, sequence-based prediction methods
have more advantage over the structure-based ones, as they
include all types of effect at the protein level and can
be applied to any human protein with known relatives.
Tools that integrate both sequence and structure information
have the added advantage of being able to assess the
reliability of the generated prediction results by cross-refer-
encing the results from both approaches. Tools that combine
these approaches (PolyPhen and I-Mutant 2.0) use different

algorithms and methodologies for prediction, thereby having
a wider coverage of the different aspects of SNP analysis. Both
these methods have disadvantages and advantages in predict-
ing the effects of SNPs on protein stability. The user must
decide which tool is most suited to the specific objectives
of their analysis to gain the optimum knowledge. Although
the predictive power of protein structural information has
been established, a comparison between structure-based and
sequence-based methods is still needed in monogenic dis-
eases. In this pipeline, we analysed deleterious substitutions
of HGD which are accountable for alkaptonuria (AKU) is
the first disease to be interpreted as a single gene trait.
The SIFT [9] and PolyPhen [16] are the representatives for
empirical rules-based method. They make predictions based
on knowledge of the functional sites of the protein, positional
residue variation in sequence alignments, and the 3D
structure of the protein. The results are outlined in Table 1.
The SIFT was used to determine the conservation level of a
particular amino acid position in a protein, which leads to a
tolerance index score ranging from 0.0 to 1.0 for SNP func-
tionality. The protein sequences of 22 nsSNPs were submitted
independently to the SIFT program to check its tolerance
index. The SIFT algorithm deploys sequence homology to
calculate a score, determining the evolutionary conservation
status of the amino acid of interest and predicting whether
its substitution will affect protein function. Substitutions at
specific positions showing normalized probabilities less than
the chosen cutoff value of 0.05 are predicted to be deleterious,
and those greater than or equal to 0.05 are predicted to be
tolerated. We identified a total of 11 of 22 nsSNPs that were
scored as intolerant by SIFT scores of 0.0. The PANTHER
software calculates SubPSEC scores—substitution position-
specific evolutionary conservation. A SubPSEC score of −3
or less means that the substitution has probable functional
implications. Out of the 22 nsSNPs submitted to PANTHER,
eight nsSNPs were found to be deleterious and exhib-
ited subPSEC score range of −3.08256 to −5.98264. From
Table 1 it can be seen that G161R has the lowest score
(−5.98264), indicating a strong probability of functional
impact. PANTHER identified all the substitutions to be
deleterious as same as SIFT, except D326N, M368V, T369N,
E379Q, and P373L which are found to be having SubPSEC
score of −2.1555, −2.45276, −2.88444, −2.62114, and
−2.72749, respectively. Predictions of how a particular
nsSNP may affect protein structure by PolyPhen 2.0 are
assigned as “probably damaging,” a score made with high
confidence that the nsSNP should affect protein structure
and/or function; “possibly damaging,” where it may affect
protein function and/or structure; and “benign,” as most
likely having no phenotypic effect. PolyPhen identified a total
of 12 of 22 nsSNPs that were scored as damaging and exhib-
ited a PolyPhen score of more than 1.5. All the 22 nsSNPs
submitted to SIFT, PANTHER, and PolyPhen were also sub-
mitted as input to the I-Mutant 2.0 server. The more negative
the DDG value is, The less stable the given point mutation
likely to be, as predicted by I-Mutant 2.0 server. The more
the negative DDG value is, The less stable is the given point
mutation is likely to be as predicted by I-Mutant 2.0 server.
Among the 22 nsSNPs, 16 were found to be less stable and



The Scientific World Journal 5
T

a
bl

e
1:

L
is

t
of

n
sS

N
P

s
pr

ed
ic

te
d

to
be

de
le

te
ri

ou
s

by
SI

FT
,P

ol
yP

h
en

,P
A

N
T

H
E

R
,a

n
d

I-
M

u
ta

n
t

2.
0

in
th

e
co

di
n

g
re

gi
on

of
H

G
D

ge
n

e.

rs
ID

s
A

lle
le

fr
eq

u
en

cy
an

d
ch

an
ge

A
A

po
si

ti
on

SI
FT

Po
ly

P
h

en
PA

N
T

H
E

R
I-

M
u

ta
n

t
2.

0
R

ef
er

en
ce

To
le

ra
n

ce
in

de
x

P
re

di
ct

ed
im

pa
ct

P
SI

C
sc

or
e

P
re

di
ct

ed
im

pa
ct

su
bP

SE
C

sc
or

e
P

re
di

ct
ed

im
pa

ct
D

D
G

P
re

di
ct

ed
im

pa
ct

rs
13

83
56

50
1

A
(0

.0
00

)/
T

(1
.0

00
)

Y
37

F
0.

