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Type II transmembrane serine proteases (TTSPs) are a group
of enzymes participating in diverse biological processes. Some
members of the TTSP family are implicated in viral infection.
TMPRSS11A is a TTSP expressed on the surface of airway epi-
thelial cells, which has been shown to cleave and activate spike
proteins of the severe acute respiratory syndrome (SARS) and
the Middle East respiratory syndrome coronaviruses (CoVs). In
this study, we examined the mechanism underlying the activa-
tion cleavage of TMPRSS11A that converts the one-chain zymo-
gen to a two-chain enzyme. By expression in human embryonic
kidney 293, esophageal EC9706, and lung epithelial A549 and
16HBE cells, Western blotting, and site-directed mutagenesis,
we found that the activation cleavage of human TMPRSS11A
was mediated by autocatalysis. Moreover, we found that
TMPRSS11A activation cleavage occurred before the protein
reached the cell surface, as indicated by studies with trypsin
digestion to remove cell surface proteins, treatment with cell
organelle-disturbing agents to block intracellular protein
trafficking, and analysis of a soluble form of TMPRSS11A
without the transmembrane domain. We also showed that
TMPRSS11A was able to cleave the SARS-CoV-2 spike pro-
tein. These results reveal an intracellular autocleavage mech-
anism in TMPRSS11A zymogen activation, which differs
from the extracellular zymogen activation reported in other
TTSPs. These findings provide new insights into the diverse
mechanisms in regulating TTSP activation.

Type II transmembrane serine proteases (TTSPs) are a group
of enzymes with a similar domain structural arrangement,
including a short N-terminal cytoplasmic tail, a single-span
transmembrane domain, and an extended extracellular region
with various modules and a C-terminal trypsin-like protease
domain (1, 2). TTSPs act in diverse tissues to participate in
physiological and pathological processes, including ironmetab-
olism (3, 4), liver metabolism (5), blood pressure regulation (6,
7), food digestion (8), auditory function (9, 10), vascular remod-
eling (11), epithelial development (12, 13), intestinal barrier
function (14, 15), and cancer development (16, 17).

In recent years, TTSPs have been implicated in coronavirus
(CoV) infection. In particular, TTSPs expressed in the human
respiratory tract, including human airway trypsin-like protease
(HAT) (18), the TTSP mosaic serine protease large form (19),
differentially expressed in squamous cell carcinoma 1 (DESC1)
(19), transmembrane protease serine 2 (TMPRSS2) (18, 20–
26), and TMPRSS11A (27, 28), were shown to cleave the severe
acute respiratory syndrome (SARS) CoV, theMiddle East respi-
ratory syndrome (MERS) CoV or SARS-CoV-2 spike (S) pro-
teins in cell-based studies. As the S proteins are major determi-
nants for receptor binding and membrane fusion in host cells
(29), it appears that human airway TTSPs have been exploited
by the CoVs to enhance their infectivity.
TTSPs are synthesized in a precursor or zymogen form with

little catalytic activity. Proteolytic cleavage at a conserved acti-
vation site converts the zymogen to an active enzyme. To date,
how CoV-activating TTSPs are activated in cells is not well
understood. In this study, we analyzed the activation cleavage
of TMPRSS11A, which is expressed in airway epithelial cells
(28, 30) and activates SARS and MERS CoV S proteins (27, 28).
By immunostaining, flow cytometry, Western blotting, pro-
tease digestion, and site-directed mutagenesis, we show that
TMPRSS11A is autoactivated inside the cell before reaching
the cell surface. This mechanism of intracellular activation
cleavage differs from the extracellular activation cleavage re-
ported in other TTSPs. Moreover, we found that TMPRSS11A
exhibited the activity in cleaving the SARS-CoV-2 S protein.

Results

Cleavage of the conserved activation site in TMPRSS11A

Human TMPRSS11A consists of 418 amino acids. Fig. 1A
shows the domain structure of TMPRSS11A, including an N-
terminal cytoplasmic tail, a transmembrane domain (TM), and
an extracellular region containing a SEA (sea urchin sperm pro-
tein/enteropeptidase/agrin) domain and a C-terminal serine
protease domain. The conserved activation cleavage site is at
Arg186–Ile187 (Fig. 1A and Fig. S1). There is a disulfide bond
(Cys175–Cys292) linking the protease domain to the propepide
region after the cleavage at the Arg186–Ile187 (Fig. 1A).
To study TMPRSS11A, we expressed human TMPRSS11A

with a C-terminal V5 tag in transfected human embryonic
kidney 293 (HEK293) cells. In flow cytometry, we found
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TMPRSS11A on the cell surface (Fig. 1B). In immunostain-
ing, we detected TMPRSS11A on the surface of nonpermea-
bilized cells (Fig. 1C). The immunofluorescent signal was
stronger when the cells were permeabilized, which allows
staining both the cell surface and intracellular TMPRSS11A
protein (Fig. 1C). These results are consistent with the pre-
dicted membrane topology of TMPRSS11A being a TTSP.
In Western blotting of lysates from the transfected HEK293

cells, we detected a single ;57-kDa band under nonreducing
conditions (Fig. 1D, left panel). When Western blotting was
done under reducing conditions, three bands of;57,;37, and
;28 kDa, respectively, were detected (Fig. 1D, right panel). In
Western blotting with cell surface-labeled proteins, a single
band (;57 kDa) and two bands (;57 and ;37 kDa) were
detected under nonreducing and reducing conditions, respec-
tively (Fig. 1E). Based on the calculated molecular mass, the
;57-kDa band represents the one-chain TMPRSS11A zymo-
gen, whereas the ;37-kDa band represents the protease do-

main fragment cleaved at the conserved activation site (Fig.
1A). Because the V5 tag was at the C terminus, the cleaved N-
terminal fragment was not detected by the anti-V5 antibody in
Western blotting. These results indicate that TMPRSS11A is
activated and present on the surface of the transfected HEK293
cells.

Identification of another cleavage site in the protease domain

The identity of the;28-kDa band detected inWestern blot-
ting (Fig. 1D, right panel) was unclear. This band was observed
under reducing conditions in cell lysates, but not among cell
surface-labeled proteins (Fig. 1E, right panel), indicating that
this fragment remained inside the cells. Human TMPRSS11A
contains twoN-glycosylation sites: one at Asn153 in the SEA do-
main and the other at Asn303 in the protease domain (Fig. 2A).
To exclude the possibility that the ;28-kDa band was an un-
glycosylated fragment, we treated HEK293 cell lysates with

Figure 1. TMPRSS11A expression and cleavage in HEK293 cells. A, human TMPRSS11A protein consists of an N-terminal cytoplasmic tail, a TM domain, a
SEA domain, and a C-terminal protease domain. The activation cleavage site is at Arg186–Ile187 (arrowhead). Catalytic residues in the protease domain and a di-
sulfide bond (s-s) connecting the propeptide region and the protease domain are indicated. A V5 tag (v) is at the C terminus. Expected molecular masses for
TMPRSS11A zymogen and the cleaved protease domain fragment are shown. B, flow cytometric analysis of TMPRSS11A on the surface of HEK293 cells trans-
fected with a TMPRSS11A (11A)-expressing plasmid or a vector. Percentages of TMPRSS11A-positive cells are indicated. C, immunostaining of TMPRSS11A in
nonpermeabilized and permeabilized HEK293 cells transfected with a TMPRSS11A (11A)-expressing plasmid or vector. Arrows indicate TMPRSS11A-positive
cells. Scale bars, 5 mM. D and E, Western blotting of TMPRSS11A proteins in lysates (D) and biotin-labeled surface proteins (E) from HEK293 cells transfected
with a TMPRSS11A (11A)-expressing plasmid or a vector. Experiments were done under nonreducing (NR) or reducing (R) conditions with an anti-V5 antibody.
TMPRSS11A fragments are indicated by arrowheads. GAPDH and Coomassie Blue (CB)-stained nonspecific bands were used as protein loading controls in the
respective experiments. Data are representative of at least three experiments.

TMPRSS11A zymogen activation

J. Biol. Chem. (2020) 295(36) 12686–12696 12687



PNGase F to remove N-glycans on proteins. In Western blot-
ting under reducing conditions, the;57-,;37-, and;28-kDa
TMPRSS11A bands all migrated faster compared with those in
untreated samples (Fig. 2B), indicating that the;28-kDa band
may be a proteolytically cleaved fragment but not an unglycosy-
lated fragment.
Based on the calculated molecular mass, the ;28-kDa band

could be generated from a cleavage at Arg265 in the protease do-
main (Fig. 2C). To test this hypothesis, we made a plasmid
expressing the mutant R265A, in which Arg265 in TMPRSS11A
was replaced by Ala. In Western blotting with lysates from
transfected HEK293 cells, the ;28-kDa band was detected in
TMPRSS11AWT but not the mutant R265A (Fig. 2D), indicat-
ing that the;28-kDa band is created by proteolytic cleavage at
Arg265 in the protease domain.

Analysis of TMPRSS11A proteins with mutated activation
cleavage and catalytic sites

In a recent study in transfected 293T cells, more than seven
major TMPRRSS11A fragments were detected by Western
blotting (28). It is difficult to know if those fragments were
derived by TMPRSS11A autocatalysis or unknown protease(s)
or both in 293T cells. To circumvent this problem, we made
plasmids expressing mutants R186A and S368A, in which the
activation cleavage site at Arg186 and the catalytic Ser368 were
mutated to Ala, respectively (Fig. 3A). In Western blotting of
lysates from HEK293 cells expressing the R186A mutant, only
the ;57-kDa zymogen band was detected (Fig. 3B), indicating
that the ;37-kDa band was derived from cleavage at the
conserved activation site Arg186 and that the single-chain