15
To

le
ra

n
t

0.
53

4
B

en
ig

n
−1

.9
25

27
To

le
ra

te
d

0.
01

In
cr

ea
se

st
ab

ili
ty

rs
13

88
46

03
6

A
(0

.0
12

)/
C

(0
.9

88
)

A
48

S
0.

12
To

le
ra

n
t

0.
49

7
B

en
ig

n
−2

.0
59

03
To

le
ra

te
d

−0
.5

9
D

ec
re

as
e

st
ab

ili
ty

rs
14

19
65

69
0

A
(0

.0
00

)/
T

(1
.0

00
)

E
74

V
0.

29
To

le
ra

n
t

0.
52

4
B

en
ig

n
−2

.2
90

59
To

le
ra

te
d

0.
33

In
cr

ea
se

st
ab

ili
ty

rs
22

55
54

3
A

(0
.2

62
)/

T
(0

.7
38

)
Q

80
H

0.
45

To
le

ra
n

t
0.

25
8

B
en

ig
n

−1
.4

99
33

To
le

ra
te

d
−1

.1
7

D
ec

re
as

e
St

ab
ili

ty
[3

5]

rs
35

70
29

95
A

(0
.9

96
)/

C
(0

.0
04

)
E

87
A

0.
50

To
le

ra
n

t
0.

88
1

B
en

ig
n

−2
.1

82
04

To
le

ra
te

d
−1

.8
5

D
ec

re
as

e
St

ab
ili

ty

rs
14

32
67

38
4

A
(0

.0
00

)/
T

(1
.0

00
)

E
10

1V
0.

06
To

le
ra

n
t

1.
81

7
P

ro
ba

bl
y

da
m

ag
in

g
−2

.6
78

78
To

le
ra

te
d

0.
82

In
cr

ea
se

st
ab

ili
ty

rs
28

94
17

83
A

(0
.0

00
)/

G
(1

.0
00

)
G

16
1R

0.
00

In
to

le
ra

n
t

2.
71

1
P

ro
ba

bl
y

da
m

ag
in

g
−5

.9
82

64
D

el
et

er
io

u
s

−2
.2

3
D

ec
re

as
e

St
ab

ili
ty

[3
6]

rs
14

05
43

21
7

A
(0

.0
00

)/
G

(1
.0

00
)

L
16

3F
0.

00
In

to
le

ra
n

t
1.

10
5

B
en

ig
n

−3
.7

06
87

D
el

et
er

io
u

s
−1

.1
2

D
ec

re
as

e
st

ab
ili

ty

rs
28

94
21

00
C

/T
(N

o
fr

eq
u

en
cy

)
P

23
0S

0.
00

In
to

le
ra

n
t

2.
98

6
P

ro
ba

bl
y

da
m

ag
in

g
−5

.3
08

74
D

el
et

er
io

u
s

−1
.7

2
D

ec
re

as
e

St
ab

ili
ty

[3
5,

36
]

rs
12

00
74

17
4

A
(0

.0
00

)/
G

(1
.0

00
)

G
27

0R
0.

00
In

to
le

ra
n

t
2.

79
0

P
ro

ba
bl

y
da

m
ag

in
g
−5

.8
59

71
D

el
et

er
io

u
s

−0
.4

0
D

ec
re

as
e

St
ab

ili
ty

[3
6]

rs
14

86
41

81
7

G
(1

.0
00

)/
T

(0
.0

00
)

A
29

3E
0.

09
To

le
ra

n
t

1.
12

8
B

en
ig

n
−1

.9
61

45
To

le
ra

te
d

0.
84

In
cr

ea
se

st
ab

ili
ty

rs
12

00
74

17
0

G
/T

(N
o

fr
eq

u
en

cy
)

V
30

0G
0.

00
In

to
le

ra
n

t
2.

97
5

P
ro

ba
bl

y
da

m
ag

in
g

−4
.3

93
D

el
et

er
io

u
s

−5
.2

1
D

ec
re

as
e

St
ab

ili
ty

[3
5,

36
]

rs
14

35
56

73
9

A
(0

.0
01

)/
G

(0
.9

99
)

R
30

7C
0.

01
In

to
le

ra
n

t
1.

53
5

P
ro

ba
bl

y
da

m
ag

in
g
−3

.8
08

86
D

el
et

er
io

u
s

−1
.5

9
D

ec
re

as
e

st
ab

ili
ty

rs
14

33
96

29
0

C
(1

.0
00

)/
T

(0
.0

00
)

D
32

6N
0.