TMPRSS11A was incapable of cleaving at Arg265. Similarly,
Western blotting of lysates from HEK293 cells expressing
the S368A mutant showed the;57-kDa band only (Fig. 3B),
indicating that cleavages at Arg186 (generating the ;37-kDa
band) and Arg265 (generating the ;28-kDa band) depended
on the catalytic activity of TMPRSS11A.
TMPRSS11A, also called ECRG1 (esophageal cancer-related

gene 1), was first identified in human esophageal cancers (31,
32). To verify our results, we expressed TMPRSS11A WT and
mutants R186A and S368A in EC9706 cells, a human esopha-
geal cancer cell line (33). In Western blotting of lysates from
transfected EC9706 cells, we detected three bands of;57,;37,
and ;28 kDa, respectively, in TMPRSS11A WT, but a single
;57-kDa band in mutants R186A and S386A (Fig. 3C). Simi-
lar results were observed in additional experiments with
human bronchial (16HBE) and alveolar basal (A549) epithe-
lial cells (Fig. S2). These results are consistent, indicating
that TMPRSS11A undergoes autoactivation at Arg186 and
subsequent autocleavage at Arg265 in the protease domain.

Intracellular cleavage of TMPRSS11A

To understand if the detected TMPRSS11A autoactivation
cleavage occurred intracellularly or on the cell surface, we
expressed TMPRSS11A WT in HEK293 cells and treated the
cells with trypsin to remove surface proteins. In flow cytometry,
TMPRSS11A was detected on the surface of the transfected
HEK293 cells (Fig. 4A). The expression was reduced to the
background level in the cells treated with trypsin (Fig. 4A).
When the cells were lysed and lysates were analyzed by West-
ern blotting, we observed the;57-,;37-, and;28-kDa bands
in the cells without or with trypsin treatment (Fig. 4B). These
results indicate that TMPRSS11A activation cleavage occurred
intracellularly.
We next treated HEK293 cells expressing TMPRSS11A with

brefeldin A (BFA) andmonensin, which inhibit protein traffick-
ing in the endoplasmic reticulum (ER) and the Golgi (34). In
Western blotting, we found the ;57-, ;37-, and ;28-kDa
bands in TMPRSS11A-expressing cells without or with BFA or
monensin treatment (Fig. 4C). In these studies, we did parallel
control experiments with corin (Fig. S3), a TTSP known to be
activated on the cell surface but not intracellularly (6). InWest-
ern blotting, the ;40-kDa corin protease domain fragment
from activation cleavage was detected in the cells without, but
not with, trypsin, BFA, or monensin treatment (Fig. 4D). These
results indicate that, unlike corin, TMPRSS11A is activated
intracellularly before reaching the cell surface.

Intracellular cleavage of soluble TMPRSS11A

To examine if the transmembrane domain in TMPRSS11A is
required for activation cleavage, we made a plasmid expressing
a soluble form of TMPRSS11A, in which the cytoplasmic tail
and the transmembrane domain were replaced with the signal
peptide of IgK (Fig. 5A) (35). In addition, wemade another plas-
mid expressing an inactive soluble TMPRSS11A mutant (solu-
ble S368A), in which the catalytic Ser368 was replaced by Ala
(Fig. 5A). As expected, TMPRSS11A WT, but not soluble
TMPRSS11A (s11A), was found on the surface of transfected

Figure 2. TMPRSS11A N-glycosylation and cleavage in the protease do-
main. A, illustration of N-glycosylation sites (Y shaped symbols) in human
TMPRSS11A. B, Western blotting of TMPRSS11A fragments in cell lysates
treated with control buffer or PNGase F. Western blotting was done under
reducing (R) conditions with an anti-V5 antibody. Shifted bands after PNGase
F treatment are indicated by double arrowheads. C, illustration of a potential
cleavage site at Arg265–Ser266 (red arrowhead) in the TMPRSS11A protease
domain. D, Western blotting of TMPRSS11A fragments in lysates from
HEK293 cells transfected with a vector or plasmids expressing TMPRSS11A
WT and themutant R265A. Experiments were done under reducing (R) condi-
tions with an anti-V5 antibody. TMPRSS11A fragments are indicated by
arrowheads. GAPDHwas used as a protein loading control. Data are represen-
tative of at least three experiments.
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Figure 3. Analysis of inactive TMPRSS11Amutants R186A and S368A. A, illustration of TMPRSS11AWT and inactive mutants R168A (zymogen activation
cleavage site) and S368A (active site). B and C,Western blotting of TMPRSS11A fragments in lysates from HEK293 (B) and EC9706 (C) cells transfected with a
vector or plasmids expressing TMPRSS11A WT and mutants R168A and S368A. Western blotting was done under reducing (R) conditions with an anti-V5 anti-
body. TMPRSS11A fragments are indicated by arrowheads. GAPDH was used as a protein loading control. Data are representative of at least three
experiments.

Figure 4. Analysis of TMPRSS11A and corin in HEK293 cells treatedwith trypsin, BFA, ormonensin. A, HEK293 cells were transfected with a control vec-
tor and the plasmid expressing TMPRSS11A. TMPRSS11A-expressing cells were treated without or with trypsin. Cell surface TMPRSS11A expression was ana-
lyzed by flow cytometry with an anti-V5 antibody. Numbers indicate the percentages of TMPRSS11A-positive cells. Quantitative data of five experiments are
shown in the bar graph with p values. B, HEK293 cells expressing TMPRSS11Awere treated with buffer (control) (2) or trypsin (1) before being lysed for West-
ern blotting under reducing (R) conditions. C,Western blotting of TMPRSS11A fragments in lysates from HEK293 cells treated with buffer (2) or BFA (left panel)
or monensin (right panel) (1). Western blotting was done under reducing (R) conditions with an anti-V5 antibody. D, Western blotting of corin protein in
HEK293 cells treated without (2) or with (1) trypsin (left panel), BFA (middle panel), or monensin (right panel). TMPRSS11A and corin fragments are indicated
by arrowheads. Data are representative of at least three experiments.
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HEK293 cells in flow cytometry (Fig. 5B). In Western blotting,
we found all three bands of;57/53,;37, and;28 kDa, respec-
tively, in lysates from HEK293 cells expressing TMPRSS11A
WT and s11A (Fig. 5C), indicating that soluble TMPRSS11A
undergoes similar intracellular activation cleavage and that the
transmembrane domain is not required for TMPRSS11A
autoactivation. We next incubated the conditioned medium
containing s11A with a recombinant SARS–CoV-2 S protein
fragment corresponding to the nearly entire extracellular
region (residues 16-1213) produced from insect cells. We
detected a;60-kDa band (Fig. 5D), which is close to the calcu-
lated molecular mass of the cleaved S2 fragment (59 kDa). The
;60-kDa band was not detected in samples from vector-trans-
fected cells or cells expressing the inactive soluble TMPRSS11A
S368A (Fig. 5D). In a positive control, a similar ;60-kDa band
was observed when we used the conditionedmedium from cells

expressing a soluble form of TMPRSS2, which cleaves SARS–
CoV-2 S protein (22) (Fig. 5D). We did not detect any SARS–
CoV-2 S protein fragments of;45 kDa, which is the calculated
molecular mass of the S2’ fragment. These results indicate that
TMPRSS11A is capable of cleaving SARS–CoV-2 S protein at
least in vitro.

Intermolecular cleavage of TMPRSS11A

The results described above support TMPRSS11A auto-
activation. It was unclear if the autoactivation cleavage
of TMPRSS11A occurs in cis (intramolecular) or in trans
(intermolecular). To address this question, we further ana-
lyzed the soluble S368A mutant (sS368A) (Fig. 5A). In trans-
fected HEK293 cells, sS368A was detected in the condi-
tioned medium, as expected (Fig. 6A). OnWestern blots, the
sS368A fragment in the conditioned medium had a higher

Figure 5. Expression and cleavage of a soluble form of TMPRSS11A. A, illustration of soluble forms of TMPRSS11A (s11A) and the mutant TMPRSS11A
S368A (sS368A) with a signal peptide from IgK and the entire extracellular region. B, flow cytometry was done with an anti-V5 antibody to analyze TMPRSS11A on
the surface of HEK293 cells transfected with a vector or plasmids expressing TMPRSS11A WT and s11A. Numbers indicate the percentages of TMPRSS11A-
positive cells. Quantitative data from five experiments are shown in the bar graph with p values. C,Western blotting of TMPRSS11A fragments in lysates from
HEK293 cells transfected with a vector or plasmids expressing TMPRSS11A WT and s11A. Western blotting was done under reducing (R) conditions with an
anti-V5 antibody. TMPRSS11A fragments are indicated by arrowheads. D, recombinant SARS–CoV-2 S-ECD was incubated with the conditioned medium
from HEK293 cells transfected with a vector or plasmids expressing s11A, sS368A, and a soluble form of TMPRSS2 (sTMPRSS2). Western blotting was done
under reducing conditions with an anti-FLAG antibody. The uncleaved S-ECD fragment (filled arrowhead) and the cleaved;60-kDa fragment (open arrow-
head) are indicated. GAPDH and Coomassie Blue (CB)-stained nonspecific bands were used as protein loading controls in respective experiments. Data are
representative of three experiments.
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molecular mass than that in lysates (;57 versus ;53 kDa)
(Fig. S4). When the samples were treated with PNGase F,
the sS368A fragment from the conditioned medium and
lysates migrated faster at ;53 and ;51 kDa, respectively
(Fig. S4). The results suggest that other conformational
changes or post-translational modifications may account
for the higher molecular mass observed in the sS368A frag-
ment from the conditioned medium.
We next transfected HEK293 cells with the plasmid express-