02
In

to
le

ra
n

t
0.

50
3

B
en

ig
n

−2
.1

55
5

To
le

ra
te

d
0.

37
In

cr
ea

se
st

ab
ili

ty

rs
12

00
74

17
1

G
/T

(N
o

fr
eq

u
en

cy
)

R
33

0S
0.

00
In

to
le

ra
n

t
2.

83
0

P
ro

ba
bl

y
da

m
ag

in
g

−3
.2

86
2

D
el

et
er

io
u

s
−3

.5
3

D
ec

re
as

e
St

ab
ili

ty
[3

7]

rs
13

95
01

22
0

A
(0

.0
00

)/
C

(1
.0

00
)

M
33

9I
0.

00
In

to
le

ra
n

t
2.

85
8

P
ro

ba
bl

y
da

m
ag

in
g
−3

.2
34

32
D

el
et

er
io

u
s

−2
.2

6
D

ec
re

as
e

st
ab

ili
ty

rs
12

00
74

17
3

A
(1

.0
00

)/
G

(0
.0

00
)

M
36

8V
0.

00
In

to
le

ra
n

t
2.

37
3

P
ro

ba
bl

y
da

m
ag

in
g
−2

.4
52

76
To

le
ra

te
d

−0
.3

5
D

ec
re

as
e

St
ab

ili
ty

[3
7]

rs
14

93
26

00
1

G
(1

.0
00

)/
T

(0
.0

00
)

T
36

9N
0.

00
In

to
le

ra
n

t
1.

53
5

P
ro

ba
bl

y
da

m
ag

in
g
−2

.8
84

44
To

le
ra

te
d

−0
.6

0
D

ec
re

as
e

st
ab

ili
ty

rs
12

00
74

17
2

A
/G

(N
o

fr
eq

u
en

cy
)

H
37

1R
0.

00
In

to
le

ra
n

t
3.

41
9

P
ro

ba
bl

y
da

m
ag

in
g
−3

.0
82

56
D

el
et

er
io

u
s

−0
.9

5
D

ec
re

as
e

St
ab

ili
ty

[3
7]

rs
15

01
45

20
4

C
(0

.0
01

)/
G

(0
.9

99
)

D
37

6E
0.

84
To

le
ra

n
t

0.
08

9
B

en
ig

n
−1

.0
92

82
To

le
ra

te
d

0.
14

In
cr

ea
se

st
ab

ili
ty

rs
14

17
53

51
3

C
(1

.0
00

)/
G

(0
.0

00
)

E
37

9Q
0.

01
In

to
le

ra
n

t
1.

09
6

B
en

ig
n

−2
.6

21
14

To
le

ra
te

d
−0

.3
8

D
ec

re
as

e
st

ab
ili

ty

rs
13

85
58

04
2

A
(0

.0
00

)/
G

(1
.0

00
)

P
37

3L
0.

00
In

to
le

ra
n

t
2.

07
4

P
ro

ba
bl

y
da

m
ag

in
g
−2

.7
27

49
To

le
ra

te
d

−0
.6

6
D

ec
re

as
e

st
ab

ili
ty

H
ig

hl
y

de
le

te
ri

ou
s

by
SI

FT
,P

an
th

er
,P

ol
yP

he
n

an
d

I-
M

u
ta

n
t

w
er

e
in

di
ca

te
d

as
bo

ld
.



6 The Scientific World Journal

Table 2: List of SNPs that were predicted to be functional significance by FASTSNP.

SNPs ID Allele frequency and change Region Possible functional effect Ranking and Level of risk

rs7652072 A/G (No frequency) Intron Splicing site 3-4 (Medium to high)

rs55661952 C/T (No frequency) 5′UTR (−201A>G) Promoter/regulatory region 1–3 (Low to medium)

rs2733829 C/T (No frequency) 5′UTR (−339C>T) Promoter/regulatory region 1–3 (Low to medium)

rs28942100 C/T (No frequency) nsSNP (P230S) Missense (conservative) 2-3 (Low to medium)

rs28941783 A(0.000)/G(1.000) nsSNP (G161R)
Missense (conservative);
Splicing regulation

2-3 (Low to medium)

rs35702995 A(0.996)/C(0.004) nsSNP (E87A)
Missense (conservative);
Splicing regulation

2-3 (Low to medium)

rs2255543 A(0.514)/T(0.700) nsSNP (Q80H)
Missense (conservative);
Splicing regulation

2-3 (Low to medium)

rs2293734 G/T (No frequency) csSNP (P158P)
Sense/synonymous;
Splicing regulation

2-3 (Low to medium)

SNP IDs which were highlighted in bold were found to be deleterious by SIFT, PANTHER, PolyPhen and I-Mutant 2.0.

exhibited a DDG value ranging from−0.35 to−5.21, respec-
tively. The nsSNPs which were predicted to be deleterious in
causing an effect in the structure and function of the protein
by SIFT, PANTHER, PolyPhen, and I-Mutant2.0 correlated
well with experimental studies as shown in Table 1 [35, 39,
40]. By comparing the scores of all the four methods used
in this analysis, 7 nsSNPs with IDs rs28941783, rs28942100,
rs120074174, rs120074170, rs120074171, rs139501220, and
rs120074172 were predicted to be functionally significant

3.2. Predictions of Deleterious nsSNPs and UTR SNPs. The
functional prediction of SNPs in untranslated region for the
HGD gene has not been estimated computationally until
now, although they have been the focus for experimental
researchers. Therefore in this work, we used FASTSNP for
this analysis. FASTSNP tool helps in classifying and priori-
tizing phenotypic risks and deleterious effects of SNPs based
upon their influence over determining protein structure, pre-
mRNA\splicing, deviation in transcriptional levels of the
sequence, alterations in the premature translation termina-
tion, deviations in the sites at promoter region for tran-
scription factor binding, and so forth. By FASTSNP, seven
nsSNPs and two UTR SNPs were found to be functionally
significant. Out of which 2 SNPs were predicted to affect the
splicing site with a risk ranking of 3-4, 5 SNPs were predicted
to affect splicing regulation with a risk ranking of 2-3, and
2 SNPs were predicted to affect Promoter/regulatory region
with a risk ranking of 1–3 respectively (Table 2). Further, we
extended our analysis by comparing FASTSNP with SIFT,
PolyPhen, I-Mutant 2.0, and PANTHER. NsSNPs with an
ID rs28942100, and rs28941783 predicted by FASTSNP, were
found to be deleterious by SIFT/PolyPhen/PANTHER/I-
Mutant 2.0 highlighted as bold in Table 2.

3.3. Modelling of Deleterious nsSNPs in HGD Gene. Knowl-
edge of the 3D structure of a gene product is of major as-
sistance in understanding the function within the cell and
its role in causing disease. Proteins with mutations do not
always have 3D structures that are analyzed and deposited
in Protein data bank (PDB). Therefore, it is necessary to

construct 3D models by locating the mutation in 3D struc-
tures. This is a simple way of detecting what kind of adverse
effects that a mutation can have on a protein. The linear
sequence of amino acids specifies the 3D structure of the
protein. Even as single amino acid substitution can cause a
disruption in structure of a protein by affecting its stability,
this leads to change in structural and thermodynamic
properties affecting the protein dynamics. Mutation analysis
was performed based on the results obtained from highest
SIFT, PolyPhen, I-Mutant 2.0, and PANTHER scores. The
mutations at their corresponding positions were performed
by SWISS-PDB viewer independently to achieve modelled
structures. Then, energy minimizations were performed by
NOMAD-Ref server for the native type protein and mutant
type structures. According to this in HGD gene, mutation
occurred for native protein in “A” of PDB ID 1EY2 at
position G161R with SNP ID rs28941783, P230S with SNP
ID rs28942100, G270R with SNP ID rs120074174, V300G
with SNP ID rs120074170, R330S with SNP ID rs120074171,
M339I with SNP ID rs139501220, and, H371R with SNP
ID rs120074172. Computing the energy minimization gives
the information about the protein structure stability. We
checked the total energy for mutant type structure G161R,
P230S, G270R, V300G, R330S, M339I, and H371R that
were found to be −23429.56 Kcal/mol, −23486.42 Kcal/mol,
−23528.21 Kcal/mol, −23869.20 Kcal/mol, −23398.63 Kcal/
mol, −23489.12 Kcal/mol, and −23528.53 Kcal/mol. Diver-
gence in mutant structure with native structure is due to mu-
tation, deletions, and insertions [36], and the deviation
between the two structures is evaluated by their RMSD (root
mean square deviation) values which could affect stability
and functional activity [37]. The higher the RMSD value is,
the more will be the deviation between native and mutant
type structures and which in turn changes their functional
activity. The RMSD values between the native type (1EY2)
and the mutant type structure G161R, P230S, G270R,
V300G, R330S, M339I, and H371R were found to be 1.34 Å,
1.20 Å, 1.38 Å, 1.10 Å, 1.21 Å, 1.24 Å, and 1.36 Å. The RMSD
values of all mutant structures were found to be similar. The
higher the RMSD value is, the more will be the deviation
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G270R