ing the sS368A mutant together with plasmids expressing
TMPRSS11A WT and mutants R186A and S368A or a control
vector. In Western blotting, the ;37-kDa band derived from
activation cleavage was observed in the conditioned medium
from HEK293 cells co-expressing TMPRSS11A WT, but not
mutants R186A and S368A (Fig. 6B), indicating that intermo-
lecular cleavage of TMPRSS11A did occur under our experi-
mental conditions. We then did another experiment, in which
plasmid expressing the sS368Amutant was co-transfected with
plasmids expressing TMPRSS11A, hepsin, TMPRSS2, and
corin in HEK293 cells. In Western blotting of the conditioned
medium, the ;37-kDa band from the sS368A mutant was
detected in samples from TMPRSS11A-, hepsin- and TMPRSS2-
expressing, but not corin-expressing, cells. The levels of this
band, however, were much lower in samples from hepsin- and
TMPRSS2-expressing cells than that in TMPRSS11A-expressing
cells (Fig. S5). These results support the idea of TMPRSS11A
autoactivation, although the possibility that other TTSP-medi-
ated transactivation cleavagemay occur cannot be excluded.

Effects of HAI-1 and HAI-2 on TMPRSS11A activation cleavage

Hepatocyte growth factor activator inhibitors 1 and 2 (HAI-1
and HAI-2) are structurally related type I transmembrane ser-
ine protease inhibitors (36). Recently, HAI-1 was shown to in-
hibit HAT and DESC1, but not TMPRSS11A, activity in cell-
based studies (28). To examine the effect of HAI-1 and HAI-2
on TMPRSS11A activation cleavage, we co-transfected

HEK293 cells with plasmids expressing TMPRSS11A WT and
human HAI-1 or HAI-2. In Western blotting of lysates from
the transfected cells, we detected the ;37-kDa TMPRSS11A
band in cells co-expressing HAI-1 (Fig. 7, top panel). However,
the level of the ;37-kDa band was lower than that in control
vector co-transfected cells. In cells co-expressing TMPRSS11A
and HAI-2, the ;37-kDa band was barely visible (Fig. 7, top
panel). The;28-kDa TMPRSS11A band was not detected in
cells co-expressing HAI-1 or HAI-2 (Fig. 7, top panel). These
results indicate that HAI-2 is more potent than HAI-1 in inhibi-
ting TMPRSS11A activity when co-expressed with TMPRSS11A
in cells.

Discussion

TMPRSS11A is an airway epithelial TTSP implicated in
SARS and MERS CoV infection (27, 28). For trypsin-like serine
proteases, zymogen activation is essential for biological func-
tion (37). In this study, we examined the activation cleavage of
human TMPRSS11A in HEK293 cells, esophageal cancer
EC9706 cells, and lung epithelial 16HBE and A549 cells. Our
results indicate that TMPRSS11A activation cleavage is medi-
ated primarily by autocatalysis. This conclusion is supported by
the findings that no activation cleavage was detected in cata-
lytically inactive mutants R186A and S368A. In addition,
TMPRSS11AWT, but not mutants R186A and S368A, cleaved
the soluble TMPRSS11A mutant S368A, indicating that there
were no other endogenous proteases capable of cleaving
TMPRSS11A in the cells tested in our study. Moreover, our
results show that TMPRSS11A activation cleavage occurs
before the protease reaches the cell surface, as indicated by
trypsin digestion, BFA, and monensin treatment, and intracel-
lular cleavage of soluble TMPRSS11A. Together, our results
reveal an intracellular autoactivation mechanism in converting
one-chain TMPRSS11A zymogen into a two-chain enzyme.
Zymogen activation has been studied in TTSPs. To date, sev-

eral distinct mechanisms have been identified. For example,
hepsin and matriptase 2 (hepatic TTSPs) are autoactivated on
the cell surface but not inside the cell (38–40). Corin (a cardiac
TTSP) is activated in the extracellular space by proprotein con-
vertase subtilisin/kexin-6 (6, 41). Enteropeptidase (an intestinal
TTSP) is activated extracellularly and in a reciprocal manner in
the presence of its substrate, trypsinogen (42). Similarly, epithe-
lial matriptase activation is mediated by autocleavage, probably
on the cell membrane (43), and by reciprocal activation with
prostasin, a glycosylphosphatidylinositol-anchored serine pro-
tease on the cell surface (44–46). More recently, activation
cleavage of HAT and DESC1 (airway TTSPs) was observed in
transfected cells (28); however, the responsible proteases (HAT
and DESC1 versus unknown proteases) and the location of the
cleavage (intracellular versus cell surface) are not defined. To-
gether with our new findings of intracellular autoactivation
cleavage in TMPRSS11A, these data show that molecular and
cellular mechanisms in zymogen activation vary considerably
among TTSPs.
TMPRSS11A was identified as a putative tumor suppressor

in human esophageal cancers (32, 47). TMPRSS11A variants
are linked to the risk of oral and esophageal squamous cell

Figure 6. Expression and cleavage of the soluble TMPRSS11A mutant
S368A. A, immunoprecipitation andWestern blotting of TMPRSS11A protein
in the conditioned medium from HEK293 cells transfected with a vector or
plasmids expressing the sS368A mutant and TMPRSS11AWT. B, immunopre-
cipitation and Western blotting of TMPRSS11A protein in the conditioned
medium from HEK293 cells transfected with a vector or the plasmid express-
ing the sS368A mutant together with a vector or plasmids expressing
TMPRSS11A WT and mutants R186A and S368A. In Western blotting, an anti-
V5 antibody was used. Coomassie Blue (CB)-stained nonspecific bands were
used as a protein loading control. Data are representative of at least three
experiments.
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carcinomas (31, 48, 49). To date, the physiological function of
TMPRSS11A remains unclear. In mice, the Tmprss11a gene is
co-localized with six other Tmprss11 genes in a locus on chro-
mosome 5E1 (50). Most of the Tmprss11 genes are expressed
in multiple epithelial tissues, including the trachea, esophagus,
stomach, bladder, and skin (51, 52). Tmprss11a-deficient
mice, however, did not exhibit noticeable defects in embryonic
development and postnatal survival (51, 53). In humans,
TMPRSS11A is expressed in the trachea (27, 28). In single-cell
analysis, TMPRSS11A expression was detected in basal and se-
cretory cells in human and mouse airway epithelia (30). In
Tmprss11a-deficient mice, no apparent abnormalities were
observed in trachea sections (51). These results indicate that
TMPRSS11A is unnecessary for normal trachea structures but
may have a regulatory function in the airway epithelium, which
is yet identified.
Human airway epithelial proteases are important in CoV

pathogenicity. By cleaving CoV S proteins between the S1/S2
and the S2’ sites, the proteases enhance viral entry and cell-cell
fusion in airway tissues (22, 54, 55). In purified protein-based

experiments, TMPRSS11A cleaved SARS–CoV S protein at
both the S1/S2 and S2’ sites (27). Similar TMPRSS11A-medi-
ated cleavages of MERS–CoV S protein were observed in cell-
based studies (28). In our study, we showed that TMPRSS11A
cleaved the recombinant SARS–CoV-2 S protein extracellular
fragment, producing an ;60-kDa band. A similar ;60-kDa
band was also detected when sTMPRSS2 was used. Previously,
the full-length SARS–CoV-2 S protein expressed in HEK293T
cells was shown to be cleaved by furin at the S1/S2 site, generat-
ing an;90-kDa band, consistent with the calculated molecular
mass of a glycosylated S2 subunit (24). In that study, the S2’
fragment with an expected molecular mass of 68 kDa (with gly-
cosylation) was not detected. Together with previous reports
(27, 28), the results from our study support a potential role of
TMPRSS11A in CoV S protein cleavage. Additional studies will
be important to verify the precise cleavage site in the SARS–
CoV-2 S protein by TMPRSS11A. It is known that CoV S pro-
tein cleavage can occur at different locations in host cells: on
the cell surface during virus entry, inside the cell during virus
replication and S protein synthesis, and upon release from the
cell (29, 54). In our study, we found activation-cleaved two-
chain TMPRSS11A on the cell membrane and inside the cell.
Further studies are required to determine whether and how
TMPRSS11A enhances CoV infectivity in host cells.
Physiologically, protease activities are tightly regulated. In a

previous study (28), TMPRSS11A-mediated cleavage of influ-
enza A hemagglutinin was inhibited by a small molecule serine
protease inhibitor, but not HAI-1, which inhibits several epi-
thelial TTSPs (36). Moreover, co-expression of TMPRSS11A
and HAI-1 in 293T cells reduced, but did not abolish, the cleav-
age of TMPRSS11A (28). Consistently, we found that HAI-1
was less effective than HAI-2 in blocking TMPRSS11A autoac-
tivation cleavage when co-expressed in HEK293 cells. In single-
cell analysis of the human airway epithelium, levels of SPINT2
(encoding HAI-2) expression were ;2-fold higher than that of
SPINT1 (encoding HAI-1) (30). These results are consistent
with our findings, indicating that HAI-2 is more important
than HAI-1 in regulating TMPRSS11A activity in the respira-
tory track.
In summary, we examined the mechanism underlying

TMPRSS11A zymogen activation cleavage. We show that
TMPRSS11A activation cleavage is mediated primarily by
autocatalysis that occurs before the protease reaches the cell
surface. This intracellular autoactivation mechanism differs
from the extracellular activation mechanism reported in other
TTSPs. We also show that TMPRSS11A cleaved SARS–CoV-2
S protein in cell culture-derived medium. The results indicate
that, in addition to TMPRSS2, other TTSPs in the respiratory
system may also participate in SARS–CoV-2 infection. These
findings should encourage more studies to understand the role
of airway epithelial TTSPs in CoV infection.