(a)

R330S

(b)

V300G
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Figure 1: Superimposed structures of native and mutant modeled of HGD gene were visualized in stick model using PyMOL release 0.99. (a)
Superimposed structure of native amino acid Glycine in sphere shape (blue color) with mutant amino acid Argenine (violet) at position 270
in PDB ID 1EY2 (chain A) of HGD gene with RMSD 1.38 Å. (b) Superimposed structure of native amino acid Argenine in sphere shape (blue
color) with mutant amino acid Serine (violet) at position 330 in PDB ID 1EY2 (chain A) of HGD gene with RMSD 1.21 Å. (c) Superimposed
structure of native amino acid Valine in sphere shape (blue color) with mutant amino acid Glycine (violet) at position 300 in PDB ID 1EY2
(chain A) of HGD gene with RMSD 1.10 Å.

between native and mutant type structures and which in turn
changes their functional activity. G161R, P230S, and G270R
involve change in polarity from nonpolar amino acid to polar
amino acid which can cause major differences in proteins
that can subvert their normal functions. The V300G involves
change from valine to glycine, both being nonpolar amino
acids, with reduction in value of hydropathy index from 4.2
to −0.4 while M339I involves change from methionine to
Isoleucine with increase in value of hydropathy index from
1.9 to 4.5, thus affecting the hydrophobic interactions. The
R330S involves change from argentine to serine, and H371R
involves change from histidine to argentine, both being polar
amino acids, respectively. The mutational exchange of a
polar amino acid for a nonpolar one and vice versa must be
more dangerous than the transition from one polar group to
another or from a nonpolar to another nonpolar one [41].
Among the six deleterious nsSNPs predicted by the four

computational methods, G161R, P230S, and, G270R must
be considered highly deleterious substitution based on the
transition in polarity from nonpolar to polar group. The
superimposed structures of the native protein 1EY2 (chain
A) with the mutant type proteins G270R, R330S, and V300G
HGD gene are shown in (Figures 1(a), 1(b), and 1(c)).
These figures were drawn using PyMOL release 0.99 [42]. We
further extended our analysis by using SRide tool for identi-
fying the stabilizing residues which plays an important role
in stabilization of protein. We analysed native and mutant
proteins (G161R, P230S, G270R, V300G, R330S, M339I,
and H371R) of HGD gene. From this analysis fifteen sta-
bilising residues, namely, LEU61, TYR62, THR118, HIS134,
PHE136, ASN139, PRO157, ARG194, GLY195, VAL200,
VAL262, VAL263, ALA264, TRP265, and VAL312 were found
to be common in both native structure (1EY2) and mutant
model G161R, P230S, G270R, V300G, R330S, and M339I of
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HGD gene. Most importantly stabilising residue VAL312 was
missing in the mutant model H371R. Based on the RMSD
value, total energy, polarity, and SRide, we predict that these
nsSNPs (G161R, P230S, G270R, V300G, R330S, M339I, and
H371R) may lead to decrease in stability of the protein and
cause alkaptonuria. These results will definitely provide base
for the in-depth research into the effect of these six nsSNPs
onto the structure as well as influence of altered response to
drug response, susceptibility of the disease, and phenotypic
variations.

4. Conclusion

In addition to the molecular approaches, which are laborious
and time-consuming, it is now possible to apply computa-
tional approaches to filter out deleterious substitutions that
are unlikely to affect protein function. Alternatively, compu-
tational approaches, which are fast and relatively inexpensive
methods, can offer a more feasible means for phenotype
prediction based on the biochemical severity of the amino
acid substitution and the protein sequence and structural
information. Computational analysis performed here sug-
gests that individual tools correlate modestly with observed
results and by combining information from a variety of
tools may significantly increase the predictive power for
determining the functional impact of a given SNP. Different
computational methods employed in this analysis have its
own advantages and disadvantages in predicting the func-
tional SNPs. The user must decide which tool is most suited
to the specific objectives of their analysis to gain the optimum
knowledge. This SNP prioritization analysis integrates rele-
vant biomedical information and computational methods to
provide a systematic analysis of functional and deleterious
nsSNPs. In other respects, we attempted these methods to
work as first-pass filter to identify the deleterious substitu-
tions worth pursuing for further experimental research.
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