Experimental procedures

Cell culture

HEK293 cells (ATCC, CRL-1573, authenticated by STR
profiling) were cultured in Dulbecco’s modified Eagle’s me-
dium (Corning, 10-0130CVRC) in the presence of 10% fetal

Figure 7. Effects of HAI-1 and HAI-2 expression on TMPRSS11A cleav-
age. HEK293 cells were transfected with a vector or plasmid expressing
TMPRSS11A (11A) together with a vector or plasmids expressing human HAI-
1 and HAI-2. TMPRSS11A fragments in cell lysates were analyzed by Western
blotting under reducing (R) conditions with an anti-V5 antibody (top panel).
GAPDH was used as a protein loading control (second panel). HAI-1 (third
panel), and HAI-2 (bottom panel) protein expression in the transfected cells
was verified in parallel Western blotting experiments using aliquots of the
same lysate samples and an anti-FLAG antibody. Data are representative of
at least three experiments.
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bovine serum (FBS) (Gibco, 16000-044). Human esophageal
squamous cell carcinoma EC9706 cells were from Shanghai
Fuxiang Biological Technology (Shanghai, China) and cultured
in RPMI 1640 medium (Hyclone, sh30255) with 10% FBS.
SV40-transfected human bronchial epithelial 16HBE cells and
adenocarcinomic human alveolar basal epithelial A549 cells
were from Ningbo Mingzhou Biological Technology (Ningbo,
China; STR profiled) and cultured in minimum essential me-
dium (Hyclone, SH300024) and RPMI 1640 medium, respec-
tively, with 10% FBS. All cells were grown at 37°C with 5%CO2.

Expression plasmids

Plasmids expressing human corin and hepsin were pcDNA
3.1/V5 (Thermo Fisher, K4800-01) based and encoded a C-ter-
minal V5 tag, as described previously (40, 56). Full-length
cDNAs encoding human TMPRSS11A and TMPRSS2 were
amplified from myeloma (made in this study) and prostate
(Clontech 636743) cDNA libraries, respectively, and inserted
into the pcDNA 3.1/V5 plasmid to express TMPRSS11A and
TMPRSS2. PCR-based site-directed mutagenesis (ClonExpress
One Step Cloning kit) was carried out to make constructs
expressing TMPRSS11A mutants R186A, R265A, and S368A.
To express soluble forms of TMPRSS11A (sTMPRSS11A and
sTMPRSS11A S368A), cDNA sequences encoding the extracel-
lular regions of TMPRSS11A WT and the mutant S368A were
amplified by PCR and inserted into pSecTag/FRT/V5 plasmid
(Thermo Fisher, K6025–01) encoding an N-terminal Igk signal
peptide (35). Another pSecTag-based plasmid was made to
express a soluble form of TMPRSS2 with the extracellular
region (residues 106-492). All expressed TMPRSS11A proteins
contained a C-terminal V5 tag. Human HAI-1 cDNA (106-
1542 bp) and HAI-2 cDNA (84-759 bp) were amplified from a
HEK293 cell-derived library and cloned into pcDNA 3.1 plas-
mid with an inserted 5’ sequence encoding the CD33 signal
peptide and a FLAG tag. A list of expression plasmids used in
this study is included in Table S1.

Cell transfection

HEK293, EC9706, 16HBE, and A549 cells were cultured
under the conditions described above. When the cells were at
;80% confluent, expression and control plasmids were trans-
fected into the cells using PolyJet reagents (SignaGen Laborato-
ries, SL100688) at 37 °C, based on the manufacturer’s instruc-
tions. After 6 h of incubation, the cells were switched to fresh
medium and incubated for 24-72 h before being used for fur-
ther studies described below.

Flow cytometry

To verify cell surface expression of TMPRSS11A proteins,
transfected HEK293 cells were detached from culture plates
with 0.02% (w/v) EDTA without or with 0.25% (w/v) trypsin
(Gibco, 25200). After being washed with serum-free medium,
the cells were incubated with an anti-V5 antibody (Thermo
Fisher, R96025, 1:1000) at 37 °C for 1 h. After washing with
PBS, an Alexa Fluor 488-labeled secondary antibody (Invitro-
gen, A21202, 1:500) was added to the cells and incubated at
room temperature in the dark for 1 h. After washing, the cells

were analyzed with a flow cytometer (Gallios, Beckman). Pyri-
dinium iodide (Sigma) was used for life gating. Data were ana-
lyzed with Kaluza software.

Immunostaining

HEK293 cells were cultured in 12-well–plates with glass cov-
erslips (20 mm in diameter) and transfected with plasmids
using PolyJet reagents at 37 °C, as described above. After 6 h,
the cells were switched to fresh medium. After 24 h, the cells
were fixed with pre-cooled acetone (cell membrane permeabil-
ized) or paraformaldehyde (4% v/v) (cell membrane not perme-
abilized) at room temperature for 5 min and incubated with 5%
(w/v) BSA in PBS at 37 °C for 1 h. After being washed with PBS,
the cells were incubated with the anti-V5 antibody (described
above) at 37 °C for 1 h, followed by incubation with the Alexa
Fluor 488-labeled secondary antibody (described above) at 37 °
C for 1 h. After washing, the coverslips were mounted with the
49,6-diamidino-2-phenylindole (DAPI) solution (Southern Bio-
tech, 0100-20) and the cells were examined under a confocal
microscope (Olympus, FV1000).

Western blotting

HEK293, EC9706, 16HBE, and A549 cells transfected with
plasmids expressing TMPRSS11A proteins or a control vector
were cultured, as described above. When the cell culture
reached confluence, the conditioned medium was collected.
TMPRSS11A proteins in the conditioned medium were immu-
noprecipitated using the anti-V5 antibody. The cells were lysed
in a buffer containing 1% (v/v) Triton X-100, 50 mM Tris-HCl
(pH 8.0), 150 mM NaCl, and a protease inhibitor mixture
(1:100, Roche Applied Science, 04693116001). The proteins
from the conditioned medium and cell lysates were mixed with
a Laemmli sample buffer (Bio-Rad) with (reducing) or without
(nonreducing) b-mercaptoethanol (2.5% v/v), and analyzed by
SDS-PAGE and Western blotting using a horseradish peroxi-
dase (HRP)-conjugated anti-V5 antibody (1:5000, Thermo
Fisher, R96125). After incubation with a solution with an
enhanced chemiluminescent substrate (NcmECL Ultra) (NCM
Biotech, P10100), Western blots were exposed to a chemilumi-
nescent imager (Amersham Biosciences Imager 600).

Biotin labeling of cell surface proteins

To label cell surface proteins, sulfo-NHS-biotin (0.25 mg/ml,
Thermo Fisher) was added to cultured cells. After 4 min on ice,
a glycine solution (100 mM) was added to stop the reaction. Af-
ter 30 min, the cells were lysed, as described above. The biotin-
labeled proteins were precipitated with NeutrAvidin beads
(Thermo Fisher, 29201) at 4 °C. After 16 h, proteins on the
beads were eluted with the Laemmli buffer with or without
b-mercaptoethanol (2.5%, v/v), and analyzed by SDS-PAGE
andWestern blotting, as described above.

PNGase F digestion

To examine N-linked glycans on TMPRSS1A, cell lysates or
protein precipitates in a denaturing buffer (0.5% SDS and 40
mM DTT) were boiled for 10 min and treated with PNGase F
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(30 units, New England Biolabs, P0704), which removes N-
linked oligosaccharides. After 3 h at 37 °C, the treated protein
samples were analyzed by Western blotting using an anti-V5
antibody under reducing conditions, as described above.

Trypsin digestion of cell surface proteins

To examine proteins on HEK293 cell surface, transfected
cells expressing TMPRSS11A and control cells expressing corin
were treated with 0.25% (w/v) trypsin and 0.02% EDTA (w/v)
(Gibco, 25200) at 37 °C for 30 s. Dulbecco’s modified Eagle’s
medium with 10% FBS was added to neutralize trypsin activity.
After washing with PBS, the cells were lysed in the lysis buffer
as described above. Proteins were separated by SDS-PAGE
under reducing conditions with 2.5% (v/v) b-mercaptoethanol
in the Laemmli buffer. Western blotting was done using an
HRP-conjugated anti-V5 antibody (1:5000, Thermo Fisher,
R96125), as described above.

Brefeldin A and monensin treatment

To study the subcellular location of TMPRSS11A activation,
HEK293 cells expressing TMPRSS11A and control cells
expressing corin were treated with BFA (1 mM) (Sigma, 203729-
1MG) or monensin (0.3 mM) (Sigma, 475897-100MG) to inhibit
protein trafficking in the ER and the Golgi, respectively (34).
After 20 h at 37 °C, the cells were washed and lysed. TMPRSS11A
and corin proteins in the lysates were analyzed with Western
blotting, as described above.

Cleavage of SARS–CoV-2 S protein extracellular fragment

To test the activity of TMPRSS11A forward SARS–CoV-2 S
protein, sTMPRSS11A, sTMPRSS11A S368A (negative con-
trol), and sTMPRSS2 (positive control) were expressed in
HEK293 cells. The conditioned media from the cells or vector-
transfected control cells were collected and concentrated;20-
fold with a filter device. The concentrated media were incu-
bated with a SARS–CoV-2 S protein extracellular domain
(S-ECD) fragment (residues 16-1213) produced in insect cells
and with a C-terminal FLAG tag (8 mg/ml, Bioword Technol-
ogy, NCP0030P). After 12 h at 37 °C, SARS–CoV-2 S-ECD and
derived fragments were analyzed by Western blotting using an
HRP-conjugated anti-FLAG antibody (Sigma, A8592, 1:10000).

Statistical analysis

Data were analyzed with Prism 6 software (Graphpad). Anal-
ysis of variance followed by Tukey's multiple comparison test
was used to analyze data from three or more groups. p Values
of,0.05 were considered to be statistically significant.

Data availability

All the data described in this study are contained within the
article and accompanying supporting information.
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